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A FINITE DIMENSIONAL REALIZATION
OF THE MOLLIFIER METHOD

FOR COMPACT OPERATOR EQUATIONS

M. T. NAIR AND SHINE LAL

Abstract. We introduce and analyze a stable procedure for the approxima-
tion of 〈f†, ϕ〉 where f† is the least residual norm solution of the minimal norm
of the ill-posed equation Af = g, with compact operator A : X → Y between
Hilbert spaces, and ϕ ∈ X has some smoothness assumption. Our method is
based on a finite number of singular values of A and some finite rank operators.
Our results are in a more general setting than the one considered by Rieder and
Schuster (2000) and Nair and Lal (2003) with special reference to the mollifier
method, and it is also applicable under fewer smoothness assumptions on ϕ.

1. Introduction

Many inverse problems in science and engineering have their mathematical for-
mulation as an operator equation

(1.1) Af = g

where A : X → Y is a compact operator between Hilbert spaces X and Y (cf.
[3, 5, 7, 6, 20]). It is well known that if A is of infinite rank, then the problem of
solving the above equation is ill-posed, in the sense that the generalized solution
f † := A†g for g ∈ D(A†) := R(A) + R(A)⊥ does not depend continuously on the
data g (cf. [3, 4, 14]). Here A† denotes the Moore-Penrose generalized inverse of
A. We may recall that for g ∈ D(A†), f † := A†g is the minimum norm solution of
the normalized equation A∗Af † = A∗g. A typical example of a compact operator
with infinite rank which often occurs in practical problems is the Fredholm integral
equation of the first kind,∫

Ω

k(s, t)f(t)dt = g(s), s ∈ Ω,

where k(·, ·) is a non-degenerate kernel, so that the corresponding integral operator
is a compact operator between suitable function spaces. So, in order to obtain stable
approximate solutions for such problems, one has to apply certain regularization
procedures. There are many regularization procedures available in the literature
((cf. [3, 4, 5, 7]) and the references therein).

In regularization methods, such as the Tikhonov regularization (cf. [3, 4]) or
Lavrentiev regularization (cf. [13, 19]) or in any of their variants and generalizations
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1282 M. T. NAIR AND SHINE LAL

(cf. [3, 4]), one finds a family of regularized solutions of the form

f δ
η := Rηg

δ,

where gδ is the available data such that ‖g − gδ‖ ≤ δ for some known error level
δ > 0, and the parameter η > 0 is chosen depending on (gδ, δ) in such a way
that f δ

η → f † as δ → 0. In the above procedures, in obtaining the regularized
solutions f δ

η , one has to solve certain well-posed problems for each data gδ. So, it is
desirable to have a procedure which gives regularized approximations for different
data without having to solve different problems. Also, usually in practical problems,
the space X is a space of functions defined on certain subset Ω of Rk, and one is
interested in the value of the solution f † at certain points x in Ω. Having such
situations in mind, Louis and Maass [8] considered a new procedure, the so-called
mollifier method, for approximating f †(x). In this procedure, one considers a family
E := {eγ(·, ·) : γ > 0} of functions on Ω × Ω, called mollifiers, such that eγ(x, ·)
is well defined, eγ(x, ·) ∈ X for each x ∈ Ω and 〈f, eγ(x, ·)〉 → f(x) as γ → 0.
Moreover, E is required to have some additional property so that 〈f, eγ(x, ·)〉 can
be expressed as 〈g, ψγ(x)〉 for some ψγ(x) ∈ Y . By the first requirement Eγf

†

defined by (Eγf)(x) = 〈f, eγ(x, ·)〉, x ∈ Ω, can be considered as an approximation
of f † for small enough γ, and by the latter requirement the computation of Eγf

†

is reduced in terms of known quantities.
It has been proved by the authors (cf. [15]) that if the data g and the mollifier

eγ(x, ·) are in the domains of the generalized inverses of A and A∗, respectively,
then

〈A†g, eγ(x, ·)〉 = 〈g, ψγ(x)〉,
where ψγ(x) = (A∗)†eγ(x, ·). Note that the computation of 〈g, ψγ(x)〉 involves the
problem of solving an ill-posed equation

AA∗ψγ(x) = Aeγ(x, ·)
in the infinite dimensional setting. Thus, the need arises to have a finite dimensional
procedure to approximate the quantity 〈g, ψγ(x)〉. As we have already pointed out,
one may be interested in computing the values of 〈g, ψγ(x)〉 for a certain finite
number of x’s, say for x ∈ {x1, . . . , x�}. Thus, the problem is to get approximations
for 〈g, ψγ(xi)〉, i = 1, . . . , �.

