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Abstract

Cluster validity indices are used for both estimating the quality of a clustering algorithm
and for determining the correct number of clusters in data. Even though several indices
exist in the literature, most of them are only relevant for data sets that contain at least two
clusters. This paper introduces a new bounded index for cluster validity called the score
function (SF), a double exponential expression that is based on a ratio of standard cluster
parameters. Several artificial and real-life data sets are used to evaluate the performance of
the score function. These data sets contain a range of features and patterns such as unbal-
anced, overlapped and noisy clusters. In addition, cases involving sub-clusters and perfect
clusters are tested. The score function is tested against six previously proposed validity
indices. In the case of hyper-spheroidal clusters, the index proposed in this paper is found
to be always as good or better than these indices. In addition, it is shown to work well on
multidimensional and noisy data sets. One of its advantages is the ability to handle single
cluster case and sub-cluster hierarchies.
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1 Introduction

One of the best known examples of unsupervised learning is clustering [23, 42, 46]. The goal
of clustering is to group data points that are similar according to a chosen similarity metric
(Euclidean distance is commonly used). Clustering can also be used in combination with other
techniques such as genetic algorithms [30]. Clustering techniques have been applied in domains
such as text mining [41], intrusion detection [35], DNA micro-arrays [15] and information explo-
ration [21]. In these fields, as in many others, the number of clusters is usually not known in
advance.
Clustering techniques that are proposed in the literature, although considerable [25], can be
divided into four main categories [17]: partitional clustering (for example, K-means), hierarchical
clustering (for example, BIRCH), density-based clustering (for example, DBSCAN) and grid-
based clustering (for example, STING). Although the mixture of Gaussian approach can be
mentioned, its computational complexity is too high to be used in practice. Clustering is known
as a form of unsupervised learning, as well as numerical taxonomy and partitioning [43].
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One of the most popular techniques for clustering is K-means [23]. Reasons for the popularity
of this technique include the absence of drawbacks of other types [17]. For example, hierarchical
clustering has a higher complexity. Density-based clustering algorithms often require tuning non-
intuitive parameters. Finally, density-based clustering algorithms do not always give clusters of
good quality. Advantages of K-means include computational efficiency and easy interpretation
of results. K-means is certainly the most widely used clustering algorithm in practice [1].
The drawbacks of K-means include, random choice of centroid locations at the start of the
algorithm, treatment of variables as numbers and the unknown number of clusters k. The first
can be handled through multiple runs. The paper by [22] contains a possible solution to the
second through the use of a matching dissimilarity measure to handle categorical parameters.
Concerning the third point, the number of clusters is an input parameter that is fixed a priori in
the standard K-means algorithm. As many other data mining algorithms, K-means has reduced
reliability when treating high-dimensional data because data sets are nearly always too sparse.
This is due to the use of the Euclidean distance, that becomes meaningless in high-dimensional
spaces [14]. A possible solution involves combining K-means with feature extraction methods
such as principal component analysis (PCA) [9] and self-organizing maps (SOM) [44].
When performing clustering tasks, results should be treated with caution. Indeed, as noted in
[24], clustering is a difficult subjective task. An impossibility theorem for clustering has even
been proposed. In [29] it is shown that there is no clustering function that satisfies a set of three
properties. However, this theorem can be relaxed for real-life usage of clustering algorithms. As
written in [36], the two issues in clustering are i) determination of the number of clusters present
in the data and ii) evaluating how good is the clustering itself. These two issues motivate research
in the field of cluster validation. Validity indices are also useful for estimating the quality of
clusters. An example is given in [12].
Other important challenges in clustering are fixing initial conditions [40] and treating high
dimensional data sets [33]. Many cluster validation techniques are available [2, 13, 17, 18, 19].
This evaluation can be used to determine the most reliable number of clusters in a data set.
Several indices have been proposed in the literature [2, 17, 27, 45, 47]. These indices were
evaluated through plotting them to determine the number of clusters visually. Most of them
have been compared with known results [5, 27]. Selected validity indices are briefly described
below.
The Hubert statistic assesses how well the data fit a proposed crisp structure. The concept
behind the Hubert statistic is the correlation measure. Since calculation of the original index
is computationally expensive, a modified index was proposed. In the modified Hubert statistic
[43], a knee on the plot indicates a possible value for the number of clusters. Finding this knee
is somewhat subjective. The Dunn index [10] combines dissimilarity between clusters and their
diameters to estimate the most reliable number of clusters. The Dunn index is computationally
expensive (O(n2)) and sensitive to noise [17]. An index based on a ratio of between and within
scatter cluster matrices is proposed by [6]. The concepts of dispersion of a cluster and dissimilar-
ity between clusters are used to compute the Davies-Bouldin index [8] which has recently been
reported to be among the best [27]. The Silhouette index [26] uses average dissimilarity between
points to show the structure of the data and consequently, its possible clusters. As stated in [3],
the Silhouette index is only suitable for estimating the first choice or the best partition. The
index proposed by [20] is based on average scattering for clusters and total separation between
clusters. This index has to be tuned with a parameter that may vary the clustering results for
small number of clusters. The Maulik-Bandyopadhyay index [36] is related to the Dunn index
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and involves the tuning of a parameter. Finally, the Geometric index [32] has been developed
for handling clusters of different densities and close clusters as well. A particular feature of this
index is the use of the eigen-axes lengths as a way of measuring the intra-cluster distance.
All of these indices require the specification of at least two clusters. Although not often studied
by the data mining community, the one cluster case is important as pointed out by [16] and is
likely to happen in practice. More details about single cluster tests can be found in [16]. Several
other validity indices exist in the literature [31, 32, 39]. Some are computationally expensive
(i.e. more than O(n)) [17] while others are unable to discover the real number of clusters in all
data sets [27]. This paper proposes a new validity index that helps overcome such limitations.
This article is organized as follows. Section 2 describes existing work in the domain of cluster
validity indices. Section 3 proposes a new validity index and explains mathematical development
behind its conception. Performance of the index is described in Section 4. Section 5 describes the
known limitations of the proposed index. The last Section provides conclusions and directions
for future work.

