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ABSTRACT

This paper reports the results of an experimental investigation of transient, turbulent mixed convection in a vertical channel in which one of the walls
is heated and the other is adiabatic. The goal is to simultaneously estimate the constants in a Nusselt number correlation whose form is assumed
a priori by synergistically marrying the experimental results with repeated numerical calculations that assume guess values of the constants. The
convective heat transfer coefficient “h”is replaced by the Nusselt number (Nu) and the constants in the Nusselt number are to be evaluated. From
the experimentally obtained temperature time history and the simulated temperature time history, based on some guess values of a, b and c, one can
define the objective function or the residue as the sum of the square of the difference between experimentally obtained and simulated temperatures.
Using Bayesian inference driven by the Markov chain Monte Carlo method, one, more or all of the constants a, b and c are retrieved together with the
uncertainty involved in these estimates. Additionally, the estimated parameters are compared with experimental benchmarks.
Keywords: transient, turbulent, markov chain, Bayesian, estimation, correlation.

1. INTRODUCTION

The estimation of a physical, indirectly, by first measuring the effect(s)
and reasoning out the causes invariably through a mathematical model
is known as parameter estimation. There could be several causes which
cause the same effect(s). Consequent upon this, parameter estimation
problems are invariably ill- posed. The estimation can get exceedingly
complex and sometimes even tricky, when the mathematical model as-
sociated with the phenomenon is highly nonlinear. Parameter estimation
is generally done either through deterministic or stochastic models. A
gradient based method with an initial guess which is far away from the
actual solution invariably fails to retrieve the parameters under question.
Stochastic based methods on the other hand do not depend on the initial
guess, so are robust and hence are gaining increasing importance in recent
times. Consequent upon this, enormous research efforts are being taken
to improvise on such methods. The availability of better numerical meth-
ods to solve heat transfer problems, better optimization techniques that
invariably power the estimation and the availability of faster computers
have all contributed to the rapid strides being witnessed in inverse heat
transfer.

As aforesaid, a lot of research is being carried out on inverse heat
transfer problems and parameter retrieval is becoming increasingly im-
portant and relevant. Mixed convection, which incorporates both free
convection and forced convection heat transfer, is currently one of the
widely researched topics in heat transfer. An early work in mixed convec-
tion was due to Lloyd and Sparrow (1969) who studied combined forced
and free convection on vertical surfaces. Rao et al. (2002), among others,
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conducted numerical investigations on conjugate mixed convection with
surface radiation from vertical plates and channels and proposed corre-
lations for the average Nusselt number. Krishnan et al. (2004) studied
free and mixed convection with surface radiation in isolated and parallel
vertical heated plates. Premachandran and Balaji (2006) carried out nu-
merical studies on conjugate mixed convection with and without surface
radiation from channels with volumetric heat generation. Tikhnov (1977)
and Black et al. (1985) give a comprehensive account of ill-posed inverse
problems. Rammohan Rao and Venkateshan (1991) proposed a parame-
ter estimation based on the method of least squares residuals. Venugopal
et al. (2008) conducted transient heat transfer experiments and used a hy-
brid optimization technique to retrieve the constants in a correlation for
Nusselt number for laminar mixed convection. Parthasarathy and Balaji
(2008) demonstrated the estimation of multiple parameters in two dimen-
sional conduction using Bayesian inference. To the best of the authors
knowledge, correlations for turbulent mixed convection, based on param-
eter estimation with data from transient experiments, with a state- of-the-
art technique like Bayesian inference has not been reported in literature.

2. EXPERIMENTAL SETUP

The test plate consists of a nichrome heater wrapped in a mica sheet
and sandwiched between two aluminium plates of 3 mm thickness. The
aluminium plate contains five thermocouples on either side (totally ten
thermocouples) cemented with thermal paste along the groove locations.
When cooling of the plate takes place the variation in the temperature
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has been noticed to vary within ±0.5◦C. Figure.1 shows the aluminium
plate used for the experiments and location of thermocouples. For con-
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Fig. 1 Schematic of the aluminium plate

venience and also to exploit the advantage of symmetry, two adiabatic
plates are kept on either side of the heater plate assembly in the wooden
box at equal distance from the latter. This in a way mimics heat transfer
from two similar vertical channels which are shown in Fig.2. The wind
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Fig. 2 Schematic of the vertical channel used for the experiments