Rieder and Schuster (cf. [17], [18]) suggested a new method for finding an ap-
proximation to ψγ(x) by solving a finite dimensional system. In their analysis, first
they consider the case of eγ(xi, ·) ∈ R(A∗) and then the general case eγ(xi, ·) ∈ X .
But the main theorem on error estimates for the general case eγ(xi, ·) ∈ X involves
an assumption which amounts to the assumption eγ(xi, ·) ∈ R(A∗). In [15] the
authors suggested a new method in the finite dimensional setting for a bounded
linear operator A which is applicable for the case of eγ(xi, ·) �∈ R(A∗) as well. The
purpose of this paper is to consider another procedure for the specific case when
A is a compact linear operator. In this case we arrive at better estimates than the
ones available in [15]. A particular case of the procedure yields an error bound
of the form obtained by Rieder and Schuster (cf. [17, 18]) under certain weaker
assumptions.

We shall be carrying out our analysis in a slightly more general setting, in which
we are approximating 〈f †, ϕ〉 which is the same as 〈g, (A∗)†ϕ〉 (cf. [15]) whenever
g and ϕ are in the domains of A† and (A∗)†, respectively, and X is not necessarily
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THE MOLLIFIER METHOD FOR COMPACT OPERATOR EQUATIONS 1283

a function space. In the usual mollifier method, ϕ could be eγ(xi, ·), whenever X
is a space of functions on Ω and eγ(·, ·) is a mollifier.

2. Background materials

In our procedure for obtaining stable approximate solutions for the operator
equation (1.1) where A : X → Y is a compact operator between the Hilbert spaces
X and Y , we further require a subspace Z of Y which is a Hilbert space with
respect to the norm ‖ · ‖Z. Norms on X and Y are denoted by ‖ · ‖. For example,
if Y = L2(Ω), then Z may be a Sobolev space.

In the mollifier method, we may have X as a function space defined on some
subset Ω ⊆ Rd. Our objective is to find 〈f, ϕ〉 which is the same as 〈g, (A∗)†ϕ〉.
Also, the evaluation of the inner product 〈g, (A∗)†ϕ〉 may involve the integral.
Hence, in order to approximate 〈g, (A∗)†ϕ〉, we are going to replace it by an inner
product in Cn which is easily computable. For that we require n linear functionals
ψn,1, . . . , ψn,n on Z and n elements φn,1, . . . , φn,n in Y such that the linear operator
Πn : Z → Y defined by

(2.2) Πnv =
n∑

k=0

〈ψn,k, v〉φn,k, v ∈ Z,

has the following properties:
• ∃ a sequence (ρn) in [0, 1] which converges to 0 such that

(2.3) ‖Πnv − v‖ ≤ ρn‖v‖Z ∀ v ∈ Z;

• ∃ c > 0 such that

(2.4) ‖Πnv‖ ≤ c‖v‖Z ∀ v ∈ Z.

We shall also make use of the operators Ψn : Z → Cn and Φn : Cn → Y defined by

(2.5) (Ψnv)k = 〈ψn,k, v〉 := ψn,k(v), v ∈ Z, k = 1, . . . , n,

and

Φnx =
n∑

k=1

xkφn,k, x ∈ C
n,

respectively. Here, xk denotes the k-th coordinate of x ∈ Cn. With the above
notations, we can write Πn as

Πnv = ΦnΨnv, ∀ v ∈ Z.

