Header menu link for other important links
X
A Computationally Simple Predictive CCM Average Current Controller with Nearly Zero Tracking Error for Boost PFC Converter
Published in Institute of Electrical and Electronics Engineers Inc.
2020
Volume: 56
   
Issue: 5
Pages: 5083 - 5094
Abstract
Predictive current controllers offer superior control action in power factor correction (PFC) converters, however, cause tracking error in the average inductor current due to the unmodeled circuit parameters and variations which could lead to higher harmonic currents, higher input current THD and impact on the output voltage. Attempts to make the predictive current control equations accurate leads to increased computational complexity, thus limiting the switching frequency of operation or increasing the processing requirements. This article proposes a computationally simple predictive continuous conduction mode average current controller based on the concept of moving averages for the boost PFC converter and achieves nearly zero tracking error in the average inductor current. Additionally, a predictive current controller is derived for performance comparison by considering the effect of major converter nonidealities and digital implementation aspects. The performance of the proposed predictive current controller is compared with that of a PI current controller, an ideal predictive current controller and the derived predictive current controller with nonidealities included. Experimental studies on a boost PFC converter hardware prototype validate the effectiveness of the proposed predictive current controller. © 1972-2012 IEEE.
About the journal
JournalData powered by TypesetIEEE Transactions on Industry Applications
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers Inc.
ISSN00939994