tunnel shown in Fig.3 consists of a diffuser, settling chamber, nozzle and
a test section. The source of air supplying in the wind tunnel is an axial
flow fan mounted below the diffuser. A variable speed motor is used to
supply air to the test section to obtain the required velocities. The vertical
duct has the following dimensions 390 × 250 × 62mm. Wooden plates
made of 12mm plywood panels are used to secure the vertical channel
to a wooden box which is placed at the top of the wind tunnel. This
assembly constitutes the test section. ‘L’shaped mild steel brackets are
used to fix the wooden plates to each side of the wooden box. Locking
nuts are provided such that movement on either side is freely adjusted.
Non-rubberized corks are fastened on to two of the wooden plates that
constitute the adiabatic walls of the two symmetric channels. To ensure
uniform flow a bell mouth is constructed at the inlet of the section. The
test section is housed in a low speed vertical wind tunnel that has a capa-
bility to provide both assisting and opposing flow.

The experimental procedure involves the transient heating/cooling

Fig. 3 Schematic of the wind tunnel used for the experiments

of the channels and recording the temperature time history using a data
logger. A thermal anemometer which is essentially a thermistor probe,
is employed to measure the velocity in the test section and a provision
is made in the test section to measure the upstream velocity. High volt-
age DC power supply can deliver a wide range of power levels. K type
(36AWG) stainless steel sheathed, calibrated thermocouples are provided
at various location of the test plate. The salient features of the thermo-
couples are shown in Table 1. During cooling, for example, the velocity

Table 1 Features of the k-type thermocouple used in the present study.

S.No Feature
1. Type K-type (36AWG)
2. Uncertainty 0.1C
3. Time constant 3 s

remains fixed and so does the Reynolds number ReD . However the av-
erage temperature of the heated wall of the channel goes down with time
and so does the Grashof number Gr. Hence, during the cooling regime
it is possible to experimentally obtain a range of Richardson numbers
(RiD) where RiD is given by GrD/Re2

D . For the range of temperatures
encountered in this study, turbulent mixed convection is expected to take
place along the vertical channel.

2.1. GOVERNING EQUATION AND SOLUTION
METHODOLOGY

The aim of the present study is to use Bayesian inference to obtain a cor-
relation for Nusselt number in mixed convection along a vertical channel,
by using data from transient heat transfer experiments in conjunction with
Bayesian inference. The mathematical model for the current problem is

Estored = −Elost + Egen (1)

The first term in the right hand side of the above equation is the
energy lost due to convection and radiation and the left hand side is the
decrease in the energy stored by the system. Incorporating all the nec-
essary terms in “Eq.(1)” for the case of cooling of the plate we get the
following equation.

mCp
dTh
dt

= −εσA(T 4
h − T 4

∞)−NuDkfA(Th − T∞) (2)
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The plate heater assembly is assumed as spatially isothermal. The
Biot number (hLc/k) turns out to be less than 0.001 and the lumped for-
mulation is eminently valid, in such a situation. The convective heat
transfer in the "Eq.(2)" can be assumed as NuD = a(1 + RiD)

bRecD .
Further "Eq.(2)" becomes

mCp
dTh
dt

= −εσA(T 4
h−T 4

∞)−a(1+RiD)bRecDkfA(Th−T∞) (3)

From the above equation the objective of the present work is to re-
trieve one, more or all of the values a, b and c in the Nusselt number
correlation.
“Equation.3” is an initial value problem and is solved by a fourth order
Runge-Kuta method by which we can obtain temperature time history.
The initial condition is Th = Ti at t=0. Starting with guess values of the
parameters one can solve “Eq.(3)”. This is frequently referred to as the
forward model.

