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ABSTRACT For a unicellular, non-motile organism like Saccharomyces cerevisiae, carbon sources act both

as nutrients and as signaling molecules and consequently affect various fitness parameters including

growth. It is therefore advantageous for yeast strains to adapt their growth to carbon source variation.

The ability of a given genotype to manifest different phenotypes in varying environments is known as

phenotypic plasticity. To identify quantitative trait loci (QTL) that drive plasticity in growth, two growth

parameters (growth rate and biomass) were measured in a published dataset from meiotic recombinants of

two genetically divergent yeast strains grown in different carbon sources. To identify QTL contributing to

plasticity across pairs of environments, gene–environment interaction mapping was performed, which

identified several QTL that have a differential effect across environments, some of which act antagonistically

across pairs of environments. Multi-QTL analysis identified loci interacting with previously known growth

affecting QTL as well as novel two-QTL interactions that affect growth. A QTL that had no significant

independent effect was found to alter growth rate and biomass for several carbon sources through two-

QTL interactions. Our study demonstrates that environment-specific epistatic interactions contribute to the

growth plasticity in yeast. We propose that a targeted scan for epistatic interactions, such as the one

described here, can help unravel mechanisms regulating phenotypic plasticity.
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The ability of a given genotype to exhibit different phenotypes in

various environments is called phenotypic plasticity (Pigliucci 2001).

This property is often observed in organisms that have adapted to

varying environmental conditions. For a fixed genotype, plasticity can

be quantified as the change in phenotype when the environment is

varied (for a binary phenotype) or the slope of the phenotype–

environment curve (for a continuous phenotype variable) (Scheiner

1993; Pigliucci 2005; Bergland et al. 2008). Plasticity can allow an

organism to adapt to new environments as well as protect it from

potentially adverse environmental effects (Via and Lande 1985).

A gene–environment interaction (GEI) occurs when the pheno-

typic effect of an allele is environment-dependent. The occurrence of

such GEIs creates variation in phenotypic plasticity (Via and Lande

1985; Shook and Johnson 1999). Natural selection may then act on

this variation to enhance or reduce the plasticity in a population.

Several studies have identified roles of single genes affecting plasticity

(Kent et al. 2009; Gerke et al. 2010). Many of these fitness phenotypes

affected by the environment are quantitative in nature and are affected

by interactions between various alleles (Mackay 2001; Remold and

Lenski 2004). Furthermore, single allele effects do not account for

all observed variation in such traits (Fijneman et al. 1996; Bloom
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et al. 2013). Hence, to gain insights into genomic regulation of plas-

ticity, it is important to study both GEIs as well as environment-

specific multi-locus interactions.

In a unicellular, sessile organism such as Saccharomyces cerevisiae,

carbon sources act both as energy sources and as signaling molecules

(Broach 2012). Carbon source availability affects basic biological pro-

cesses, such as translation regulation, metabolism, and signaling path-

ways, which directly or indirectly affect yeast growth (Zaman et al.

2008). In its evolutionary history, yeast would have encountered and

adapted to both fermentable and high growth sources such as glucose,

fructose, maltose, as well as non-fermentable and slow growth sources

such as glycerol and ethanol (Gancedo 1998; Broach 2012).

Yeast growth has previously been studied by measuring different

growth phenotypes, such as colony size (Tong et al. 2001, 2004), bio-

mass (Perlstein et al. 2006), and growth kinetics (Warringer et al. 2003,

2011). These different measures of growth are driven by a partially

overlapping set of genes across varied environmental conditions

(Warringer et al. 2008; Cubillos et al. 2011). To understand the genetic

basis of growth phenotype plasticity, it is therefore important to quantify

growth by multiple growth parameters over a range of carbon sources,

because these parameters can have distinct regulatory mechanisms.

Previously, several linkage mapping studies have identified genetic

loci that contribute to the variation of quantitative traits in different

carbon sources (Warringer et al. 2008; Cubillos et al. 2011; Bloom et al.