For instance, in the 2D-computerized tomography problem (cf. [16, 17]), one has
to solve the operator equation (1.1) with A as the Radon transform defined by

(2.6) (Af)(s, θ) =
∫ w(s)

−w(s)

f(sω + tω⊥)dt

where ω := (cos θ, sin θ), ω⊥ := (− sin θ, cos θ) with (s, θ) ∈ W := (−1, 1) × (0, π),
and w(s) :=

√
1 − s2. Here X = L2(Ω), Y = L2(W ) and Z = Hm+1(W ) for some

m > 0 where Ω is the unit ball in R2 centered at the origin and Hm+1(W ) denotes
the Sobolev space of order m + 1 defined on the domain W . For p, q ∈ N, define
Πp,q : Hm+1(W ) −→ L2(W ) by

(2.7) Πp,qv =
q−1∑

i=−q

p−1∑
j=0

v(si, θj)Bq,i ⊗Bp,j , v ∈ Hm+1(W ),
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1284 M. T. NAIR AND SHINE LAL

where Bp,j = χ[θj, θj+1) and Bq,i = χ[si, si+1) for si = i
q , and θj = j π

p , i =
−q, . . . , q− 1; j = 0, . . . , p− 1. Here, for u, v ∈ L2(W ), u⊗ v ∈ L2(W ) is defined as
(u⊗ v)(s, θ) = u(s)v(θ) for (s, θ) ∈W and χ[a,b] denotes the characteristic function
on the interval [a, b]. Then for v ∈ Hm+1(W ) we have (cf. [17]),

‖Πp,qv − v‖ ≤ h‖v‖Hm+1(W ), h = max
{

1
q
,
π

p

}
,

and there exists c0 > 0 such that

‖Πp,qv‖ ≤ c0 ‖v‖Hm+1(W ).

Let Gn denotes the Gramm matrix related to the family {φn,1, . . . , φn,n}. That
is, Gn is the n× n matrix whose ij-th entry, (Gn)ij , is given by

(2.8) (Gn)ij = 〈φn,j , φn,i〉, i, j = 1, . . . , n.

Using the above definitions, it can be seen (cf. [15]) that

(2.9) 〈Πnu,Πnv〉 = 〈Ψnu,GnΨnv〉 ∀u, v ∈ Z.

We know that the compact linear operator A : X → Y between Hilbert spaces
X and Y has the singular value representation as

Af =
∞∑

k=1

σk〈f, vk〉uk, x ∈ X,

where {vk : k ∈ N} and {uk : k ∈ N} are orthonormal bases for N(A)⊥ and R(A),
respectively. Also, the singular values σk and singular vectors vk, uk are related by

(2.10) Avk = σk uk, A∗uk = σk vk

for k ∈ N. In the case of the Radon transform defined in (2.6) the singular values
and singular vectors are known explicitly (see e.g., [1]; also see [2]).

For the purpose of imposing some conditions on ϕ, we require a family {Xν :
ν > 0} of Hilbert spaces defined as follows: For ν > 0, let

(2.11) Xν := {f ∈ N(A)⊥ :
∞∑

k=1

σ−4ν
k |〈f, vk〉|2 <∞}.

Then it is seen that Xν is a Hilbert space with inner product and norm defined by

〈f, v〉ν :=
∞∑

k=1

σ−4ν
k 〈f, vk〉〈vk, v〉, f, v ∈ Xν ,(2.12)

‖f‖ν :=
∞∑

k=1

σ−4ν
k |〈f, vk〉|2, f ∈ Xν ,(2.13)

respectively. We may observe that Xν ⊆ Xµ whenever µ ≤ ν, and the inclusion
map from Xν to Xµ is continuous. Thus, the family {Xν : ν > 0} is a Hilbert scale.
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3. Approximation of 〈f †, ϕ〉
Suppose ϕ ∈ X and g ∈ D(A†). Our main objective is to find an approximation

for 〈f †, ϕ〉, where f † := A†g. As we have already mentioned, in the mollifier
method, we may have X a function space defined on some subset Ω ⊆ Rd and
ϕ(y) := eγ(xi, y) for xi, y ∈ Ω, i = 1, . . . , �.

Throughout the rest of the paper we assume that ϕ ∈ Xν , where Xν and its
inner product and norm are defined as in (2.11), (2.12), (2.13). We observe that,
since ϕ ∈ Xν , it can be represented as

ϕ =
∞∑

k=1

σ2ν
k 〈u, vk〉vk

with u ∈ X given by

(3.14) u =
∞∑

k=1

σ−2ν
k 〈ϕ, vk〉vk.

We may observe that

‖u‖2 =
∞∑

k=1

σ−4ν
k |〈ϕ, vk〉|2 = ‖ϕ‖2

ν.

We assume that uk ∈ Z for all k ∈ N and that the uk’s are orthogonal in Z. For
α > 0 and M ∈ N, we define an element v(α)

M ∈ Y as follows:

(3.15) v
(α)
M :=

M−1∑
k=0

σk

σ2
k + α

〈ϕ, vk〉uk.