2.2. RETRIEVAL METHODOLOGY

The temperature time histories numerically obtained by solving the “Eq.(3)”
and the experimental temperature time histories have to be matched for
the parameter estimation. Bayesian inference is used to estimate the pa-
rameters and the general form is given by

P (x/Y ) = P (Y/x)× P (x)/P (Y ) (4)

P(x/Y) is the posterior probability density function (PPDF) for which
‘x’is the cause and the effect is ‘Y’. For example ‘x’can be any thermo-
physical property such as specific heat (Cp), thermal conductivity (k),
emissivity (ε), convective heat transfer coefficient (h). ‘Y’can be the tem-
perature vector. P(Y/x) is the maximum likelihood function which gives
the information about the temperature vector (effects) for the correspond-
ing thermo-physical properties (cause). P(x) is the prior information of
the parameter which is to be estimated. Now we are seeking the cause (x)
which causes the effect (y). Starting with different initial guess of ‘x’and
assuming that the x’s are normally distributed among the mean, we can
calculate P(Y/x) which will be high for those values of x close to the true
value. The probability reduces to values close to zero when x is far away
from the solution. Bayesian inference also helps us to inject a prior if it is
known already from previous knowledge and this will hasten the retrieval
and also help us in obtaining sharper PPDFs signifying lower standard
deviation of the estimates. The PPDF can now be written as

Ppost(
φ

T
) =

Pf (
T
φ
)Ppr(φ)∫

Pf (
T
φ
)Ppr(φ)dφ

(5)

where φ represents the state vector and T represents the vector of ob-
servations (temperatures at various values of time). Ppr(φ) is the prior
probability density function (PDF) of the state φ, Pf (T/φ) is the condi-
tional probability density function of the measurements given the state
vector, and Ppost(φ/T) is the posterior probability density function of the
state vector.The forward pdfs of the measurement vector are assumed to
be normally distributed about the simulated vector for each observation.

Pf (
φ

T
) =

1√
2πσ2

exp(
−(Tmeas − Tsim)2

2σ2
) (6)

In "Eq.(6)" σ is the error in the measurement and forward model.
From the above equation, it is observed that if the measured values and
simulated values match the probability assigned will be more. In general
the measured values and simulated values will not agree due to error in
the instrument and forward model error. So, the probability will always
be less than one. The denominator of "Eq.(5)" is only a normalising con-
stant.

Ppost(
φ

T
) =

1

(2πσ2)N/2
exp(

−
∑N
i=1 (Tmeas − Tsim)2

2σ2
) (7)

Where N is the total number of samples in one single experiment χ2

can now be defined as

χ2 =

n∑
i=1

(
Ymeas,i − Ysim,i)2

σ2
(8)

The Gaussian prior can be given as

Ppr(φ) =
1

(
√

2πσ2
p)n

exp
−(φ− µp)2

2σ2
p

(9)

Upon substituting the above equations, we have

Ppost(
φ

T
) =

1

(2πσ2)N/2
exp(−χ

2

2
) +

1

(
√

2πσ2
p)n

exp
−(φ− µp)2

2σ2
p

(10)

Later, knowing all the information about the posterior distribution
one can determine the mean and the maximum a posteriori which are
given below

Mean = E(P (
x

Y
)) (11)

The maximum a posteriori is given as

φ(MAP ) = argMax[p(φ/T )] (12)

3. STEADY STATE EXPERIMENTS

First the DC power supply is switched on and a constant power supply is
given. The plates get heated up and the spatial variation in the temper-
ature of the plate is obtained as ±0.2◦C which corroborates our earlier
assumption of an isothermal plate. Upon reaching steady state, the fol-
lowing equation holds

Q = −εσA(T 4
h − T 4

∞)− a(1 +RiD)
bRecDkfA(Th − T∞) (13)

“Equation.(13)” is the steady state counter part of “Eq.(3)” with an
additional heat generation term It can be straightaway used to estimate
a,b,c provided enough experiments are conducted. Highly polished alu-
minium plate whose emissivity is 0.01 was used as the test plate. Limited
numbers of steady state experiments were conducted to regress the con-
stants of “Eq.(13)”. Based on 19 experiments, the following correlation
was obtained.

NuD = 0.127(1 +RiD)
0.728Re0.644

D (14)

“Equation.(14)” has a correlation coefficient of 0.98 and an RMS
error of ± 0.073. However, it is instructive to mention here that each
steady state runs takes about 3 hours. On the contrary, by performing
transient experiments, in one unsteady run itself a plethora of measure-
ments are possible. These can then be used in a Bayesian framework to
“rapidly”estimate a, b and c. This procedure is elucidated in the ensuing
sections.