2 Related Work

Since it is not feasible to test every existing index, six validity indices that are suitable for hard
partitional clustering are used to compare results with those of the new validity index. These
indices serve as a basis for evaluating results from the proposed index on benchmark data sets.
Notation for these indices have been adapted to provide a coherent basis. The metric used on
the normalized data set is the Euclidean distance d(x, y). The Euclidean distance is chosen since
it is easily understood by non-specialists.
Dunn index: One of the oldest and most cited indices is proposed by [10]. The Dunn index
(DU) identifies clusters which are well separated and compact. The goal is therefore to maximize
the inter-cluster distance while minimizing the intra-cluster distance. The Dunn index for k
clusters is defined by Equation 1:

DUk = min
i=1,...,k

{

min
j=1+1,...,k

(

diss(ci, cj)

maxm=1,...,k diam(cm)

)}

(1)

where diss(ci, cj) = minx∈ci,y∈cj d(x, y) is the dissimilarity between clusters ci and cj and
diam(C) = maxx,y∈C d(x, y) is the intra-cluster function (or diameter) of the cluster. If Dunn
index is large, it means that compact and well separated clusters exist. Therefore, the maximum
is observed for k equal to the most probable number of clusters in the data set.
Calinski-Harabasz index: This index [6] is based on a ratio of between cluster scatter matrix
(BCSM) and within cluster scatter matrix (WCSM). The Calinski-Harabasz index (CH) is
defined as follows:

CHk =
BCSM

k − 1
·

n − k

WCSM
(2)

where n is the total number of points and k the number of clusters. The BCSM is based on
the distance between clusters and is defined in Equation 3:

BCSM =
k

∑

i=1

ni · d(zi, ztot)
2 (3)
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where zi is the center of cluster ci and ni, the number of points in ci. The WCSM is given in
Equation 4:

WCSM =
k

∑

i=1

∑

x∈ci

d(x, zi)
2 (4)

where x is a data point belonging to cluster ci. To obtain well separated and compact clusters,
BCSM is maximized and WCSM minimized. Therefore, the maximum value for CH indicates
a suitable partition for the data set.
Davies-Bouldin index: Similar to the Dunn index, Davies-Bouldin index [8] identifies clusters
which are far from each other and compact. The Davies-Bouldin index (DB) is defined according
to Equation 5:

DBk =
1

k

k
∑

i=1

max
j=1,...,k,i 6=j

{

diam(ci) + diam(cj)

d(zi, zj)

}

(5)

where in this case, the diameter of a cluster is defined as in Equation 6:

diam(ci) =

√

√

√

√

1

ni

∑

x∈ci

d(x, zi)2 (6)

with ni the number of points and zi the centroid of cluster ci. Since the objective is to obtain
clusters with minimum intra-cluster distances, small values for DB are interesting. Therefore,
this index is minimized when looking for the best number of clusters.
Silhouette index: The silhouette statistic [26] is another well known way of estimating the
number of groups in a data set. The Silhouette index (SI) computes for each point a width
depending on its membership in any cluster. This silhouette width is then an average over all
observations. This leads to Equation 7:

SIk =
1

n

n
∑

i=1

(bi − ai)

max(ai, bi)
(7)

where n is the total number of points, ai is the average distance between point i and all other
points in its own cluster and bi is the minimum of the average dissimilarities between i and
points in other clusters. Finally, the partition with the highest SI is taken to be optimal.
Maulik-Bandyopadhyay index: A more recently developed index is named the I index [36].
For consistency with other indices it is renamed MB. This index, which is a combination of three
terms, is given through Equation 8:

MBk =

(

1

k
·
E1

Ek

· Dk

)p

(8)

where the intra-cluster distance is defined by Ek =
∑k

i=1

∑

x∈ci
d(x, zi), E1 being the value of

Ek for k = 1 and the inter-cluster distance by Dk = maxk
i,j=1 d(zi, zj). As before, zi is the center

of cluster ci. The correct number of clusters is estimated by maximizing Equation 8. According
to [36], p is chosen to be two.
Geometric index: The last index used for comparison is the Geometric index [32]. One of
its advantages is its ability to accommodate data with clusters of different densities as well as
clusters that overlap. The Geometric index (GE) is defined by Equation 9:
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GEk = max
1≤r≤k

(

2
∑d

j=1

√

λjr

)2

min1≤q≤k,r 6=q d(zr, zq)
(9)

where d is the dimensionality of the data and λjr is the eigenvalue of the covariance matrix from
the data. While the numerator is the squared eigen-axis length, the denominator represents the
inter-cluster distance. The optimal solution is found by minimizing the index over the number
of clusters.

