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Abstract

We propose a novel actor-critic algorithm with guaranteed convergence to an optimal policy for a

discounted reward Markov decision process. The actor incorporates a descent direction that is motivated

by the solution of a certain non-linear optimization problem. We also discuss an extension to incor-

porate function approximation and demonstrate the practicality of our algorithms on a network routing

application.

1 Introduction

We consider a discounted MDP with state space S , action space A, both assumed to be finite. A randomized

policy π specifies how actions are chosen, i.e., π(s), for any s ∈ S is a distribution over the actions A. The

objective is to find the optimal policy π∗ that is defined as follows:

π∗(s) = argmax
π∈Π







vπ(s) := E





∑

n

βn
∑

a∈A(sn)

r(sn, a)π(sn, a)|s0 = s











, (1)

where r(s, a) is the instantaneous reward obtained in state s upon choosing action a, β ∈ (0, 1) is the

discount factor and Π is the set of all admissible policies. We shall use v∗(= vπ
∗
) to denote the optimal

value function.

Actor-critic algorithms (cf. [8], [4] and [9]) are popular stochastic approximation variants of the well-

known policy iteration procedure for solving (1). The critic recursion provides estimates of the value func-

tion using the well-known temporal-difference (TD) algorithm, while the actor recursion performs a gradient

search over the policy space. We propose an actor-critic algorithm with a novel descent direction for the

actor recursion. The novelty of our approach is that we can motivate the actor-recursion in the following

manner: the descent direction for the actor update is such that it (globally) minimizes the objective of a

non-linear optimization problem, whose minima coincide with the optimal policy π∗. This descent direction
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is similar to that used in Algorithm 2 in [8], except that we use a different exponent for the policy and a sim-

ilar interpretation can be used to explain Algorithm 2 (and also 5) of [8]. Using multi-timescale stochastic

approximation, we provide global convergence guarantees for our algorithm.

While the proposed algorithm is for the case of full state representations, we also briefly discuss a

function approximation variant of the same. Further, we conduct numerical experiments on a shortest-path

network problem. From the results, we observe that our actor-critic algorithm performs on par with the

well-known Q-learning algorithm on a smaller-sized network, while on a larger-sized network, the function

approximation variant of our algorithm does better than the algorithm in [1].

2 The Non-Linear Optimization Problem

With an objective of finding the optimal value and policy tuple, we formulate the following problem:

min
v∈R|S|

min
π∈Π

(

J(v, π) :=
∑

s∈S

[

v(s)−
∑

a∈A

π(s, a)Q(s, a)
]

)

s.t. ∀s ∈ S, a ∈ A

(a)π(s, a) ≥ 0, (b)
∑

a∈A
π(s, a) = 1, and (c) g(s, a) ≤ 0.























(2)

In the above, g(s, a) := Q(s, a) − v(s), with Q(s, a) := r(s, a) + β
∑

s′
p(s′|s, a)v(s′). Here p(s′|s, a)

denotes the probability of a transition from state s to s′ upon choosing action a.

The objective in (2) is to ensure that there is no Bellman error, i.e., the value estimates v are correct

for the policy π. The constraints (2(a))–(2(b)) ensure that π is a distribution, while the constraint (2(c))

is a proxy for the max in (1). Notice that the non-linear problem (2) has a quadratic objective and linear

constraints.

From the definition of π∗, it is easy to infer the following claim:

Theorem 1. Let g∗(s, a) := Q∗(s, a)−v∗(s), withQ∗(s, a) := r(s, a)+β
∑

s′
p(s′|s, a)v∗(s′), ∀s ∈ S, a ∈

A. Then,

(i) Any feasible (v∗, π∗) is optimal in the sense of (1) if and only if J(v∗, π∗) = 0.

(ii) π∗ is an optimal policy if and only if π∗(s, a)g∗(s, a) = 0, ∀a ∈ A, s ∈ S .

3 Descent direction.

Proposition 1. For the objective in (2), the direction
√

π(s, a)g(s, a) is a non-ascent and in particular, a

descent direction along π(s, a) if
√

π(s, a)g(s, a) 6= 0, for all s ∈ S, a ∈ A.

Proof. Consider any action a ∈ A for some s ∈ S . We show that
√

π(s, a)g(s, a) is a descent direction by

the following Taylor series argument. Let

π̂(s, a) = π(s, a) + δ
√

π(s, a)g(s, a),

for a small δ > 0. We define π̂ to be the same as π except with the probability of picking action a in state

s ∈ S being changed to π̂(s, a) (and the rest staying the same). Then by Taylor’s expansion of J(π) upto

the first order term, we have that

J(v, π̂) = J(v, π) + δ
√

π(s, a)g(s, a)
∂J(v, π)

∂π(s, a)
.

2



Note that higher order terms are all zero since J(v, π) is linear in π. It should be easy to see from definition

of the objective that
∂J(v, π)

∂π(s, a)
= −g(s, a). So,

J(v, π̂) = J(v, π) − δ
√

π(s, a)(g(s, a))2.