4. BAYESIAN BASED MARKOV CHAIN MONTE CARLO
(MCMC) ALGORITHM

The Bayesian based MCMC algorithm proposed in this study has the
following steps.

• Specify the number of iterations.

• Guess a value (or randomly choose a number for the existing data
vector x1.

• In #2, x1 is the first guess of the data vector. x1= a for the sin-
gle parameter estimation problem, x2= a,c for the two parameter
problem and x3= a,b,c for the three parameter problem.

• Using a random number and the value of x1, go to x2 (mainly as-
suming a normal distribution about x1 and a σ of 5% of the current
value, x1).
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• Using the forward model obtain the values of Y’s for the x’s

• Calculate the PPDF for both x1 and x2.

• If P (x2) > P (x1), accept the data vector x2.

• Else, calculate the value Z=e−|∆p| and compare Z with a random
number between 0 and 1.

• If the value is less than a randomly generated r, accept else go to
step1 with x2= x1.
The steps 7 and 8 constitute the widely used Metropolis algorithm.

5. ESTIMATION OF SINGLE PARAMETER

With the above mentioned procedure, first, a single parameter estimation
is done. For this, b and c are kept at values obtained from "Eq.(3)". The
constant ‘a′ is now determined using the Markov Chain Monte Carlo ap-
proach.

6. ESTIMATION OF MULTIPLE PARAMETERS

The simultaneous retrieval of two/all three parameters is also possible
with the help of MCMC and this is the major novelty of this paper. The
important point incorporated in the transient model is the study of the
assumption of the thermal equilibration of the plate, as heat loses takes
place from the plate it is almost instantaneous. Such an assumption is
truly valid for materials having high thermal conductivity and that have a
reasonable thickness. The quasisteady assumption adopted in this study
supposes that the thermal layer passes through a succession of instanta-
neous steady states. With the values obtained from steady state exper-
iments, the range of the parameters are well known and one unsteady
experiment is used retrieve the values of ‘a’, ‘b’and ‘c’by injecting an ap-
propriate priors. In this case, Gaussian priors with means corresponding
to steady state estimates of parameters a, b, c and appropriate values of
standard deviation are used.

7. RESULTS AND DISCUSSION

Table 2 shows the mean, MAP and SD for single parameter estimation.
Figure.4 shows the results of the single parameter retrieval constant ‘a’,
for a sample size of 10000. The burn-in is taken to be 2000. Stated
explicitly, the first 2000 values of the PPDF are not used to compute the
mean and MAP, in order to remove any bias caused by the initial guess
values.

Table 2 Mean, MAP, SD for constant ‘a’- single parameter estimation

S.NO Power Mean MAP SD
1. 38.7 0.118 0.130 0.036
2. 49.0 0.130 0.140 0.039
3. 109.5 0.170 0.170 0.029

Avg 0.139 0.146 0.035

Similarly the value for ‘c’is determined to be 0.686 keeping a and b
fixed at values obtained from Eq. (14). Table 3 shows the mean, MAP
and standard deviation in the estimates of the parameters for three differ-
ent power levels for the estimation of constant ‘c’in the Nusselt number
correlation. Figure. 5 shows the typical PPDF for the constant ‘c’in the
Nusselt number correlation.

Table 4 shows the mean and standard deviation of the Gaussian pri-
ors used for the simultaneous retrieval of a, b, c. As afore mentioned, µp
values are based on estimates from the steady state experiments.

Table 5 shows the results of a simultaneous retrieval of constants a,
b and c in the Nusselt number correlation. The simultaneous retrieval of
the constant ‘a ’,‘b ’and ‘c ’with help of MCMC driven algorithm gives
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Fig. 4 PPDF of constant ‘a’in the Nusselt number correlation (38.7W)

Table 3 Mean, MAP, SD for constant ‘c’- single parameter estimation

S.NO Power Mean MAP SD
1. 38.7 0.650 0.660 0.060
2. 49.0 0.660 0.67 0.037
3. 109.5 0.680 0.689 0.400