3 A Bounded Validity Index

A typical goal of clustering is to maximize the inter-cluster distance (separability) while min-
imizing the intra-cluster distance (compactness). The index developed in this work - called a
score function (SF) - is based on these two concepts. This section gives details related to the
way the SF has been developed and the ideas that have lead to its development. The following
definitions are used. Firstly, the Euclidean distance is used to measure to what degree two data
points are separated. Secondly, the size of the i-th cluster, ni, is given by the number of points
it contains.
Two concepts used in the proposed index are the “between class distance” (bcd), representing
the separability of clusters, and the “within class distance” (wcd) representing the compactness
of clusters. Three approaches are commonly used to measure the distance between two clusters:
single linkage, complete linkage and comparison of centroids. DU is based on single linkage
and has a complexity of O(n2). Although SI does not fit well into these three categories, its
computational complexity is the same as the first two. DB, MB and GE compare centroids. CH
follows the third approach since the distances of centroids from the overall mean of the data
are determined. The main advantage of using the distance from the overall mean of the data is
that the minimum and maximum are not used when comparing centroids. The minimum and
maximum are sensitive to outliers. In this work, the score function uses the third approach since
the first two have high computational costs [17]. The bcd is given by Equation 10:

bcd =
1

nk

k
∑

i=1

d(zi, ztot)
2
· ni (10)

where n is the total number of data points, k is the number of clusters, zi its centroid of the
current cluster and ztot the centroid of all the data points. The main quantity in the bcd is
the distance d() between zi and ztot. As in the CH index, each distance is weighted by the
cluster size ni to limit the influence of outliers. This has the effect to reduce the sensitivity to
noise. Like all other tested indices, n is used to avoid the sensitivity of bcd to the total number
of points. Finally, the value of k in the denominator is used to penalize the addition of new
clusters. Thus, bcd is reduced as k increases. In this way, the limit of one point per cluster is
avoided. The wcd is given by Equation 11:

wcd =
1

k

k
∑

i=1

√

√

√

√

1

ni

∑

x∈ci

d(x, zi)2 (11)
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Computing values for wcd involves determining the distance d() between each point and the
centroid of its cluster. ni is again used for taking into account the size of clusters. The mean is
taken over the k clusters. A graphical representation of distances used in both Equation 10 and
11 can be found in Figure 1.
With Equations 10 and 11, bcd and wcd are independent of the number of data points. The main
idea, as stated in the beginning of this section, is to maximize Equation 10 while minimizing
Equation 11. Therefore, compact and well separated clusters are aimed. This can be done by
maximizing the ratio of bcd and wcd as shown in Equation 12:

bcd

wcd
(12)

Equation 12 has two difficulties. The first difficulty occurs when the clusters are perfect. Here,
Equation 11 is zero and the ratio of Equation 12 is indeterminate. Therefore, the ratio cannot
be used in this form in the case of perfect clusters. The second difficulty occurs when there is
only one cluster in the data. In this case, Equation 10 is zero and thus the ratio of Equation
12 is zero. This is not desirable since it means that the one cluster case is not comparable with
other cases. A possible solution to these difficulties involves the use of the exponential notation.
Consequently, the function given in Equation 13 is proposed:

ebcd

ewcd
= ebcd−wcd (13)

A third difficulty is related to bounds. All other tested indices have no bounds. It is thus
difficult to appreciate the results of such indices. Since the “distance” to either perfect clusters
or no cluster at all is not known. The upper bound allows the examination of how close the
current clusters are to the perfect cluster case. The bounds for Equation 13 are ]0,∞[. It is also
desirable to avoid very large numbers for computational reasons. Again, exponential notation
is used. Avoiding all of these difficulties leads to the formula for SF, defined by Equation 14:

SF = 1 −
1

eebcd−wcd (14)

Thus, we seek to maximize Equation 14 to obtain the most reliable number of clusters. The
score function is now bounded by ]0,1[ and deals with the perfect cluster case and the one cluster
case. The strength of the SF depends on the fact that it is built on ideas from several indices.
Since it is not based on minimum/maximum values, it is not influenced by outliers. The size
of clusters is taken into account in both bcd and wcd. The comparison of centroids is used in
the place of single or complete linkage. This avoids the computational complexity. The number
of clusters k is used to penalize the addition of clusters. Finally, the exponential notation is
used to both take care of the single and perfect cluster cases and to define bounds. As can be
seen through Equations 10 and 11, computational complexity is linear. If n is the number of
data points, then the proposed score function has a complexity of O(n). Tests that have been
conducted with benchmark problems indicate that this function provides good results. This is
the subject of the next section.
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4 Results

In this Section, the performance of selected clustering indices is compared. For this purpose,
the standard K-means algorithm is used. K-means evolves k crisp and hyper-spheroidal clusters
in order to minimize their intra-cluster distances, shown as the metric J in Equation 15:

J =
k

∑

j=1

∑

xi∈cj

d(xi, zj)
2 (15)

where k is the number of clusters, xi the i-th data point and zj the centroid of cluster cj . The
k starting centroids are chosen randomly among all data points. The data set is then parti-
tioned according to the minimum squared distance. The cluster centers are iteratively updated
by computing the mean of the points belonging to the clusters. The process of partitioning
and updating is repeated until a stopping criterion is reached. This happens when either the
cluster centers or the value of the metric J in Equation 15 do not significantly change over two
consecutive iterations.
To control the randomness of K-means, it is launched t = 20 times from kmin to kmax clus-
ters. The optimum - minimum or maximum, depending on the index - is chosen as the most
suitable number of clusters. Indices for comparison have been chosen according to their perfor-
mance and usage reported in the literature (see Section 1). Selected indices are Dunn (DU),
Calinski-Harabasz (CH), Davies-Bouldin (DB), Silhouette (SI), Maulik-Bandyopadhyay (MB),
and Geometric (GE). These are compared with the Score Function (SF). Subsection 4.1 shows
the results according to the number of clusters identified for both artificial and real-life data
sets. Subsection 4.2 studies the perfect cluster case. The special case of one cluster is outlined
in subsection 4.3. Finally, the sub-cluster issue is presented in Section 4.4.