Thus, for a ∈ A and s ∈ S where π(s, a) > 0 and g(s, a) 6= 0, J(v, π̂) < J(v, π), while when
√

π(s, a)g(s, a) = 0, J(v, π̂) = J(v, π).

The next section utilizes the descent direction to derive an actor-critic algorithm.

4 The Actor-Critic Algorithm

Combining the descent procedure in π from the previous section, with a TD(0) [11] type update for the

value function v on a faster time-scale, we have the following update scheme:

Q-Value: Qn(s, a) = r(s, a) + βvn(s
′), TD Error: gn(s, a) = Qn(s, a)− vn(s),

Critic: vn+1(s) = vn(s) + c(n)gn(s, a), Actor: πn+1(s, a) = Γ

(

πn(s, a) + b(n)
√

πn(s, a)gn(s, a)

)

.

(3)

In the above, Γ is a projection operator that ensures that the updates to π stay within the simplex D =

{(x1, . . . , xq) | xi ≥ 0,∀i = 1, . . . , q,
q
∑

j=1
xj ≤ 1}, where q = |A|. Further, the step-sizes b(n) and c(n)

satisfy
∞
∑

n=1

c(n) =

∞
∑

n=1

b(n) = ∞,

∞
∑

n=1

(

c2(n) + b2(n)
)

<∞ and b(n) = o(c(n)).

Remark 1. (Connection to Algorithm 2 of [8]) From Proposition 1, we have that
√

π(s, a)g(s, a) is a

descent direction for π(s, a). This implies π(s, a)α ×
√

π(s, a)g(s, a) for any α ≥ 0, is also a descent

direction. Hence,

a generic update rule for π is: πn+1(s, a) = Γ
(

πn(s, a) + b(n)(πn(s, a))
α′
gn(s, a)

)

, for any α′ ≥
1

2
.

The special case of α′ = 1 coincides with the π-recursion in Algorithm 2 of [8].

5 Convergence Analysis

For the purpose of analysis, we assume that the underlying Markov chain for any policy π ∈ Π is irreducible.

Main result Let vπ = [I − βPπ]
−1Rπ, where Rπ = 〈r(s, π), s ∈ S〉T is the column vector of rewards

and Pπ = [p(y|s, π), s ∈ S, y ∈ S] is the transition probability matrix, both for a given π. Consider the

ODE:

dπ(s, a)

dt
=Γ̄
(

√

π(s, a)gπ(s, a)
)

,∀a ∈ A, s ∈ S, where (4)

gπ(s, a) :=r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y)− vπ(s). (5)

3



In the above, Γ̄ is a projection operator defined by Γ̄(ǫ(π)) := lim
α↓0

Γ(π + αǫ(π)) − π

α
, for any continuous

ǫ(·).

Theorem 2. Let K denote the set of all equilibria of the ODE (4), G the set of all feasible points of the

problem (2) and K̂ := K ∩G. Then, the iterates (vn, πn), n ≥ 0 governed by (3) satisfy

(vn, πn) → K∗ a.s. as n→ ∞, where K∗ = {(v∗, π∗) | π∗ ∈ K̂}.

The algorithm (3) comprises of updates to v on the faster time-scale and to π on the slower time-scale.

Using the theory of two time-scale stochastic approximation [5, Chapter 6], we sketch the convergence

of these recursions as well as prove global optimality in the following steps (the reader is referred to the

appendix for proof details):

Step 1: Critic Convergence We assume π to be time-invariant owing to time-scale separation. Consider

the ODE:
dv(s)

dt
= r(s, π) + β

∑

s′∈S

p(s′|s, π)v(y) − v(s),∀s ∈ S, (6)

where r(s, π) =
∑

a∈A π(s, a)r(s, a) and p(s′|s, π) =
∑

a∈A π(s, a)p(s
′|s, a). It is well-known (cf. [2])

that the above ODE has a unique globally asymptotically stable equilibrium vπ . We now have the main

result regarding the convergence of vn on the faster time-scale.

Theorem 3. For a given π, the critic recursion in (3) satisfies vn → vπ a.s. as n→ ∞.

Step 2: Actor Convergence Due to timescale separation, we can assume that the critic has converged in

the analysis of the actor recursion. We first provide a useful characterization for the set K of equilibria of

the ODE (4).

Lemma 4. Let L = {π|π(s) is a probability vector over A,∀s ∈ S} denote the set of policies that are

distributions over the actions for each state. Then,

π ∈ K if and only if π ∈ L and
√

π(s, a)gπ(s, a) = 0,∀a ∈ A, s ∈ S.

From Lemma 4, the setK can be redefined as follows: K =

{

π ∈ L

∣

∣

∣

∣

√

π(s, a)g(s, a) = 0,∀a ∈ A, s ∈ S

}

.

The set K can be partitioned using the feasible set G of (2) as K = K̂ ∪ K̂c, where K̂ = K ∩G.

Lemma 5. All π∗ ∈ K̂c are unstable equilibrium points of the system of ODEs (4).