2013). These studies identified numerous QTL, as well as epistatic

interactions among QTL that contribute to variation in growth in

different carbon sources. While there is a well-developed under-

standing of how QTL contribute to growth differences in a given

n Table 1 Environment-specific QTL

Parameter Media
Single QTL
(P # 0.2)

Two-QTL
Interactionsa

(P # 0.2)

Two-QTL
Interactions with
Large-Effect QTLb

(P # 0.2)

Three-QTL
Interactionsc

(P # 0.2)

Doubling
time

Ethanol chrXIV(465,189), 9.48,
0.001

chrX(68,089)-chrXVI
(298,954), 3.06, 0.014

Fructose chrII(558,465), 5.82,
0.001; chrXIII(26,435),
4.14, 0.012

Glucose chrII(516,338), 4.56,
0.004; chrXIV
(491,256), 3.70, 0.04

chrI(33,865)-chrV
(377,186), 2.44, 0.052

chrV(371,899)-chrI(33,865),
2.265, 0.087

Glycerol chrXIV(441,202), 1.03,
0.08

chrV(371,899)-chrXIII
(715,970), 1.28, 0.163

Lactose chrXIV(467,221), 16.05,
0.001

Maltose chrVII(1,069,012), 17.68,
0.001; chrXV(656,568),
3.04, 0.18

chrIX(55,251)-chrXIII
(555,077), 2.70, 0.053

Sucrose chrII(516,338), 3.50,
0.036

chrV(371,899)-chrXV
(473,018), 2.36, 0.125

chrV(371,899)-chrXV
(473,018), 2.36, 0.08

chrI(62,951)-chrV(371,899)-chrV
(525,070), 3.02, 0.189; chrII
(516,338)-chrV(371,899)-chrV
(525,070), 3.02, 0.188

maxOD Ethanol chrV(525,070), 4.60,
0.006

chrII(558,465)-chrVII
(42,563)-chrXIII(26,435), 3.32,
0.078

Fructose chrV(371,899), 3.72,
0.039

chrV(371,899)-chrIX(313,896),
2.29, 0.126

Glucose chrI(33,865)-chrV
(377,186), 2.15,
0.111; chrV
(377,186)-chrXV
(656,568), 2.29, 0.078

chrI(33,865)-chrV(371,899),
2.19, 0.104; chrV
(371,899)-chrXV(653,770),
1.90, 0.197; chrV
(371,899)-chrXV(656,568),
2.63, 0.035

chrII(558,465)-chrV
(377,186)-chrVIII(145,761),
3.07, 0.097

Glycerol chrV(525,070)-chrIX(420,785),
1.98, 0.184

Lactose chrIII(56,309), 3.03, 0.151
Maltose chrVII(1,069,000), 26.84,

0.001
chrII(182,131)-chrV(371,899)-

chrXIII(555,077), 3.11, 0.185
Sucrose chrI(62,951)-chrV

(371,899), 3.76,
0.007; chrV
(371,899)-chrXV
(473,018), 3.55, 0.009

chrI(62,951)-chrV(371,899),
3.76, 0.005; chrI(62,951)-
chrV(525,070), 2.24, 0.075;
chrV(371,899)-chrXV
(473,018), 3.55, 0.006

chrV(371,899)-chrV
(525,070)-chrXV(473,018),
3.13, 0.148

Each entry lists the chromosome, chromosome position in bp within brackets, LOD score, and P value for an identified QTL. Markers with P # 0.2 are listed.
a

Results of a pairwise scan of two-QTL interactions among single-environment and GEI QTL.
b

Results of a targeted scan for two-QTL interactions where one locus is constrained to be a large-effect QTL.
c

Results of a targeted scan for three-QTL interactions.
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environment (Sinha et al. 2008; Cubillos et al. 2011; Ehrenreich et al.