4.1 Number of clusters

In this subsection, there are two goals. The first goal is to test the score function on benchmark
data sets. The second goal is to compare results between indices. kmin and kmax are taken to
be respectively 2 and 10. If not explicitly stated, data sets used in this Section are composed of
1000 points in two dimensions.
Example 1 : In the first data set, Unbalanced, three clusters of different compactness are present
(see Figure 2a). Clusters of varying densities is an important issue [7]. Table 1 shows that,
unlike other indices, Dunn is not able to correctly estimate the number of clusters (three). This
is due to the definition of the Dunn index. The diameter, for example, can be affected by outliers
since it is not based on a mean value.
Example 2 : The second data set, Overlapped, consists of three clusters. Two of these clusters
overlap (see Figure 2b). This data set is important since the ability to deal with overlapping
clusters is one of the best ways to compare indices [4]. Table 2 shows the results for this data
set. GE overestimates the number of clusters. A weakness of GE is to be based on the minimum
distance between two clusters. This gives problems when dealing with overlapping clusters. DU,
DB and SI identify the two overlapping clusters as one cluster. This is due to their dependence
to a minimum or maximum value. This is not the case with CH, MB and SF which correctly
estimate the three clusters.
Example 3 : This data set, named Noisy, contains seven clusters with an additional noise. It
can be seen in Figure 2c. It is rarely the case that clusters appear clearly in real situations.
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The data are often noisy and some indices are sensitive to noise as pointed out in [17]. Table
3 contains the results for this specific data set. It can be seen that DU, CH, DB, SI and MB
overestimate the correct number of clusters. Presence of noise is too strong for these indices
to correctly estimate the number of clusters. Only GE and SF are able to determine the seven
clusters.
Example 4 : The following data set, named Subcluster contains five clusters, with two “pairs”. It
is visible in Figure 2d. It can happen in real-life that data sets contain clusters which are closely
grouped together. Existing indices developed for hard clustering may not be able to deal with
such situations. Table 4 presents the results for this data set. More details about sub-cluster
hierarchies can be found in Section 4.4.
Example 5 : The next data set, named Wine, is a real-life data set [37]. It is made of 178 points
in 13 dimensions. Wine contains 3 clusters. Results of the seven indices are given in Table 5.
Here, CH, DB, SI and SF are able to discover the three clusters. While MB underestimates the
number of clusters, DU and GE over-estimate the correct value.
Example 6 : In this last example, the Cancer data set is used [37]. It contains 569 points in 30
dimensions. Cancer is composed of 2 clusters and is a good example of a problem in a relatively
high dimensional space. Results are presented in Table 6. Three indices, CH, SI and SF, are
able to deal with these two clusters represented in 30 dimensional space. DU, DB, MB and GE
are not able to catch the trend due to either the cluster shapes or the high dimensionality of the
data.
Table 7 summarizes the results of the application of the seven indices to four artificial and two
real-life data sets. SF is the only index performing well on all data sets. The closest index, in
term of good results, is CH. This is due to the similarity of the two equations. Both CH and
SF takes into account the number and size of clusters. Among all, CH and SF are the only two
indices to be based on a comparison of cluster centroid (zi) with overall centroid (ztot).
In our experiments, SF correctly identified the number of clusters in all six data sets. The SF
successfully processes the standard case with clusters of different size and compactness (Unbal-
anced), overlapped clusters (Overlapped), clusters with noise (Noisy), groups of clusters (Sub-
cluster) and multidimensional data (Wine and Cancer).
To test the score function more completely, several other aspects are evaluated. For example,
challenges such as perfect clusters and sub-clusters are important. The single cluster case has
to be considered as well. Although not commonly studied in the literature, it may often happen
in practice. Recent research by others that deal with clustering validity indices, have limited to
cluster data from 2 to kmax clusters. Finally, a comparative study of all indices is done.

4.2 Perfect Clusters

The SF upper bound indicates the perfect cluster case; proximity to this bound (1.0) is a measure
of closeness of data sets to perfect clusters. The next two data sets are used to test how the SF
deals with perfect clusters. The data sets Perfect3 and Perfect5 are made of 1000 points in 2D
and contain three and five clusters respectively which are nearly perfect (i.e. with a very high
compactness).
The correct number of clusters is identified in both situations. An interesting observation is
related to the maximum value for the SF. In the first case (0.854), the maximum is higher than
in the second one (0.772). This is due to the dependence of the SF on the number of clusters
k. This can be seen in Equations 10 and 11. More details of the influence of k can be found in
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Section 5.1. Finally, the SF gives an idea of how good clusters are through the proximity of the
value of the index to its upper bound of unity.