Proof. For any π∗ ∈ Kc, there exists some a ∈ A(s), s ∈ S , such that gπ(s, a) > 0 and π(s, a) = 0
because Kc is not in the feasible set G. Let Bδ(π

∗) = {π ∈ L| ‖π − π∗‖ < δ}. Choose δ > 0 such that

gπ(s, a) > 0 for all π ∈ Bδ(π
∗)\K . So, Γ̄(

√

π(s, a)gπ(s, a)) > 0 for any π ∈ Bδ(π
∗)\K which suggests

that π(s, a) will be increasingly moving away from π∗. Thus, π∗ is an unstable equilibrium point for the

system of ODEs (4).

Remark 2. (G = K̂) We already have that K̂ ⊆ G. So, it is sufficient to show that G ⊆ K̂ . A pol-

icy π belongs to G if gπ(s, a) ≤ 0 for all a ∈ A(s) and s ∈ S . By definition, vπ is obtained from
∑

a∈A(s) π(s, a)g
π(s, a) = 0,∀s ∈ S. Since each term in the summation is negative, we have that

π(s, a)gπ(s, a) = 0 =
√

π(s, a)gπ(s, a),∀a ∈ A(s), s ∈ S and hence G = K̂.

4



Proof of Theorem 2

Proof. The update of π on the slower time-scale can be re-written as

πn+1(s, a) =Γ (πn(s, a) + b(n)(H(πn) + ηn)) , where (7)

H(πn) =
√

πn(s, a)g
π(s, a) and ηn =

√

πn(s, a)gn(s, a) − H(πn). We can infer the claim regarding

convergence of πn governed by (7) using Kushner-Clark lemma (Theorem 2.3.1 in [10]), if we verify the

following:

(i) H is a continuous function. (ii) The sequence ηn, n ≥ 0 is a bounded random sequence with ηn → 0
almost surely as n→ ∞. (iii) The step-sizes b(n), n ≥ 0 satisfy b(n) → 0 as n→ ∞ and

∑

n b(n) = ∞.

Now, (i) follows by definition of H and (iii) by assumption on step-sizes. Consider (ii): ηn is bounded

since we consider a finite state-action space setting (⇒ g(s, a) is bounded) and π is trivially upper-bounded.

From Theorem 3, vn → vπ a.s. as n→ ∞ and hence, ηn → 0 a.s. The claim follows.

Remark 3. (Avoidance of traps) Note that from the foregoing, the set K comprises of both stable and

unstable attractors and in principle from Lemma 5, the iterates πn governed by (4) can converge to an

unstable equilibrium. A standard trick to avoid such traps, as discussed in Chapter 4 of [5], is to introduce

additional noise in the iterates. For this purpose, we perturb the policy every τ > 0 iterations to obtain a

new policy π̂ as follows:

π̂(s, a) =
π(s, a) + η

∑

a∈A

(π(s, a) + η)
, a ∈ A. (8)

The above scheme ensures that the convergence of the policy sequence πn governed by (3) is to the stable

set K̂.

Step 3: Global Optimality Here we establish that our algorithm converges to a globally optimal policy.

Lemma 6. If π ∈ K̂, then π is globally optimal and the corresponding value function vπ is the same as the

optimal value v∗.

Proof.

If π(s, a) > 0, then g(s, a) = 0 ⇒ vπ(s) = r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y).

If π(s, a) = 0, then g(s, a) ≤ 0 ⇒ vπ(s) ≥ r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y).

Thus, it follows that ∀s ∈ S, vπ(s) = max
a∈A(s)



r(s, a) + β
∑

y∈U(s)

p(y|s, a)vπ(y)



 .

6 Extension to incorporate function approximation

The actor-critic algorithm described in Section 4 is infeasible for implementation in high-dimensional set-

tings where the state and action spaces are large. A standard approach to alleviate this problem is to employ

function approximation techniques and parameterize the value function and policies as follows:

5



Value function Using a linear architecture, the value function is approximated as vπ(s) ≈ f(s)Tw, for

any given policy π. Here f(s) is the state feature vector and w is the value function parameter, both in some

low-dimensional subspace Rd1 , with d1 << |S|.

Policies We consider a parameterized class of policies such that each policy is continuously differentiable

in its parameter. A common approach is to employ the Boltzmann distribution to obtain the following form

for policies: πθ(s, a) ≈
eθ

Tφ(s,a)

∑

b∈A

eθ
Tφ(s,b)

. Here φ(s, a) is a state-action feature vector and θ is the policy

parameter vector, both assumed to be in a compact subset C ∈ Rd2 .

Update rule Choose an ∼ πθn(·, sm) and observe the reward r(sn, an). Then, update the critic parameter

wn and policy parameter θn as follows:

TD Error: gn(sn, an) := r(sn, an) + βf(sn+1)
Twn − f(sn)

Twn, (9)

Critic: wn+1 = wn + c(n)gn(sn, an)f(sn), (10)

Actor: θn+1 = Γ̂
(

θn + b(n)πn(sn, an)
3/2ψn(sn, an)gn(sn, an)

)

. (11)

In the above, Γ̂ projects any θ onto a compact set C ⊂ Rd2 and ψn(sn, an) =
∂ log πn(sn, an)

∂θn
are the

compatible features. For Boltzmann policies, ψn(sn, an) = φn(sn, an)−
∑

b∈A

πn(sn, b)φn(sn, b).