Since uk ∈ Z for all k ∈ N, v(α)
M is an element in Z.

For finding an approximation to 〈f, ϕ〉, we make use of the following result
available in [15]. For the sake of completion of exposition, we are including its
proof as well.

Theorem 3.1. Let Ψn and Gn be as in (2.5) and (2.8), respectively, g ∈ Z∩D(A†)
and v ∈ Z. Let f † = A†g. Then

(3.16) |〈f †, ϕ〉 − 〈Ψng,GnΨnv〉| ≤ c1{ρn‖v‖Z + ‖A∗v − ϕ‖},
where c1 ≥ max{(c‖g‖Z + ‖g‖), ‖f †‖} and c > 0 is as in (2.4).

Proof. Let Πn be as in (2.2). Then by (2.9) we have

〈f †, ϕ〉 − 〈Ψng,GnΨnv〉 = 〈f †, ϕ〉 − 〈Πng,Πnv〉.
Hence

|〈f †, ϕ〉 − 〈Ψng,GnΨnv〉| = |〈f †, ϕ〉 − 〈Πng,Πnv〉|
≤ |〈f †, ϕ〉 − 〈f †, A∗v〉| + |〈f †, A∗v〉 − 〈Πng,Πnv〉|
≤ ‖f †‖ ‖A∗v − ϕ‖ + |〈f †, A∗v〉 − 〈Πng,Πnv〉|.

Since f † = A†g,

〈f †, A∗v〉 = 〈Af †, v〉 = 〈Pg, v〉 = 〈g, Pv〉 = 〈g, v〉
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1286 M. T. NAIR AND SHINE LAL

where P : Y −→ Y is the orthogonal projections onto R(A). Using the above
relation, we get

|〈f †, ϕ〉 − 〈Ψng,GnΨnv〉| ≤ ‖f †‖ ‖A∗v − ϕ‖ + |〈g, v〉 − 〈Πng,Πnv〉|.
Using the relations (2.3) and (2.4), we have

|〈g, v〉 − 〈Πng,Πnv〉| ≤ |〈g, v〉 − 〈g,Πnv〉| + |〈g,Πnv〉 − 〈Πng,Πnv〉|
≤ ‖g‖ ‖Πnv − v‖ + ‖Πng − g‖ ‖Πnv‖
≤ ρn‖g‖ ‖v‖Z + cρn‖g‖Z‖v‖Z

= (c‖g‖Z + ‖g‖)ρn‖v‖Z.

Thus,

|〈f †, ϕ〉 − 〈Ψng,GnΨnv〉| ≤ c1{ρn‖v‖Z + ‖A∗v − ϕ‖},
where c1 ≥ max{(c‖g‖Z + ‖g‖), ‖f †‖}. This completes the proof. �

Now, we derive estimates for ‖v(α)
M ‖Z and ‖A∗v(α)

M − ϕ‖. We do this in the next
two lemmas.

Lemma 3.2. Let v(α)
M be as in (3.15). Suppose ϕ ∈ Xν for some ν ∈ (0, 1] and

u ∈ X as in (3.14). Then

(3.17) ‖A∗v(α)
M − ϕ‖ ≤

√
α2ν + σ4ν

M ‖u‖.
Proof. Let ϕ ∈ X . From (3.15) and (2.10), we have

A∗v(α)
M =

M−1∑
k=0

σ2
k

σ2
k + α

〈ϕ, vk〉vk.

Since ϕ ∈ Xν , 0 < ν ≤ 1, with ϕ =
∑∞

k=0 σ
2ν
k 〈u, vk〉vk for u ∈ X as in (3.14), we

have

A∗v(α)
M − ϕ =

M−1∑
k=0

σ2+2ν
k

σ2
k + α

〈u, vk〉vk −
∞∑

k=0

σ2ν
k 〈u, vk〉vk

=
M−1∑
k=0

−α σ2ν
k

σ2
k + α

〈u, vk〉vk −
∞∑

k=M

σ2ν
k 〈u, vk〉vk

so that

‖A∗v(α)
M − ϕ‖2 =

M−1∑
k=0

(
α σ2ν

k

σ2
k + α

)2

|〈u, vk〉|2 +
∞∑

k=M

σ4ν
k |〈u, vk〉|2

≤
M−1∑
k=0

(
α σ2ν

k

σ2
k + α

)2

|〈u, vk〉|2 + σ4ν
M ‖u‖2.(3.18)

We observe that
M−1∑
k=0

(
α σ2ν

k

σ2
k + α

)2

|〈u, vk〉|2 = α2ν
M−1∑
k=0

(
(σ2

k

α )ν

σ2
k

α + 1

)2

|〈u, vk〉|2

≤ α2ν‖u‖2.