4.3 Single Cluster

Before attempting to identify a single cluster, the definition of a cluster should be clarified.
Several definitions exist in the literature. A possible definition is given in [34]. It states that
a cluster is considered to be “real” if it is significantly compact or isolated or both at the
same time. Concepts of compactness and isolation are based on two parameters that define
internal properties of a cluster. The main drawback of such definitions is that they are often
too restrictive; few data sets satisfy such criteria. Another way of testing for the existence of a
single cluster is the null hypothesis [11]. However, this test is usually carried on univariate data.
An objective of the index, SF, is to accommodate the single cluster case. This case is not usually
treated by other indices. In this subsection, kmin and kmax are taken to be respectively 1 and 8.
Plot of SF with respect to the number of clusters provide indications related to how the single
cluster case can be identified. Firstly, two situations may occur. Either the number of clusters is
clearly located with a global maximum (Figure 3, left) or the SF has no clear global maximum
(Figure 3, right).
Since in the first situation, the number of clusters is identifiable, the challenge lies in the second
situation. In this case, there are two possibilities. They are: i) data forms a single cluster and
ii) the correct number of clusters is higher than kmax.
In this paper, an empirical equation is proposed to distinguish between these two cases. For
this purpose, three new data sets are introduced: Single, which contains 1000 points in 2D
representing a single and spherical cluster, SingleN is the same cluster as Single plus added
noise and Single30 is a single cluster in a 30 dimensional space. It has been observed that in
the single cluster cases, the value of the SF when k = 2, denoted as SF2 is closer to the value
for k = 1 (SF1) than in other data sets. Therefore, the ratio between SF1 and SF2 is used as
an indicator of single cluster as shown in Equation 16.

SF1

SF2

≥ ǫ (16)

where SF1 and SF2 are respectively the value for SF when k = 1 and k = 2. Results of this
indicator on artificial and real-life benchmark data sets are given in Table 8.
According to Table 8, it is empirically stated that the data set is likely to contain one cluster if
Equation 16 is satisfied with ǫ ∼= 0.6. Only three data sets containing a single cluster satisfy the
condition in Equation 16.

4.4 Sub-clusters

Another case is the sub-cluster situation. This occurs when existing clusters can be seen as a
cluster hierarchy. If this information can be captured by the validity index, more information
about the structure of the data can be given to the user. The data set Subcluster in Figure 2d is
an example of this situation. The index SF is compared with the previously mentioned indices
on this topic. Figure 4 shows the evolution of each validity index with respect to the number of
clusters.
In Figure 4, MB is not able to find the correct number of clusters (neither the sub-clusters, nor
the overall clusters). In the case of DU, only the overall three clusters are detected. The reason is
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related to the distance measured between two clusters. Dunn uses the minimum between points
in two different clusters ci and cj . This strategy is limited in the case of the Subcluster data set
since clusters overlap. With SI, although the sub-cluster hierarchy is visible, the recommended
number of clusters is three. Finally, the indices that are able to find five clusters and show a
peak at three clusters are CH, DB, GE and SF.

4.5 Comparative Study

All of these indices are different. Distinguishing aspects are their definition, their optimization
strategy (minimum/maximum), their complexity or their definition with specific numbers of
clusters such as k = 1. An index may have an hyper-parameter to tune. This is the case of the
MB index. The computational complexity is important. Although data sets tested in this article
are small, other real-life examples may have tens or hundreds of thousands of points. In these
cases, a validity index with a linear complexity is preferred over polynomial complexity. Since
none of the other indices are bounded, the perfect cluster case is difficult to identify. When a
value is obtained for a given index, it is usually difficult, or impossible, to know the proximity
of the data set in relation to the perfect cluster situation. Since the single cluster case is usually
not taken into consideration when developing indices, most of them are not defined for such a
situation. This is the case for DU, DB, SI, MB and GE. All of these indices somehow involve the
distance between two different clusters. In a single cluster case there is no such value. Although
this problem does not appear for CH, the denominator of Equation 2 prevents the single cluster
situation. Table 9 contains a summary of the important properties of the seven validity indices.
Except for indices DB and GE, which have to be minimized, all indices have to be maximized
on k = 2..n. Only SF can be maximized on k = 1..n due to its definition. The standard
computational complexity is O(n), with n being the number of points, except for DU and SI
(O(n2)). This is due to the way these two indices calculate the distance between clusters. MB
is the only index with an hyper-parameter (p in Equation 9). This value is usually chosen to be
two in the literature [28, 36]. Concerning the bounds, the SF is the only index that has a lower
and upper bound. This is a strong advantage with regards to other indices since it increases
the usefulness of the value. SF is also the only index to be defined for the single cluster case
(k = 1). For all other indices, the number given in Table 9 refers to the Equation where k = 1
is an undefined issue. Finally, only CH, DB, GE and SF reveal sub-clusters in data.
To conclude, main drawbacks of the Dunn index are its computational load and its sensitivity
to noise. It is useful for identifying clean clusters in data sets containing no more than hun-
dreds of points. Although the Davies-Bouldin index gives good results for distinct groups, it
is not designed to accommodate overlapping clusters. The Silhouette index is only suitable for
estimating the first choice and therefore, it should not be applied to data sets with sub-clusters.
The Maulik-Bandyopadhyay index has the particularity of being dependent on a user specified
parameter. The Maulik-Bandyopadhyay and Geometric indices have been found to give bad
results on multidimensional data sets. Although closely related to SF, CH has no upper bound
and is not defined for k = 1.

5 Limitations

Since the SF depends on two exponentials, its evolution when the number of clusters is equal
to the number of points requires specific study. In addition, the data sets presented so far
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contain only hyper-spheroidal clusters. Additional tests with arbitrarily shaped clusters have
been carried out. These issues are treated in the next subsections.