The critic recursion above follows from the standard TD(0) with function approximation update. The

idea is to have the increment ∆wn ∝
[

vt(sn)− f(sn)
Twn

]2
, where vt(sn) = r(sn, an) + βf(sn+1)

Twn is

the current estimate of the return. A natural update increment for the actor recursion is to have

∆θn ∝ −
∂J

∂θn
= −

∂J

∂πn
·
∂πn

∂θn
=
√

πn(sn, an)gn(sn, an)πn(sn, an)ψn(sn, an).

Preliminary result:

In addition to irreducibility of the underlying Markov chain for any policy and differentiability of the policy,

we assume that the feature matrix Φ with rows f(s)T,∀s ∈ S is full rank. These assumptions are standard

in the analysis of actor-critic algorithms (cf. [4]). Let dπ
θ

(s) = (1−β)
∑∞

n=0 β
n Pr(sn = s|s0;π

θ) for any

policy θ ⊂ C. Let K̄ denote the set of all equilibria of the ODE:

θ̇(t) = Γ̌

(

∑

s∈S

dπ
θ(t)

(s)
∑

a∈A

πθ(t)(s, a)∇πθ(t)
(

r(s, a) + β
∑

s′∈S

p(s′ | s, a)wθ(t)Tf(s′)− wθ(t)Tf(s)
)

)

.

(12)

Theorem 7. The iterates (wn, θn), n ≥ 0 governed by (11) satisfy

(wn, θn) → K̃ a.s. as n→ ∞, where K̃ = {(wθ , θ) | θ ∈ K̄}.

In the above, wθ is the solution to Awθ = b, where A = ΦTΨθ(I − βP )Φ and b = ΦTΨθr with Ψθ is a

diagonal matrix with the stationary distribution of the Markov chain underlying policy with parameter θ as

the diagonal entries and r is a column vector with entries
∑

a π
θ(s, a)r(s, a), for each s ∈ S .

6
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(a) Six node graph

Destination

Rewards -5-5

-10-15-10

-10 -15 -10

(b) 44 node graph

Figure 1: Network graphs with associated rewards

Node
Value

MPA1 Probability
function

1 −17.83 2 0.87
2 −19.64 2 0.96
3 −9.24 1 0.95
4 −6.00 1 0.96
5 −8.22 1 0.92

(a) AC-OPT algorithm

Node Q(s,1) Q(s,2) Q(s,3) Q(s,4)

1 -24.4 -15.72 -20.376 N.A

2 -25.72 -16.72 -19.576 N.A

3 -8.4 -15.8 -23.376 -21.576

4 -6 -17.72 -32.376 N.A

5 -8 -8.72 -30.576 N.A

(b) Q-learning algorithm

Figure 2: Performance of Q-learning and actor-critic algorithms on six node network graph

7 Simulation Experiments

Setup Routing packets through a communication network is a natural application for reinforcement learn-

ing algorithms. Q-routing, that is, using Q-learning for routing packets in dynamically changing networks

has been investigated among others by [6] and [3]. We have considered a highly simplified version of the

problem over two network graph settings:

Six node graph As shown in Fig. 1a, the state space here consists of the nodes themselves, that is S =
{1, 2, 3, 4, 5, 6}, and the number of actions in a state corresponds to the number of neighbouring nodes

to which a packet can be routed from the given node. The next state is chosen randomly and node 6
is the absorbing destination node. Further, each run started from state 1 and the initial estimate of the

Q-value was 0 for all states. Rewards in each transition are negative of the edge weight (as depicted

in Fig. 1a).

44 node graph As shown in Fig. 1b, the state space here is S = {0, 1, 2, ....., 43, 44}, with 44 being

the destination node. The actions are as follows: at any node start from direction east and move in

clockwise direction. 1st action is a0, second action is a1 and so on. For all actions, rewards are shown

in Fig. 1b.

On these two settings, we implemented both the Q-learning and our actor-critic algorithm (henceforth,

referred to as AC-OPT). For both algorithms, we set the discount factor β = 0.8. The initial randomized

1MPA stands for "Most probable action".

7
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(b) Recommended actions, state-wise,for full-state algorithms: Q-learning and AC-OPT.
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(c) Recommended actions, state-wise, for function approximation algorithms: AC-OPT-FA and RPAFA-2

Figure 3: Performance comparison on a 44-node network graph
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policy was set to the uniform distribution. For AC-OPT, the policy was perturbed every τ = 10 iterations

(see Remark 3). All the results presented are averaged over 50 independent runs of the respective algorithm.

Results The tales in Figs. 2a–2b present the results obtained upon convergence of the AC-OPT and Q-

learning algorithms for the six node network graph setting, respectively. It is evident that both algorithms

converge to the optimal policy. While Q-learning recommends the best action using Q-values, AC-OPT,

being randomized, suggests the optimal action with high probability.

