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Abstract—We consider cooperative spectrum sensing for cog-
nitive radios. We develop an energy efficient detector with low
detection delay using sequential hypothesis testing. Sequential
Probability Ratio Test (SPRT) is used at both the local nodes
and the fusion center. We also analyse the performance of
this algorithm and compare with the simulations. Modelling
uncertainties in the distribution parameters are considered. Slow
fading with and without perfect channel state information at the
cognitive radios is taken into account.

Keywords- Cognitive Radio, Spectrum Sensing, Cooperative
Distributed Algorithm, SPRT.

I. INTRODUCTION

Cognitive Radio has evolved as a working solution for
the scarcity of spectrum due to the proliferation of wire-
less services. Cognitive Radios (CRs) access the spectrum
licensed to other service providers opportunistically without
interference to the existing communication services. For this
the Cognitive users sense the spectrum to detect the usage
of the channel by the primary (licensed) users. However due
to the inherent transmission impairments of wireless channels
and strict spectrum sensing requirements for Cognitive Radios
[17] spectrum sensing has become one of the main challenges
faced by them.

Cooperative spectrum sensing ([20], [23]) in which different
cognitive radios interact with each other, is proposed as an
answer to the problems caused by multipath fading, shadowing
and hidden node problem in single node spectrum sensing
methods. Also it improves the probability of false alarm and
the probability of miss-detection. These are achieved via the
exploitation of spatial diversity among the Cognitive users.

Cooperative spectrum sensing can be either centralized or
decentralized [23]. In the centralized algorithm a central unit
gathers sensing data from the Cognitive Radios and identifies
the spectrum usage ([23], [15]). On the other hand, in the
decentralized case each secondary user collects observations,
makes a local decision or a summary statistic and sends to a
fusion node to make the final decision. The information that is
exchanged between the secondary users and the fusion node
can be a soft decision (summary statistic) or a hard decision
[15]. Soft decisions can give better gains at the fusion center
but also consume higher bandwidth at the control channels
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(used for sharing information among secondary users). How-
ever hard decisions provide as good a performance as soft
decisions when the number of cooperative users increases [5].

Spectrum sensing algorithms used at a node can use a fixed
sample size (one shot) or sequential detection ([8], [10], [16],
[23]). In case of fixed sample size detectors with the complete
knowledge of primary signal, matched filter is the optimal
detector that maximises the SNR. When the only known
apriori information is the noise power, the energy detector is
optimal. Sequential detection can provide better performance
[12]. In the sequential approach one can consider detecting
when a primary turns ON (or OFF) (change detection) or
just the hypothesis testing whether the primary is ON or
OFF. Sequential change detection is well studied in ([2], [7],
[10], [12]). In sequential hypothesis testing ([6], [9], [16]) one
considers the case where the status of the primary channel is
known to change very slowly, e.g., detecting occupancy of a
TV transmission. Usage of idle TV bands by the Cognitive
network is being targeted as the first application for cognitive
radio. In this setup Walds’Sequential Probability Ratio Test
(SPRT) provides the optimal performance for a single node
([14], [22]). [23] has an extensive survey of spectrum sensing
methods. Other spectrum sensing schemes include methods
based on higher order statistics [13], wavelet transforms [18]
and compressed sensing [19].

We use the sequential hypothesis testing framework in the
cooperative setup. We use SPRT at each local node and again
at the fusion center. This has been motivated by our previous
algorithm, DualCUSUM used for distributed change detection
[1]. Thus we will call this algorithm DualSPRT. However this
has been studied in ([9] and [16]) as well. But unlike ([9],
[16]) we also provide theoretical analysis of this algorithm
and consider the effect of fading in the channel between the
primary and secondary nodes. We also model the receiver
noise at the fusion node and use physical layer fusion to reduce
the transmission time of the decisions by the local nodes to
the fusion node.