Hence, from (3.18) it follows that

‖A∗v(α)
M − ϕ‖2 ≤ α2ν‖u‖2 + σ4ν

M ‖u‖2 = (α2ν + σ4ν
M )‖u‖2.
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This completes the proof. �
The above lemma shows that if M is such that σ2

M ≤ α, then

‖A∗v(α)
M − ϕ‖ ≤ √

2αν‖u‖.
Lemma 3.3. Let v(α)

M be as in (3.15). Assume that ‖uk‖Z ≤ σ−β
k for all k ∈ N for

some β with 0 ≤ β ≤ 1, ϕ ∈ Xν with 0 < ν ≤ β+1
2 , and u ∈ X as in (3.14). Then

(3.19) ‖v(α)
M ‖Z ≤ αν− β+1

2 ‖u‖.
Proof. Since ϕ ∈ Xν with ϕ =

∑∞
k=0 σ

2ν
k 〈u, vk〉vk for u ∈ X as in (3.14), we have

v
(α)
M =

M−1∑
k=0

σk

σ2
k + α

〈ϕ, vk〉uk =
M−1∑
k=0

σ2ν+1
k

σ2
k + α

〈u, vk〉uk.

Since the uk’s are orthogonal in Z and ‖uk‖Z ≤ σ−β
k for all k,

‖v(α)
M ‖2

Z =
M−1∑
k=0

(
σ2ν+1

k

σ2
k + α

)2

|〈u, vk〉|2‖uk‖2
Z

≤
M−1∑
k=0

(
σ2ν+1

k

σ2
k + α

)2

|〈u, vk〉|2σ−2β
k

=
M−1∑
k=0


σ2(ν− β−1

2 )

k

σ2
k + α




2

|〈u, vk〉|2

= (αν− β+1
2 )2

M−1∑
k=0

(
(σ2

k

α )ν− β−1
2

σ2
k

α + 1

)2

|〈u, vk〉|2.

Since 0 ≤ β ≤ 1 and 0 < ν ≤ β+1
2 , we have 0 < ν − β−1

2 ≤ 1 so that

‖v(α)
M ‖2

Z = (αν− β+1
2 )2

M−1∑
k=0

|〈u, vk〉|2

≤ (αν− β+1
2 )2‖u‖2.

Thus
‖v(α)

M ‖Z ≤ αν− β+1
2 ‖u‖.

�
Now we are in a position to find an approximation for 〈f, ϕ〉.

Theorem 3.4. Let Ψn and Gn be as in (2.5) and (2.8), respectively, and g ∈
Z ∩ D(A†). Let f † = A†g. Assume that ‖uk‖Z ≤ σ−β

k for all k ∈ N for some β
with 0 ≤ β ≤ 1, and ϕ ∈ Xν with 0 < ν ≤ β+1

2 , and u ∈ X as in (3.14). Then

(3.20) |〈f †, ϕ〉 − 〈Ψng,GnΨnv
(α)
M 〉| ≤ c1{ρnα

ν− β+1
2 + αν + σ2ν

M }‖u‖
where c1 > 0 is as in (3.16) and c > 0 is as in (2.4). In particular, we have the
following:

(a) If α = c0ρ
2

β+1
n for some c0 > 0, then

|〈f †, ϕ〉 − 〈Ψng,GnΨnv
(α)
M 〉| ≤ c1‖u‖(ρ

2ν
β+1
n + σ2ν

M ).
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(b) If α = c0ρ
2

β+1
n for some c0 > 0 and M is such that σ2

M ≤ ρ
2

β+1
n , then

(3.21) |〈f †, ϕ〉 − 〈Ψng,GnΨnv
(α)
M 〉| = O(ρ 2ν

β+1
n

)
.