Fig. 3a presents the value function estimates obtained from both algorithms on the 44 node network

graph, while Fig. 3b compares the actions suggested by both algorithms upon convergence, for each

state(=node) in the network graph. It is evident that AC-OPT recommends the same (as well as optimal)

actions as Q-learning on almost all the states. Even though there is change in the recommended actions on

a small number of states, the difference in value estimates here is negligible.

Function approximation We show here the results the function approximation variant of our actor-critic

algorithm (henceforth referred to as AC-OPT-FA) and the RPAFA-2 algorithm from [1]. For any state s, let

a ≡ ⌊ s9⌋ and b ≡ s mod 9. Then, the state features are chosen as: f(s) = (4 − a, 8 − b, 4 + a − b, 1)T.

Along similar lines, the state-action feature φ(s, a) = (4− a, 8− b, 4 + a− b, r(x, y), 1)T .

Fig. 3c compares the actions recommended by AC-OPT-FA and RPAFA-2 algorithms, while also high-

lighting the sub-optimal actions. It is evident that AC-OPT-FA recommends with high probability (≈ 0.9
on the average) the best action with a 93% accuracy. On the other hand. RPAFA-2 achieved only a 50%
accuracy, i.e., sub-optimal actions suggested over half of the state space.

8 Conclusions

In this paper, we proposed a new actor-critic algorithm with guaranteed convergence to the optimal pol-

icy in a discounted MDP. The proposed algorithm was validated through simulations on a simple shortest

path problem in networks. A topic of future study is to strengthen the convergence result of the function

approximation variant of our actor-critic algorithm.

Appendix

A Proofs for the actor-critic algorithm

Lemma 8. Let Rπ = 〈r(s, π), s ∈ S〉T be a column vector of rewards and Pπ = [p(y|s, π), s ∈ S, y ∈ S]
be the transition probability matrix, both for a given π. Then, the system of ODEs (6) has a unique globally

asymptotically stable equilibrium given by

vπ = [I − βPπ]
−1Rπ. (13)

Proof. The system of ODEs (6) can be re-written in vector form as given below.

dv

dt
= Rπ + βPπv − v. (14)

Rearranging terms, we get
dv

dt
= Rπ + (βPπ − I)v,

9



where I is the identity matrix of suitable dimension. Note that for a fixed π, this ODE is linear in v and

moreover, all the eigenvalues of (βPπ − I) have negative real parts. Thus by standard linear systems theory,

the above ODE has a unique globally asymptotically stable equilibrium which can be computed by setting
dv

dt
= 0, that is, Rπ + (βPπ − I)v = 0. The trajectories of the ODE (14) converge to the above equilibrium

starting from any initial condition in lieu of the above.

Proof of Theorem 3

For establishing the proof, we require the notion of (T, δ)-perturbation of an ODE, defined as follows:

Definition 1. Consider the ODE

ẋ(t) = f(x(t)). (15)

Given T, δ > 0, we say that x̄(·) is a (T, δ)-perturbation of (15), if there exist 0 = T0 < T1 < T2 < · · · <
Tn ↑ ∞ such that Tn+1 − Tn ≥ T, for all n ≥ 0 and supt∈[Tn,Tn+1] ‖ x̄(t)− x(t) ‖< δ, for all n ≥ 0.

Let Z be the globally asymptotically stable attractor set for (15) and Z
ǫ be the ǫ-neighborhood of Z.

Then, the following lemma by Hirsch (see Theorem 1 on pp. 339 of [7]) is useful in establishing the

convergence of a (T, δ)-perturbation to the limit set Zǫ.

Lemma 9 (Hirsch Lemma). Given ǫ, T > 0, ∃δ̄ > 0 such that for all δ ∈ (0, δ̄), every (T, δ)-perturbation

of (15) converges to Z
ǫ.

Proof. (Theorem 3) Fix a state s ∈ S . Let {n̄} represent a sub-sequence of iterations in algorithm (3) when

the state is s ∈ S . Also, let Qn = {n̄ : n̄ < n}. For a given π, the updates of v on the slower time-scale

{c(n)} given in algorithm (3) can be re-written as

vn̄+1(s) = vn̄(s) + c(n)





∑

a∈A(s)

πn̄(s, a)gπn̄
(s, a) + χ̃n̄



 , (16)

where χ̃n̄ = r(s, a) + βvn̄(s
′) −

∑

a∈A(s)

πn̄(s, a)gπn̄
(s, a), is the noise term. Let M̃n =

∑

m∈Qn

c(m)χ̃m.

Then, M̃n, n ≥ 0, is a convergent martingale sequence by the martingale convergence theorem (since
∑

n̄
c2(n̄) < ∞ and ‖g‖

△
= |g(·)(s, a)| < ∞). The equation (16) can now be seen to be a (T, δ)-perturbation

of the system of ODEs (6). Thus, by Lemma 9, it can be seen that vn converges to the globally asymptotically

stable equilibrium vπ (see equation (13)) of the system of ODEs (6).