This paper is organised as follows. Section II describes
the model. Section III starts with the DualSPRT algorithm.
Simulation results and analysis are also provided in Section
III. Then we consider the case where the SNRs are different
at different Cognitive Radios. The received SNR may or may
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not be known to the CR nodes. In Section IV we introduce
fading at the channel between the primary transmitter and the
Cognitive Radios. The channel gains may not be available to
the local secondary nodes. Section V concludes the paper.

II. SYSTEM MODEL

We consider a Cognitive Radio system with one primary
transmitter and L secondary users. The L nodes sense the
channel to detect the spectral holes. The decisions made by the
secondary users are transmitted to a fusion node via a Multiple
Access Channel (MAC) for it to make a final decision.

Let Xk,l be the observation made at secondary user l at
time k. The {Xk,l, k ≥ 1} are independent and identically
distributed (iid). It is assumed that the observations are inde-
pendent across Cognitive Radios. Based on {Xn,l, n ≤ k}
the secondary user l transmits Yk,l to the fusion node. It is
assumed that the secondary nodes are synchronised so that
the fusion node receives Yk =

∑L
l=1 Yk,l + Zk, where {Zk}

is iid receiver noise. The fusion center uses {Yk} and makes
a decision. The observations {Xk,l} depend on whether the
primary is transmitting (Hypothesis H1) or not (Hypothesis
H0) as

Xk,l =

{
Zk,l, k = 1, 2, . . . , under H0

hlSk + Zk,l, k = 1, 2, . . . , under H1
(1)

where hl is the channel gain of the lth user, Sk is the primary
signal and Zk,l is the observation noise at the lth user at time
k. We assume {Zk,l, k ≥ 1} are iid. Let N be the time to
decide on the hypothesis by the fusion node. We assume that
N is much less than the coherence time of the channel so
that the slow fading assumption is valid. This means that hl
is random but remains constant during the spectrum sensing
duration.

The general problem is to develop a distributed algorithm
in the above setup which solves the problem:

minEDD
4
= E[N |Hi] , (2)

subject to PFA ≤ α

where Hi is the true hypothesis, i = {0, 1} and PFA is the
probability of false alarm, i.e., probability of making a wrong
decision. We will separately consider E[N |H1] and E[N |H0].
It is well known that for a single node case (L = 1) Wald’s
SPRT performs optimally in terms of reducing E[N |H1] and
E[N |H0] for a given PFA. Motivated by the good performance
of DualCUSUM in ([1], [8]) and the optimality of SPRT for a
single node, we propose using DualSPRT in the next section
and study its performance.

III. DUALSPRT ALGORITHM

To explain the setup and analysis we start with the simple
case, where the channel gains, hl=1 for all l′s. We will
consider fading in the next section. DualSPRT is as follows:

1) Secondary node, l, runs SPRT algorithm,

W0,l = 0

Wk,l = Wk−1,l + log [f1,l (Xk,l) /f0,l (Xk,l )] , k ≥ 1 (3)

where f1,l is the density of Xk,l under H1 andf0,l is the
density of Xk,l under H0.

2) Secondary node l transmits a constant b1 at time k if
Wk,l ≥ γ1 or transmits b0 when Wk,l ≤ γ0, i.e., Yk,l =
b11{Wk,l≥γ1} + b01{Wk,l≤γ0}
where γ0 < 0 < γ1 and 1A denotes the indicator
function of set A. Parameters b1, b0, γ1, γ0 are chosen
appropriately.

3) Physical layer fusion is used at the Fusion Centre, i.e. ,
Yk =

∑L
l=1 Yk,l + Zk, where Zk is the iid noise at the

fusion node.
4) Finally, Fusion center runs SPRT:

Fk = Fk−1 + log [g1 (Yk) /g0 (Yk )] , F0 = 0, (4)

where g0 is the density of Zk + µ0, the MAC noise at
the fusion node, and g1 is the density of Zk + µ1, µ0

and µ1 being design parameters.
5) The fusion center decides about the hypothesis at time

N where

N = inf{k : Fk ≥ β1 or Fk ≤ β0}

and β0 < 0 < β1. The decision at time N is H1 if
FN ≥ β1, otherwise H0.