Proof. Let v(α)
M be as in (3.15). Using the relations (3.17) and (3.19), we have

‖A∗v(α)
M − ϕ‖ ≤

√
α2ν + σ2ν

M ‖u‖
and

‖v(α)
M ‖Z ≤ αν− β+1

2 ‖u‖.
Then by Theorem 3.1 we have

|〈f †, ϕ〉 − 〈Ψng,GnΨnv
(α)
M 〉| ≤ c1{ρn‖v(α)

M ‖Z + ‖A∗v(α)
M − ϕ‖}

≤ c1{ρnα
ν− β+1

2 +
√
α2ν + σ4ν

M }‖u‖
≤ c1{ρnα

ν− β+1
2 + αν + σ2ν

M }‖u‖
where c1 ≥ max{(c‖g‖Z + ‖g‖), ‖f †‖} and c > 0 is as in (2.4).

The particular case follow from (3.20). �

If ϕ ∈ Xν for some ν ≥ β+1
2 , then it is obvious that ϕ ∈ X β+1

2
. Hence the

following corollary is an immediate consequence of the above theorem.

Corollary 3.5. Let v(α)
M be as in (3.15). Assume that ϕ ∈ Xν with 0 < ν ≤ β+1

2 ,

and u ∈ X as in (3.14). If σ2
M ≤ ρ

2
β+1
n and α ≤ ρ

2
β+1
n , then

|〈f †, ϕ〉 − 〈Ψng,GnΨnv
(α)
M 〉| = O (ρn) .

4. Concluding remarks

Remark 1. We observe that the method of this paper is based on the singular value
representation of the compact linear operator A, and it is applicable only when the
singular elements σk, vk, uk are known for k = 1, . . . ,M for some large M ∈ N. It is
to be remarked that in computerized tomography problems, where A is the Radon
transform in suitable spaces, it is often the case that the singular elements of A are
known explicitly (see e.g., [1]; also see [2]).

Remark 2. In [15] the authors considered general bounded operatorsA and obtained
an approximation for 〈f †, ϕ〉 in the form 〈Ψng,GnΨnvα,n〉 with corresponding es-
timation

|〈f †, ϕ〉 − 〈Ψng,GnΨnvα,n〉| = O(ρ ν
2
n

)
.

We may observe that the error estimate (3.21) is better than the above estimate in
[15] since ν

2 ≤ 2ν
β+1 for 0 ≤ β ≤ 1.

Remark 3. An estimate of the form

|〈f †, ϕ〉 − 〈Ψng,GnΨnv
(α)
M 〉| = O(ρn)

(see Corollary 3.5) has also been obtained by Rieder and Schuster [17] with an
element ωM in place of v(α)

M , where

ωM :=
M−1∑
k=0

σ−1
k 〈ϕ, vk〉uk
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which is the M -th truncated form of the singular value decomposition of (A∗)†ϕ.
But, for obtaining such a result, they required ν to satisfy ν > β

2 + 1
2 + 1

4η for some
η > 0. Clearly, this assumption of Rieder and Schuster [17] is stronger than our
assumption, namely, ν ≥ β+1

2 .

Remark 4. Suppose we make a specific choice of Z as

Yβ := {y ∈ Y :
∞∑

k=0

σ−2β
k |〈y, uk〉|2 <∞}

for 0 ≤ β ≤ 1 with Y0 = N(A∗)⊥. We observe that R(A) ⊂ Yβ for 0 ≤ β ≤ 1. On
Yβ , we define an inner product 〈·, ·〉β as

〈y, u〉β :=
∞∑

k=0

σ−2β
k 〈y, uk〉〈uk, u〉, y, u ∈ Yβ .

With this inner product, Yβ is a Hilbert space and the corresponding norm is given
by

‖y‖β =
∞∑

k=0

σ−2β
k |〈y, uk〉|2, y ∈ Yβ .

We note that uk ∈ Yβ for all k ∈ N and {σβ
kuk : k ∈ N} is an orthonormal basis

for Yβ with respect to the norm ‖ · ‖β. Thus we can apply Theorem 3.4. With this
choice of Z as Yβ , the error estimate (3.21) is the same as that in the Nair and Lal
paper ([15], Theorem 3.7). However, the conditions under which that result in [15]
holds is stronger. In fact, in [15], it is required that β/2 ≤ ν ≤ (β + 1)/2 whereas
the estimate (3.21) is valid for more values of ν, namely, 0 ≤ ν ≤ (β + 1)/2.
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