Proof of Lemma 4

Proof.

If part: If π ∈ L and
√

π(s, a)gπ(s, a) = 0,∀a ∈ A, s ∈ S holds, then by definition of operators Γ and Γ̄,

the result follows.

Only if part: The operator Γ̄, by definition, ensures that π ∈ L. Suppose for some a ∈ A(s), s ∈ S ,

we have Γ̄(
√

π(s, a)gπ(s, a)) = 0 but
√

π(s, a)gπ(s, a) 6= 0. Then, gπ(s, a) 6= 0 and since π ∈ L,

1 ≥ π(s, a) > 0. We analyze this by considering the following two cases:

(i) 1 > π(s, a) > 0 and gπ(s, a) 6= 0: In this case, it is possible to find a ∆ > 0 such that for all

δ ≤ ∆,

1 > π(s, a) + δ
√

π(s, a)gπ(s, a) > 0.
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This implies that

Γ̄
(

√

π(s, a)gπ(s, a)
)

=
√

π(s, a)gπ(s, a) 6= 0,

which contradicts the initial supposition.

(ii) π(s, a) = 1 and gπ(s, a) 6= 0: Since vπ is solution to the system of ODEs (6), the following

should hold:
∑

â∈A(s)

π(s, â)gπ(s, â) = π(s, a)gπ(s, a) = 0.

This again leads to a contradiction.

The result follows.

B Proofs for the function approximation variant

Proof of Theorem 7

Proof. Due to timescale separation, we can assume that the policy parameter θ is constant for the sake of

analysis of the critic recursion in (11). For any fixed policy given as parameter θ, the critic recursion in (11)

converges to wθ , which is the TD fixed point (see Theorem 7 statement for the explicit form of wθ). This is

a standard claim for TD(0) with function approximation - see [12] for a detailed proof.

Let Fn = σ(θm,m ≤ n). The actor recursion (17) in the main paper can be re-written as

θn+1 =Γ̂

(

θn + b(n)E[πn(sn, an)
3/2ψn(sn, an)ḡ(sn, an) | Fn]

+ b(n)
(

πn(sn, an)
3/2ψn(sn, an)gn(sn, an)− E[πn(sn, an)

3/2ψn(sn, an)gn(sn, an) | Fn]
)

+ b(n)E
[

πn(sn, an)
3/2ψn(sn, an)

(

gn(sn, an)− ḡ(sn, an)
)

| Fn

]

)

, (17)

where ḡ(s, a) := r(s, a) + β
∑

s′∈S p(s
′ | s, a)wθ(t)Tf(s′)− wθ(t)Tf(s).

Since the critic converges, i.e., wn → wθ a.s. as n → ∞, the last term in (17) vanishes asymptotically.

Let Mn =
∑n−1

m=0 πm(sm, am)3/2ψm(sm, am)gm(sm, am) − E[πm(sm, am)3/2ψm(sm, am)gm(sm, am) |
Fn]. Using arguments similar to the proof of Theorem 2 in [4], it can be seen that Mn is a convergent

martingale sequence that converges to zero. So, that leaves out the first term multiplying b(n) in (17). A

simple calculation shows that

E[πn(sn, an)
3/2ψn(sn, an)ḡ(sn, an) | Fn]

=
∑

s∈S

dπ
θ(t)

(s)
∑

a∈A

πθ(t)(s, a)∇πθ(t)
(

r(s, a) + β
∑

s′∈S

p(s′ | s, a)wθ(t)Tf(s′)− wθ(t)Tf(s)
)

.

The rest of the proof amounts to showing that the RHS above is Lipschitz continuous and that the recursion

(17) is a (T, δ) perturbation of the ODE (12) in the main paper. These facts can be verified in a similar

manner as in the proof of Theorem 2 in [4] and the final claim follows from Hirsch lemma (see Lemma 9

above).
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C Simulation Experiments

Results for full state representation based algorithms on 44 node graph

Tables. 1–2 present detailed results for our AC-OPT algorithm and Q-learning, respectively on the 44-node

network graph setting. For Q-learning results in Table 2, the action achieving the maximum in maxaQ(s, a))
is boldened. It is evident that AC-OPT suggests the same (as well as optimal) actions as that of Q-learning,

on almost all the states.

Node no. Value function MPA: Probability Node no. Value function MPA: Probability