In order to have equal PFA under both hypothesis, we choose

γ1 = −γ0 = γ and β1 = −β0 = β.

Of course PFA can be taken different under H0 or H1

by appropriately choosing γ1, γ0, β1, β0. Any prior in-
formation available about H0 or H1 can be used to de-
cide constants. Performance of this algorithm depends on
(γ1, γ0, β1, β0, b1, b0, µ1, µ0). Also we choose these parame-
ters such that the probability of false alarm, Pfa at local nodes
is much lower than PFA. A good set of parameters for given
SNR values can be obtained from known results of SPRT.

Deciding at local nodes and transmitting them to the fusion
node reduces the transmission rate and transmit energy used
by the local nodes in communication with the fusion node.
Also, physical layer fusion in Step 3 reduces transmission
time, but requires synchronisation of different local nodes. If
synchronisation is not possible, then some other algorithm,
e.g., TDMA can be used.

DualSPRT (without physical layer synchronization and fu-
sion receiver noise) has been shown to perform well in ([9],
[16]). In the rest of the following we analyse the performance
under our setup.

A. Performance Analysis

We first provide the analysis for EDD and then for PFA.The
analysis for EDD is similar to that of DualCUSUM in [8].
For simplicity, in the following we will take γ1 = −γ0 = γ,
β1 = −β0 = β, µ1 = −µ0 = µ and b1 = −b0 = 1. Then
PFA under the two hypothesis is same.



EDD Analysis: At the fusion node Fk crosses β under
H1 when a sufficient number of local nodes transmit b1.
The dominant event occurs when the number of local nodes
transmitting are such that the mean drift of the random walk
Fk will just have turned positive. In the following we find the
mean time to this event and then the time to cross β after
this. The EDD analysis is same under hypothesis H0 and H1.
Hence we provide the analysis for H1.

At secondary node l SPRT {Wk,l, k ≥ 0} is a ran-
dom walk. Let δl = EH1

[log (f1 (Xk,l) /f0 (Xk,l))] , σ2
l =

V ar[log [f1 (Xk,l) /f0 (Xk,l )]]. We know δl > 0. The time
τγ,l for Wk,l at each local node to cross the threshold γ
satisfies E[τγ,l] ∼ γ/δl for large values of γ (needed for small
PFA. Then by central limit theorem we can show that at each
node l

τγ,l ∼ N (
γ

δl
,
σ2
l γ

δ3l
) . (5)

Let ρj be the drift of the fusion center SPRT, Fk when j local
nodes are transmitting, tj be the point at which the drift of Fk
changes from ρj−1 to ρj and F̄j = E[Ftj−1], the mean value
of Fk just before transition epoch ti. Suppose j nodes need
to transmit before the SPRT at FC has drift ρj positive. Then

EDD ≈ E[tj ] +
β − F̄j
ρj

(6)

For the above analysis for EDD we followed the analysis of
DualCUSUM in [8]. However there are some difference in
the SPRT at the fusion center here from the DualCUSUM in
[8]. But comparison with simulations show that we will get
an acceptable approximations.
PFA Analysis: It can be easily verified that tk, defined

earlier is the kth order statistics of L iid random variables,
τγ,l (first passage time to threshold γ by the lth node,whose
probability density function is given in (5)) . Then PFA when
H1 is the true hypothesis is given by,

PH1(False alarm) = PH1(False alarm before t1) (7)

+PH1
(False alarm between t1and t2)

+PH1
(False alarm between t2 and t3)+....

One expects that the first term in (7) should be the
dominant term. This is because Pfa is much smaller than
PFA and hence after t1, the drift of Fk will be more positive.
Therefore the probability of false alarm goes down. We have
verified this from simulations also. Hence we focus on the
first term.

Let Sk = log [g1 (Yk) /g0 (Yk)] and θ = β/2µ.