5.1 Score Function Evolution

In Section 3, the index SF has been adapted so that it is bounded. Therefore, the SF has a lower
bound of zero (no cluster structure) and an upper bound of one (perfect clusters). The purpose
of the study in this subsection is to investigate the behavior of the SF for a large number of
clusters. More specifically, the limits of the SF when the number of clusters (k) tends to the
number of points (n) is studied. When k tends to n, the wcd tends to zero (see Equation 11).
This is the case when each point represents a single cluster. The evolution of bcd is described
by Equation 17:

lim
k→n

bcd =
1

n2

n
∑

i=1

d(x, ztot)
2 (17)

Equation 17 can be rewritten as a function of the standard deviation σ:

lim
k→n

bcd =
1

n

∑n
i=1 d(x, ztot)

2

n
=

σ2

n
(18)

Consequently, the limit for SF when the k → n can be written as:

lim
k→n

SF = 1 −
1

eeσ2/n
(19)

Two situations occur depending on the order of magnitude of σ2 and n. They are presented in
Equation 20:

lim
k→n

SF =

{

1 for σ2 ≫ n
∼ 0.63 for σ2 ≪ n

(20)

The second case is the most likely to happen when data is normalized. The evolution of the SF
with both the bcd and the wcd is plotted with respect to the number of clusters. This number
varies from kmin = 1 to kmax = 30. Results for the data set Overlapped are shown in Figure 5.
Starting from zero (single cluster), the bcd has its maximum at k = 2 and decreases monoton-
ically. The wcd starts with a high value and decreases monotonically as well. Concerning the
SF, a maximum is observed at the correct number of clusters k = 3. The SF tends to 0.63 which
is the limit found by Equation 20.
Figure 6 shows the results for the Noisy data set. After reaching a maximum for k = 7, the
value of the SF stabilizes as predicted by Equation 20. The wcd decreases monotonically with
a knee at k = 7. It is observed that the bcd closely follows the wcd starting at k = 7.
Finally, the case of a single cluster - SingleN - is studied (Figure 7). The bcd has a typical
increase and then stabilizes. Instead of decreasing, the wcd grows from 1 to 3 clusters. This
shows that k should not be increased. Thus, the SF has a minimum at k = 3 clusters and then
grows slowly. This shows that in addition to validating Equation 16, the SF evolution indicates
a single cluster presence in the data set.
Empirical tests have also been carried out. For a precise comparison of indices, the starting
centroids are chosen to be the same in five runs. For each index, the best result over these five
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runs is taken as the correct number of clusters. Seven data sets that contain 16, 25, 36, 49, 64,
81 and 100 clusters are used. Limits on k, kmin and kmax, are chosen to be, respectively, 2 and
110. Results are given in Table 10.
It is observed that all indices have difficulty finding the correct number of clusters for k > 15.
This is due to the effect of the starting centroid locations. The probability of obtaining good
centroid locations at the beginning - and therefore the correct number of clusters at the end -
becomes smaller as the number of clusters increases [42]. This issue can be resolved for many
situations using methodologies to find better starting centroid locations [38].
However, the higher the number of clusters, the less effective these methodologies become. To
illustrate the dependency of K-means results to initial centroid locations, an additional test has
been carried out. The data set containing 49 clusters (see Table 10) is used again. However,
in this case, initial centroid locations are chosen so that each starting position is in a distinct
cluster. Aside from DU and GE, all indices find the correct number of clusters. This thus shows
that for high number of clusters, good results can be achieved only when starting centroids are
correctly placed.

5.2 Arbitrarily Shaped Clusters

In the above subsections, data sets used to test the different indices contain hyper-spheroidal
clusters. The purpose of this subsection is to study arbitrarily-shaped clusters. Three new data
sets are introduced. Rectangle contains 1000 points in 2D representing five rectangular clusters.
The data set Nonconvex is made of 284 regularly-spaced points in 2D. It contains three clusters,
one of them is not convex. Finally, Ellipsoidal is a data set made of 3 ellipsoidal clusters (1000
points in 2D). These data sets are shown in Figure 8.
Regarding the Rectangle data set, all indices overestimate the correct number of clusters (5).
Results for different indices are: DU (9), CH (10), DB (10), SI (7), MB (10), GE (10) and SF
(10). While it is clear that the SF is not able to find the real number of clusters, other indices
have the same difficulty. This is mainly due the size of the different clusters and their non-
spheroidal shape. Moreover, as stated in [42], K-means is usually not reliable for non-spheroidal
clusters.
Concerning the next data set, Nonconvex, the difficulty lies in the fact that one of the clusters is
non-convex. In this case, the value of SF (4), although close, overestimates the correct number
of clusters (3). The following indices are also close to the real number of clusters: DU (2), DB
(4) and MB (4). This is not the case for CH (6), SI (6) and GE (10). In the case of non-convex
clusters, another clustering algorithm than K-means is advised.
In the last data set, Ellipsoidal, the clusters are far from spherical in shape. All indices fail when
estimating the number of clusters (3). All indices overestimate the real number of clusters: DU
(9), CH (10), DB (10), SI (10), MB (10), GE (10) and SF (10). Since all indices involves the
calculation of some diameter or variance of clusters, the process fail when applied to strongly
ellipsoidal shaped clusters. Therefore, a limitation of the score function, as well as other tested
indices using K-means, is their restriction to data sets containing hyper-spheroidal clusters.