0 −40.824 0 : 0.974759 22 −27.6105 0 : 0.952729
1 −39.7619 0 : 0.940369 23 −23.6213 1 : 0.965307
2 −38.3387 0 : 0.954584 24 −19.3607 1 : 0.956485
3 −37.1019 0 : 0.934279 25 −25.1828 1 : 0.917481
4 −35.8406 1 : 0.977405 26 −19.9879 1 : 0.973978
5 −37.5327 4 : 0.775096 27 −32.8828 0 : 0.962421
6 −35.618 3 : 0.726475 28 −30.5635 0 : 0.963262
7 −36.8312 0 : 0.699411 29 −28.1035 0 : 0.935406
8 −35.2874 3 : 0.986148 30 −25.5654 0 : 0.951051
9 −38.3211 0 : 0.966336 31 −22.8029 0 : 0.965918
10 −37.9592 0 : 0.937302 32 −18.8625 0 : 0.955858
11 −36.0614 0 : 0.959576 33 −14.5632 1 : 0.929352
12 −33.4332 0 : 0.95668 34 −10.0406 1 : 0.9742
13 −31.1697 0 : 0.961255 35 −16.8062 0 : 0.928148
14 −28.057 1 : 0.95864 36 −29.7862 0 : 0.989813
15 −30.1452 0 : 0.951196 37 −27.6444 0 : 0.966042
16 −28.4007 3 : 0.940799 38 −25.6189 0 : 0.94836
17 −30.4659 1 : 0.863991 39 −23.6847 0 : 0.972548
18 −38.2062 1 : 0.937154 40 −19.5683 0 : 0.99494
19 −35.7315 1 : 0.94369 41 −14.0438 0 : 0.981092
20 −33.0474 1 : 0.930422 42 −9.6131 0 : 0.994136
21 −30.2144 0 : 0.941161 43 −5.00005 0 : 0.939764

Table 1: Performance of the AC-OPT algorithm (MPA stands for “most probable action”) on the 44-node

network graph

Results for function approximation based algorithms

Tables. 3 – 4 present the detailed results for the function approximation based algorithms: RPAFA-2 from [1]

and our AC-OPT-FA. States that are shown in bold in these tables correspond to those where the respective

algorithm recommended a sub-optimal action. It is evident that AC-OPT-FA results in 93% accuracy, i.e.,

on 93% of the state space, AC-OPT-FA recommended the optimal action with high probability (around 0.9
in almost all states). On the other hand, RPAFA-2 achieved only 50% accuracy.

12



Node no.(s) Q(s, 0 ) Q(s, 1 ) Q(s, 2 ) Q(s, 3 ) Q(s, 4 ) Q(s, 5 ) Q(s, 6 ) Q(s, 7 )

0 −39.7583 −41.4778 −47.83 N.A N.A N.A N.A N.A

1 −38.6203 −39.9753 −46.4778 −42.83 −40.7824 N.A N.A N.A

2 −37.3559 −38.3059 −44.9753 −41.4778 −39.7583 N.A N.A N.A

3 −35.951 −36.451 −43.3059 −39.9753 −38.6203 N.A N.A N.A

4 −37.3559 −34.39 −41.451 −38.3059 −37.3559 N.A N.A N.A

5 −35.951 −36.451 −39.39 −36.451 −35.951 N.A N.A N.A

6 −37.3559 −34.39 −41.451 −34.39 −37.3559 N.A N.A N.A

7 −35.951 −36.451 −39.39 −36.451 −35.951 N.A N.A N.A

8 −41.451 −34.39 −37.3559 N.A N.A N.A N.A N.A

9 −36.4778 −38.5253 −45.1728 −50.7824 −44.7583 N.A N.A N.A

10 −34.9753 −36.6948 −43.5253 −40.1728 −37.83 −45.7824 −49.7583 −43.6203
11 −33.3059 −34.6609 −41.6948 −38.5253 −36.4778 −44.7583 −48.6203 −42.3559
12 −31.451 −32.401 −39.6609 −36.6948 −34.9753 −43.6203 −47.3559 −40.951
13 −29.39 −29.89 −37.401 −34.6609 −33.3059 −42.3559 −45.951 −42.3559
14 −31.451 −27.1 −34.89 −32.401 −31.451 −40.951 −47.3559 −40.951
15 −29.39 −29.89 −32.1 −29.89 −29.39 −42.3559 −45.951 −42.3559
16 −31.451 −27.1 −34.89 −27.1 −31.451 −40.951 −47.3559 −40.951
17 −32.1 −29.89 −29.39 −42.3559 −45.951 N.A N.A N.A

18 −33.5253 −35.8681 −42.7813 −47.83 −41.4778 N.A N.A N.A

19 −31.6948 −33.7424 −40.8681 −37.7813 −35.1728 −42.83 −46.4778 −39.9753
20 −29.6609 −31.3804 −38.7424 −35.8681 −33.5253 −41.4778 −44.9753 −38.3059
21 −27.401 −28.756 −36.3804 −33.7424 −31.6948 −39.9753 −43.3059 −36.451
22 −24.89 −25.84 −33.756 −31.3804 −29.6609 −38.3059 −41.451 −34.39
23 −22.1 −22.6 −30.84 −28.756 −27.401 −36.451 −39.39 −36.451
24 −24.89 - 19 −27.6 −25.84 −24.89 −34.39 −41.451 −34.39
25 −22.1 −22.6 - 24 −22.6 −22.1 −36.451 −39.39 −36.451
26 −27.6 - 19 −24.89 −34.39 −41.451 N.A N.A N.A