Therefore Fk = S1 + S2 + ...+ Sk. Every Si, 1 ≤ i ≤ k has
a common term 2µ (in case of Gaussian g1 and g0) , thus
changing the threshold to θ = β/2µ. Then

PH1
(FA before t1)

=

∞∑
k=1

P
[
{Fk < −θ} ∩k−1

n=1 {Fn > −θ}
∣∣t1 > k

]
P [t1 > k]

=

∞∑
k=1

(
P [Fk < −θ| ∩k−1

n=1 {Fn > −θ}] P [∩k−1
n=1{Fn > −θ}]

)
P [t1 > k]

(A)
=

∞∑
k=1

(
P [Fk < −θ|Fk−1 > −θ] P [ inf

1≤n≤k−1
Fn > −θ]

)
P [t1 > k]

(B)

≥
∞∑
k=1

(∫ 2θ

c=0

P [Sk < −c]fFk−1{−θ + c}dc
)

(
1− 2P [Fk−1 < −θ]

)( L∏
l=1

(1− Φτγ,l(k)
)

where Φτγ,l is the Cumulative Distribution Function of τγ,l.
As we are considering only {Fk, k ≤ t1}, we remove the
dependencies on t1. (A) is because of the Markov property
of the random walk. (B) is due to the independence of τγ,l
forming t1 and the inequality,

P [sup
k≤n

Fk ≥ θ] ≤ 2P [Fn ≥ θ]

for the Gaussian random walk Fk [4]. Similary we can write
an upper bound by replacing P [∩k−1n=1{Fn > −θ}] with
P [Fk−1 > −θ]. In Table I we compare the lower bound
on PFA with the simulation results. We can make this lower
bound tighter if we do the same set of analysis for the Gaussian
random walk between t1 and t2 with appropriate changes and
add to the results we already obtained.

B. Example

We apply the DualSPRT on the following example and
compare the EDD and PFA via analysis provided above with
the simulation results. We assume that the pre-change distribu-
tion f0 and the post-change distribution f1 are Gaussian with
different means. This model is relevant when the noise and
interference are log-normally distributed [20]. This is a useful
model when Xk,l is the sum of energy of a large number of
observations at the secondary node at low SNR.

Parameters used for simulation are as follows: There are 5
secondary nodes, (L = 5), f0 ∼ N (0, 1) and f1 ∼ N (1, 1),
where N (a, b) denote Gaussian distribution with mean a and
variance b. Also f0 = f0,l and f1 = f1,l for 1 ≤ l ≤ L, γ1 =
−γ0 = γ, β1 = −β0 = β, µ1 = −µ0 = µ and b1 = −b0 = 1.
The PFA and the corresponding EDD are provided in Table
I. The parameters are chosen to provide good performance for
the given PFA. The table also provides the results obtained
via analysis.

C. Analysis for different SNRs

The above analysis is for the case when Xk,l have the
same distribution for different l under the hypothesis H0 and
H1. However in practice the Xk,l for different local nodes l



hyp PFASim. PFAAnal. EDDSim. EDDAnal.

H1 0.00125 0.0012 15.6716 16.4216
H1 0.01610 0.0129 13.928 12.6913
H0 0.0613 0.0497 11.803 10.583
H0 0.0031 0.0027 15.1766 14.830

TABLE I
DUALSPRT: COMPARISON OF EDD AND PFA OBTAINED VIA ANALYSIS

(LOWER BOUND ON THE DOMINATING TERM) AND SIMULATION

will often be different because their receiver noise can have
different variances and / or the path losses from the primary
transmitter to the secondary nodes can be different. The above
analysis for this case needs slight changes for EDD as well
as PFA.

For the analysis of EDD one difference is that τγ,l, l =
1, . . . , L are no longer iid. Now the iterative scheme used in
Section III A to calculate Etj and F̄j does not work. Thus,
knowing the minimum number of local nodes needed to make
the mean drift of Fk positive (say it is i∗), we compute the
mean of the i∗ order statistics of the independent random
variable τγ,l, l = 1, . . . , L via [3]. Then we approximate the
EDD by

E[ti∗ ] +
β −

(
E[ti∗ ]−E[ti∗−1]

ρi∗−1

)
ρi∗

. (8)

For PFA analysis we need the distribution of the first order
statistics t1 for τγ,l, l = 1 . . . , L and then use the method
proposed in Section III A.