Avg 0.686 0.686 0.0016

us not only the retrieved values but also the standard deviation of the es-
timates as is the case with the single parameter estimation. Figure 6, 7
and 8 show the typical PPDF of retrieved parameters. The retrieved val-
ues using Bayesian driven MCMC method show remarkable consistency
regardless of the power levels. From Table 5 it is seen that the values of
constants ‘a ’,‘b ’and ‘c ’turn out to be 0.127, 0.725 and 0.678 respec-
tively and are in reasonably good agreement with the values obtained
from the steady state experiments. The correlation turns out to be

NuD = 0.127(1 +RiD)
0.725Re0.678

D (15)

The estimates a,b,c are valid for 1400 ≤ ReD ≤ 20000 and 0.00037 ≤
RiD ≤ 0.712. The prior probability (ppr)for the parameters ‘a’,‘b’and
‘c’are shown in the Table.5. It can be seen that the S.D of the estimates in
Table.4 are much smaller compared to those of the priors (Table 4 column
4) thereby reconfirming with the data, we can get much better estimates
compared to the priors.

The excellent agreement between Eqs. 14 and 15 corroborates the
efficacy of generating a Nusselt number correlation from transient exper-
iments. Additional steady state experiments were also done and Nusselt
number obtained from these (which were not used for obtaining Eq.14)
were compared with estimate from Eq.15 and the agreement was found
to be reasonable (±15%).

8. CONCLUSIONS

Transient heat transfer turbulent mixed convection experiments have been
done for a highly polished vertical aluminum plate, to retrieve multiple
parameters by using Bayesian inference. The transient temperature time
history is used to estimate the constants of the Nusselt number correla-
tion. For doing this, only the general form of the correlation needs to be
assumed. Using the Bayesian frame work, with the Markov Chain and
Monte Carlo method for sampling these constants, it is possible to re-
trieve the constants rapidly and accurately. The concept of instantaneous
Richardson number is made use of here and one unsteady run gives us
a range of Richardson numbers. In summary, this study opens up new
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Table 4 Gaussian prior for Multiple parameter estimation

S.NO Parameters µp (Mean of prior) σp (SD of prior)

1.
a 0.127 0.015
b 0.728 0.10
c 0.644 0.10

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.05 0.1 0.15 0.2
Constant "a" in the Nusselt no. correlation

PP
D

F

Fig. 6 PPDF of constant a in the Nusselt number correlation (38.7W)

vistas for developing Nusselt number correlations from temperature-time
histories that drive a Bayesian based Markov Chain Monte Carlo method.
Limited steady state experiments can be used to generate appropriate pri-
ors that can be injected in to the Bayesian framework for obtaining rad-
ically improved Nusselt number correlations with substantial reductions
in the standard deviations of the estimates.

NOMENCLATURE

A surface area of the test plate, (m2)
a, b, c constants in the Nusselt number correlation
Cp specific heat capacity of the test plate, (kJ/kg K)
D spacing of the parallel plate channel, (m)
GrD Grashof number based on the spacing of the channel,
h convective heat transfer coefficient, (W/m2K)

Table 5 Mean, MAP and SD- Multiple parameter estimation

S.NO Power, W Constants Mean MAP SD

1. 38.7
a 0.127 0.125 0.008
b 0.723 0.722 0.050
c 0.660 0.660 0.040

2. 49.0
a 0.127 0.127 0.008
b 0.726 0.710 0.048
c 0.685 0.680 0.042

3. 109.5
a 0.127 0.129 0.008
b 0.727 0.720 0.046
c 0.690 0.710 0.030

Avg
a 0.127 0.127 0.008
b 0.725 0.717 0.048
c 0.678 0.683 0.037
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Fig. 7 PPDF of constant b in the Nusselt number correlation (38.7W)
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Fig. 8 PPDF of constant c in the Nusselt number correlation (38.7W)

kf thermal conductivity of the fluid, (W/mK)
Lc characteristic length,(m)
MAP maximum a posteriori
NuD Nusselt number, (h L/D)
PPDF posterior probability density function
ReD Reynolds number based on spacing of the channel, (DU/ν)
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RiD Richardson number based on spacing of the channel, (GrD/Re2
D)

SD standard deviation
t time, (s)
Ti initial temperature, (K)
T∞ ambient temperature, (K)
Greek Symbols
ε hemispherical total emissivity
σ Stefan-Boltzmann constant (W/m2 · K4)
Subscripts
I initial
h hot test plate
meas measured
T temperature
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