27 −30.8681 −33.4766 −40.629 −45.1728 −38.5253 N.A N.A N.A

28 −28.7424 −31.0852 −38.4766 −35.629 −32.7813 −40.1728 −43.5253 −36.6948
29 −26.3804 −28.4279 −36.0852 −33.4766 −30.8681 −38.5253 −41.6948 −34.6609
30 −23.756 −25.4755 −33.4279 −31.0852 −28.7424 −36.6948 −39.6609 −32.401
31 −20.84 −22.195 −30.4755 −28.4279 −26.3804 −34.6609 −37.401 −29.89
32 −17.6 −18.55 −27.195 −25.4755 −23.756 −32.401 −34.89 −27.1
33 - 14 −14.5 −23.55 −22.195 −20.84 −29.89 −32.1 −29.89
34 −17.6 - 10 −19.5 −18.55 −17.6 −27.1 −34.89 −27.1
35 - 15 −14.5 - 14 −29.89 −32.1 N.A N.A N.A

36 −28.4766 −42.7813 −35.8681 N.A N.A N.A N.A N.A

37 −26.0852 −30.629 −37.7813 −40.8681 −33.7424 N.A N.A N.A

38 −23.4279 −28.4766 −35.8681 −38.7424 −31.3804 N.A N.A N.A

39 −20.4755 −26.0852 −33.7424 −36.3804 −28.756 N.A N.A N.A

40 −17.195 −23.4279 −31.3804 −33.756 −25.84 N.A N.A N.A

41 −13.55 −20.4755 −28.756 −30.84 −22.6 N.A N.A N.A

42 −9.5 −17.195 −25.84 −27.6 - 19 N.A N.A N.A

43 - 5 −13.55 −22.6 - 24 −22.6 N.A N.A N.A

Table 2: Performance of Q-learning algorithm on the 44-node network graph
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Node Value function MPA: Probability Node Value function MPA: Probability

0 −52.8351 1 : 0.975949 22 −28.674 1 : 0.96989
1 −50.4398 1 : 0.969893 23 −26.2787 1 : 0.969891
2 −48.0445 1 : 0.969893 24 −23.8834 1 : 0.96989
3 −45.6493 1 : 0.969893 25 −21.4882 1 : 0.96989
4 −43.254 1 : 0.969893 26 −19.0929 0 : 0.513957
5 −40.8587 1 : 0.969893 27 −30.965 1 : 0.975946
6 −38.4635 1 : 0.969893 28 −28.5698 1 : 0.96989
7 −36.0682 1 : 0.969893 29 −26.1745 1 : 0.96989
8 −33.6729 0 : 0.513958 30 −23.7792 1 : 0.969891
9 −45.545 1 : 0.975946 31 −21.384 1 : 0.96989
10 −43.1498 1 : 0.96989 32 −18.9887 1 : 0.96989
11 −40.7545 1 : 0.96989 33 −16.5934 1 : 0.96989
12 −38.3592 1 : 0.96989 34 −14.1982 1 : 0.969891
13 −35.964 1 : 0.969891 35 −11.8029 0 : 0.513957
14 −33.5687 1 : 0.96989 36 −23.675 0 : 0.999869
15 −31.1734 1 : 0.96989 37 −21.2797 0 : 0.993623
16 −28.7782 1 : 0.96989 38 −18.8845 0 : 0.993624
17 −26.3829 0 : 0.513957 39 −16.4892 0 : 0.993624
18 −38.255 1 : 0.975946 40 −14.0939 0 : 0.993623
19 −35.8598 1 : 0.96989 41 −11.6987 0 : 0.993623
20 −33.4645 1 : 0.969891 42 −9.30341 0 : 0.993624
21 −31.0692 1 : 0.96989 43 −6.90814 0 : 0.993624

Table 3: Performance of the function approximation variant AC-OPT-FA on the 44-node network graph

Node MPA: Probability Node MPA: Probability

0 1 : 0.504191 22 0 : 0.984263
1 2 : 0.330269 23 2 : 0.497062
2 1 : 0.496113 24 1 : 0.49855
3 0 : 0.330723 25 4 : 0.996063
4 3 : 0.331711 26 1 : 0.499916
5 3 : 0.50029 27 0 : 0.329259
6 2 : 0.332378 28 2 : 0.249082
7 2 : 0.498791 29 6 : 0.255686
8 2 : 0.499996 30 2 : 0.25075
9 3 : 0.330108 31 3 : 0.500413
10 1 : 0.201589 32 2 : 0.249539
11 3 : 0.491524 33 1 : 0.20215
12 2 : 0.249318 34 1 : 0.249613
13 6 : 0.253784 35 0 : 0.999038
14 1 : 0.249081 36 0 : 0.969508
15 1 : 0.249349 37 0 : 0.978052
16 3 : 0.249717 38 0 : 0.330178
17 3 : 0.33322 39 1 : 0.336035
18 3 : 0.330103 40 0 : 0.996688
19 0 : 0.20268 41 0 : 0.989921
20 0 : 0.202288 42 3 : 0.498579
21 7 : 0.33527 43 1 : 0.49913

Table 4: Performance of RPAFA-2 algorithm from [1] on the 44-node network graph
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