We provide an example to verify the accuracy of the
performance analysis provided above.

D. Example

There are five secondary nodes with primary to secondary
channel gain being 0, -1.5, -2.5, -4 and -6 dB respectively
(corresponding post change means are 1, 0.84, 0.75, 0.63, 0.5).
f0 ∼ N (0, 1), f0 = f0,l for 1 ≤ l ≤ L. Table II provides the
EDD and PFA via analysis and simulations. We see a good
match.

PFASim. PFAAnal. EDDSim. EDDAnal.

26.68e− 4 27.51e− 4 36.028 34.634
18.78e− 4 19.85e− 4 44.319 43.290
36.30e− 4 35.16e− 4 27.770 25.977

TABLE II
DUALSPRT FOR DIFFERENT SNR’S BETWEEN THE PRIMARY AND THE
SECONDARY USERS: COMPARISON OF EDD AND PFA OBTAINED VIA

ANALYSIS AND SIMULATION.

E. Different and unknown SNRs

Next we consider the case where the received signal power
is fixed but not known to the local Cognitive Radio nodes.
This can happen if the transmit power of the primary is not
known and / or there is unknown shadowing. Now we limit
ourselves to the energy detector where the observations Xk,l

are a summation of energy of N samples received by the lth

Cognitive Radio node. Then for somewhat large N , the pre
and post change distributions of Xk,l can be approximated
by Gaussian distributions: f0,l ∼ N (σ2, 2σ4/N) and f1,l ∼
N (Pl + σ2, 2(Pl + σ2)2/N), where Pl is the received power
at the lth CR node and noise Zk,l ∼ N (0, σ2). Under low

SNR conditions (Pl + σ2)
2 ≈ σ4 and hence Xk,l are Gaussian

distributed with mean change under H0 and H1. Now taking
Xk,l − σ2 as the data for the detection algorithm at the lth

node, since Pl is unknown we can formulate this problem as
a sequential hypothesis testing problem with

H0 : θ = 0 ; H1 : θ ≥ θ1 . (9)

where θ is Pl and θ1 is appropriately chosen.
The problem

H0 : θ ≤ θ0 ; H1 : θ ≥ θ1 , (10)

subject to the error constraints

Pθ{rejectH0} ≤ α for θ ≤ θ0 (11)

Pθ{rejectH1} ≤ β for θ ≥ θ1

for exponential family of distributions is well studied in ([11],
[12]). The following algorithm of Lai is asymptotically Bayes
optimal [11] and hence we use it at the local nodes instead of
SPRT. Let θ ∈ A = [a1, a2]. Define

Wn,l = max

[
n∑
k=1

log
fθ̂n(Xk)

fθ0(Xk)
,

n∑
k=1

log
fθ̂n(Xk)

fθ1(Xk)

]
, (12)

N(g, c) = inf {n : Wn,l ≥ g(nc)} , (13)

where g() is a time varying threshold and c is the cost assigned
for each observation. Its approximate expression is given in
[11]. At time N(g, c) decide upon H0 or H1 according as

θ̂N(g,c) ≤ θ∗ or θ̂N(g,c) ≥ θ∗ ,

where θ∗ is obtained by solving I(θ∗, θ0) = I(θ∗, θ1), and
I(θ, λ) is the Kullback-Leibler information number. Also for
Gaussian f0 and f1, θ̂n = max{a1,min[Sn/n, a2]}.

The choice of θ1 in (9) affects the performance of E[N |H0]
and E[N |H1] for the algorithm (12)-(13), where N = N(g, c).
For our case where H0 : θ = 0, unlike in (10) where H0 :
θ ≤ 0, E[N |H0] largely depends upon the value θ1. As θ1
increases, E[N |H0] decreases and E[N |H1] increases. If Pl ∈
[P , P ] for all l then a good choice of θ1, is (P − P )/2.