6 Discussion and Conclusions

A variety of validity indices exist in the literature. However, most of them succeed only in
certain situations. A new index for hard clustering called the score function (SF), is presented
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and studied in depth in this paper. The index is based on an equation that computes the within
and between class distances. It has been developed to accommodate special cases such as single
cluster and perfect cluster cases.
The SF is able to estimate correctly the number of clusters in a variety of artificial and real-life
data sets. In a data set involving unbalanced clusters, the SF is able to correctly estimate the
number of clusters, which is not the case with the DU index. Concerning DU index, results
confirm a previous study that found this index to be sensitive to noise. CH, MB and SF are the
only three indices to succeed when confronted with overlapping clusters. The data set containing
seven clusters with noise is correctly handled by GE and SF. However, GE is often found to
overestimate the real number of clusters in most data sets. Finally, in the case of sub-cluster
hierarchies, CH, DB, GE and SF are able to estimate the five clusters and overall three groups.
In general, CH and SF give the best results.
More particularly, the SF is better or as good as six other validity indices (Silhouette, Dunn,
Calinski-Harabasz, Davies-Bouldin, Maulik-Bandyopadhyay and Geometric) for the K-means
algorithm on hyper-spheroidal clusters. It has been found that for arbitrarily-defined cluster
shapes, the SF is usually not able to estimate the correct number of clusters. This is also the
case for all other indices that were studied. In addition, the SF has been tested successfully
on multidimensional real-life data sets. The proposed index can also accommodate perfect and
single cluster cases. In order to identify the one cluster case, an empirical condition has been
formulated. Finally, determining values for the index is computationally efficient.
Several extensions to the present work are in progress. A more detailed study of the sub-cluster
case is an important part of this work. Applications to other clustering algorithms, such as
stability-based clustering, are also under way.
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k 2 3 4 5 6 7 8 9 10

DU 0.056 0.036 0.022 0.014 0.017 0.008 0.009 0.007 0.010
CH 950.6 3453.3 2725.0 2455.3 2111.1 2214.6 1961.3 2160.6 2107.9
DB 0.800 0.457 0.697 0.688 0.784 0.762 0.852 0.846 0.819
SI 0.682 0.893 0.819 0.716 0.714 0.728 0.593 0.521 0.565
MB 2.746 7.600 6.245 5.106 4.986 4.236 3.819 3.971 3.618
GE 3.257 1.720 1.842 1.876 1.939 1.931 2.043 2.107 2.212
SF 0.489 0.648 0.627 0.617 0.603 0.595 0.593 0.584 0.584

Table 1: Results of the seven validity indices on the Unbalanced data set (example 1). The best
result on 20 runs is taken. The data set is shown in Figure 2a. Bold numbers show maximum
values for all indices except DB and GE, where minimum values are desired. This indication is
used for Tables 1-7. The correct number of clusters is k = 3.
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k 2 3 4 5 6 7 8 9 10

DU 0.091 0.011 0.012 0.016 0.016 0.017 0.021 0.014 0.019
CH 1346.2 2497.6 2154.2 1996.0 1941.3 1887.3 1834.7 1772.8 1744.2
DB 0.543 0.562 0.653 0.809 0.784 0.766 0.767 0.753 0.731
SI 0.779 0.771 0.672 0.611 0.582 0.583 0.589 0.597 0.592
MB 4.426 5.520 4.646 3.800 3.208 2.827 2.592 2.374 2.061
GE 2.719 1.885 2.046 2.010 1.885 1.745 1.676 1.705 1.625

SF 0.577 0.636 0.612 0.593 0.588 0.582 0.579 0.577 0.576

Table 2: Results of the seven validity indices on the Overlapped data set (example 2). The data
set is shown in Figure 2b. The correct number of clusters is k = 3.
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k 2 3 4 5 6 7 8 9 10

DU 0.038 0.038 0.064 0.070 0.077 0.077 0.067 0.075 0.081

CH 769.3 1018.6 1476.1 1722.4 2174.7 2849.9 3136.7 3201.4 3294.3

DB 1.108 0.700 0.608 0.500 0.457 0.465 0.440 0.481 0.486
SI 0.580 0.636 0.740 0.768 0.803 0.829 0.843 0.852 0.860

MB 1.640 1.744 3.069 3.845 5.457 7.370 7.937 7.136 6.148
GE 4.215 2.717 1.860 1.613 1.079 0.952 1.191 1.534 1.507
SF 0.419 0.513 0.567 0.590 0.604 0.612 0.605 0.601 0.601

Table 3: Results of the seven validity indices on the Noisy data set (example 3). The data set
is shown in Figure 2c. The correct number of clusters is k = 7.
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k 2 3 4 5 6 7 8 9 10

DU 0.059 0.069 0.020 0.017 0.016 0.014 0.014 0.014 0.015
CH 979.3 2431.0 2647.7 3774.1 3351.0 3045.1 2833.7 2636.2 2550.7
DB 0.907 0.489 0.467 0.469 0.579 0.683 0.714 0.750 0.792
SI 0.657 0.841 0.821 0.810 0.735 0.729 0.677 0.635 0.661
MB 1.890 9.523 16.206 43.550 54.825 36.058 49.388 43.522 41.192
GE 3.793 1.235 1.147 1.122 1.510 1.435 1.525 1.570 1.658
SF 0.480 0.636 0.638 0.641 0.627 0.618 0.613 0.606 0.601

Table 4: Results of the seven validity indices on the Subcluster data set (example 4). The data
set is shown in Figure 2d. The correct number of clusters is k = 5.
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k 2 3 4 5 6 7 8 9 10