In the distributed setup with received power at the local
nodes unknown, the local nodes will use the Lai’s algorithm
mentioned above while the fusion node runs the SPRT. All
other details remain same. We call this algorithm GLR-SPRT.

The performance of GLR-SPRT is compared with Dual-
SPRT (where the received powers are assumed known at the
local nodes) for Example III D in Table III. Interestingly
E[N |H1] for GLR-SPRT is actually lower than for DualSPRT
, but E[N |H0] is higher. However it probably is because we
have used the same thresholds at each local node in DualSPRT
which is not optimal in this asymmetric statistics case.



hyp EDD PFA = 0.1 PFA = 0.05 PFA = 0.01

H1 DualSPRT 2.06 3.177 5.264
H1 GLRSPRT 1.425 2.522 4.857
H0 DualSPRT 1.921 3.074 5.184
H0 GLRSPRT 2.745 3.852 6.115

TABLE III
COMPARISON BETWEEN GLRSPRT AND DUALSPRT FOR DIFFERENT

SNR’S BETWEEN THE PRIMARY AND THE SECONDARY USERS.

IV. CHANNEL WITH FADING

In this section we consider the system where the channels
from the primary transmitter to the secondary nodes have
fading (hl 6= 1). We assume slow fading, i.e., the channel
coherence time is longer than the hypothesis testing time. We
consider two cases, Case 1: the fading gain is known to the
CR nodes. Case 2: the fading gain is not known to the CR
nodes.

When the fading gain hl is known to the lth secondary
node then this case can be considered as the different SNR
case studied in Section III C. Thus we only consider Case 2
where the channel gain hl is not known to the lth node.

We consider the energy detector setup of Section III E.
However, Pl, the received signal power at the local node
l is random. If the fading is Rayleigh distributed then Pl
has exponential distribution. The hypothesis testing problem
becomes

H0 : f0,l ∼ N (0, σ2);H1 : f1,l ∼ N (θ, σ2) (14)

where θ is random with exponential distribution and σ2 is the
variance of noise. We are not aware of this problem being
handled via sequential hypothesis testing. However we use
Lai’s algorithm in Section III E where we take θ1 to be the
median of the distribution of θ, such that P (θ ≥ θ1) = 1/2.
This seems a good choice for θ1 to compromise between
E[N |H0] and E[N |H1].

We use this algorithm on an example where σ2 = 1, θ =
exp(1), Var(Zk) = 1, and L = 5. The performance of this
algorithm is compared with that of DualSPRT (with perfect
channel state information) in Table IV (under H0) and Table V
(under H1). The EDD and PFA were computed by simulations
each case by 100000 times and taking the average. We observe
that under H1, for high PFA this algorithm works better than
DualSPRT with channel state information, but as PFA de-
creases DualSPRT becomes better and the difference increases.
For H0, GLRSPRT is always worse and the difference is
almost constant.

EDD PFA = 0.1 PFA = 0.05 PFA = 0.01

DualSPRT 1.669 2.497 4.753
GLRSPRT 3.191 4.418 7.294

TABLE IV
COMPARISON BETWEEN GLRSPRT AND DUALSPRT WITH SLOW-FADING

BETWEEN PRIMARY AND SECONDARY USER UNDER H0.

EDD PFA = 0.1 PFA = 0.08 PFA = 0.06

DualSPRT 1.74 1.854 2.417
GLRSPRT 1.62 3.065 5.42

TABLE V
COMPARISON BETWEEN GLRSPRT AND DUALSPRT WITH SLOW-FADING

BETWEEN PRIMARY AND SECONDARY USER UNDER H1.

V. CONCLUSIONS AND FUTURE WORK

We have proposed an energy efficient, distributed coopera-
tive spectrum sensing technique, DualSPRT which uses SPRT
at the cognitive radios as well as at the fusion center. We also
provide analysis of DualSPRT. Next we modify the algorithm
so as to be able to detect when the received SNR is not known
and when there is slow fading channels between the primary
and the secondary nodes. Future work should consider analysis
of the GLR algorithms and optimising over the current setup.
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