DU 0.160 0.232 0.232 0.210 0.190 0.235 0.212 0.239 0.234
CH 69.52 70.94 56.20 47.17 42.23 38.26 36.26 34.33 32.73
DB 1.505 1.257 1.501 1.481 1.402 1.421 1.307 1.423 1.425
SI 0.426 0.451 0.418 0.407 0.390 0.368 0.313 0.348 0.353
MB 5.689 5.391 3.546 3.445 2.682 2.008 1.893 1.733 1.380
GE 97.747 99.209 104.685 101.154 108.083 97.892 93.336 86.958 91.108
SF 0.269 0.385 0.314 0.324 0.253 0.240 0.231 0.233 0.242

Table 5: Results of the seven validity indices on the Wine data set (example 5). The data set
is made of 178 points in a 13 dimension space. The correct number of clusters is k = 3.
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k 2 3 4 5 6 7 8 9 10

DU 0.076 0.078 0.075 0.078 0.072 0.064 0.072 0.079 0.067
CH 267.7 197.1 159.0 140.4 128.8 118.6 109.7 103.3 98.1
DB 1.444 1.461 1.502 1.432 1.534 1.391 1.418 1.408 1.457
SI 0.519 0.492 0.441 0.427 0.279 0.257 0.259 0.244 0.228
MB 16.202 11.433 13.890 10.265 26.346 20.834 14.002 5.697 12.279
GE 2.599 2.497 2.426 2.558 2.946 2.546 2.231 2.273 2.215

SF 0.657 0.446 0.340 0.238 0.216 0.160 0.149 0.137 0.124

Table 6: Results of the seven validity indices on the Cancer data set (example 6). The data set
is made by 569 points represented in 30 dimensions. The correct number of clusters is k = 2.
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Data Sets DU CH DB SI MB GE SF

Unbalanced 2(X) 3(O) 3(O) 3(O) 3(O) 3(O) 3(O)
Overlapped 2(X) 3(O) 2(X) 2(X) 3(O) 10(X) 3(O)
Noisy 10(X) 10(X) 8(X) 10(X) 8(X) 7(O) 7(O)
Subcluster 3(X) 5(O) 4(X) 3(X) 6(X) 5(O) 5(O)
Wine 9(X) 3(O) 3(O) 3(O) 2(X) 9(X) 3(O)
Cancer 9(X) 2(O) 7(X) 2(O) 6(X) 10(X) 2(O)

Table 7: Estimated number of clusters for six data sets and seven validity indices. Notation (O)
and (X) respectively indicates when the correct number of clusters has been found or not.
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Data sets Indicator Data sets Indicator

Unbalanced 0.44 SingleN 1.28

Overlapped 0.37 Single30 0.60

Noisy 0.52 Wine 0.10
Subcluster 0.45 Cancer 0.01
Single 0.61

Table 8: Results of the indicator (SF1/SF2) for nine benchmark data sets. Bold numbers
indicate the single cluster cases.
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DU CH DB SI MB GE SF

On k = 2..n max max min max max min max
Hyper-parameters no no no no p in Equ. 9 no no
Complexity O(n2) O(n) O(n) O(n2) O(n) O(n) O(n)
Bounds ]0,∞[ ]0,∞[ ]0,∞[ ]-∞,∞[ ]0,∞[ ]0,∞[ ]0,1[
Single cluster Equ. 1 Equ. 2 Equ. 5 Equ. 7 Equ. 8 Equ. 9 emp.
Sub-clusters no emp. emp. no no emp. emp.

Table 9: Properties of the seven compared validity indices. The single cluster line refer to the
Equation preventing from single cluster. The sub-clusters line shows emp. for indices that are
shown empirically to find sub-clusters.
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Indices 16 25 36 49 64 81 100

DU 11 18 28 NA NA NA NA
CH 20 34 84 76 68 73 84
DB 15 35 36 38 59 63 84
SI 15 28 52 50 83 98 108
MB 110 110 110 70 83 98 103
GE NA NA NA NA NA NA NA
SF 20 34 58 76 68 74 84

Table 10: Estimated number of clusters for seven data sets containing respectively 16, 25, 36, 49,
64, 81 and 100 clusters. For each validity index, the best value over 5 runs with fixed K-means
starting centroid locations are given. NA stands for Not Available (for example due to infinite
or divide by zero issues).
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Figure 1: Graphical representations of bcd (left) and wcd (right).
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Figure 2: Four artificial data sets, Unbalanced, Overlapped, Noisy and Subcluster.
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Figure 3: Difference of the SF trend with a data set containing three clusters (left) and single
cluster (right).
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Figure 4: Comparison of DU, CH, DB, SI, MB, GE and SF for the sub-cluster case of Figure
2d. DB and GE must be minimized.
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Figure 5: Evolutions of the SF and components bcd and wcd for the data set Overlapped from
kmin = 1 to kmax = 30. For each number of cluster, the best over 20 runs is taken.
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Figure 6: Evolutions of the SF and its main components bcd and wcd for the data set Noisy
from kmin = 1 to kmax = 30. For each number of cluster, the best over 20 runs is taken.
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Figure 7: Evolutions of the SF and its main components bcd and wcd for the data set SingleN
from kmin = 1 to kmax = 30. For each number of cluster, the best over 20 runs is taken.
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Figure 8: Three new artificial data sets. Rectangle and Ellipsoidal contain 1000 points in 2D
while Nonconvex is made of 284 points in 2D.
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