2012; Yang et al. 2013; Gagneur et al. 2013), the role of QTL–

environment interactions and the environment dependence of ep-

istatic interactions governing growth are not very well-studied. Several

studies have either taken a specific pair of environmental variations or

have considered a small set of QTL contributing to phenotypic vari-

ation (Sambandan et al. 2008; Gerke et al. 2010). While some of these

studies do consider multiple measures of growth (Warringer et al. 2008;

Cubillos et al. 2011), differential genetic regulation of growth param-

eters is still not well-understood. Similarly, the role of multi-locus

interactions on such regulation and the environment-dependence of

these regulatory interactions are not clear. In this study, we attempt

to address these questions by identifying QTL, QTL–environment

interactions, and two-QTL and three-QTL interactions that contrib-

ute to variation in growth across a varied set of carbon sources.

In a set of 144 high-resolution genotyped meiotic segregants

(Mancera et al. 2008) of two genetically and phenotypically divergent

yeast strains grown separately in the presence of ethanol, fructose,

glucose, glycerol, lactose, maltose, or sucrose as the sole carbon source,

we measured two growth parameters: growth rate (doubling time) and

biomass accumulated (maxOD) in a published dataset (Gagneur et al.

2013). QTL were mapped independently in each environment for

both growth parameters. This was followed by GEI mapping, which

identified loci where the plasticity (i.e., change in phenotype with

respect to environment) differs for the two genotypes.

As a large number of genetic factors interact to affect growth, many

QTL involved in epistatic interactions may have a small independent

effect. The large sample sizes and computational resources required for

genome-wide epistatic analyses have made identification of these

interactions difficult (Phillips 2008). To identify epistatic interactions

with a limited sample size, we searched for interactions among a tar-

geted set of candidate loci, namely those QTL that showed an effect of

any size and QTL that showed GEI. The reason for including the latter

set was that many QTL whose effect in a single environment does not

exceed the threshold for genome-wide significance may have opposite

effects in different environments, and thus can be identified in a GEI

scan. The approach that we used for this article allows us to identify

epistatic interactions among small-effect QTL (either single-environment

or GEI QTL) with a relatively small population size (144 segregants). We

were able to identify two loci indicating novel interactions as well as

a greater role for known single-environment QTL in regulating growth.

Our study showed that yeast growth is regulated by such environment

and growth parameter–specific multi-locus interactions.

MATERIALS AND METHODS

Growth data

The raw growth data analyzed in this study were derived from a study

by Gagneur et al. (2013), in which the experimental procedures are

described in detail. The data we used were generated for 157 segregants

derived from a cross between S. cerevisiae strains S96 and YJM789

(Mancera et al. 2008) grown in the following conditions: 2% ethanol;

2% fructose; 2% glucose; 3% glycerol; 2% lactose; 2% maltose; and 2%

sucrose. The filtered phenotype and genotype data as well as all nec-

essary files for analysis are available in Supporting Information, File S1

and File S2.

Mapping single-environment QTL

For each strain, two growth parameters (doubling time and biomass)

were measured in seven environmental conditions (ethanol, fructose,

glucose, glycerol, lactose, maltose, and sucrose). Genotype data for the

Figure 1 Scatter plots showing examples of QTL identified for various
growth parameters and environmental conditions. (A, B, C) The QTL is
indicated as chromosome number followed by marker position in bp
within brackets. The x-axis indicates marker genotype. Error bars
indicate 6 1 SE.
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parental strains and segregants were obtained (Mancera et al. 2008)

and filtered to include only single nucleotide markers, which resulted

in 48,934 markers.

The R/qtl package (Broman et al. 2003; Broman and Sen 2009) was

used to construct a genetic map and to identify QTL separately for

each growth parameter in each of the seven environmental conditions.

QTL were identified using the LOD score, which is the log10 of the

ratio of the likelihood of the experimental hypothesis to the likelihood

of the null hypothesis (Broman and Sen 2009).

An interval mapping method (“scanone” function in R/qtl) was

used to compute this LOD score using the Haley-Knott regression

algorithm (Broman et al. 2003) (see File S1 for details). This method

had an advantage over marker regression in that it can impute data at

missing markers and inspect positions between markers. P values were

computed in R/qtl with a permutation test (1000 permutations) where

the null distribution consisted of the highest genome-wide LOD score

obtained from each permutation (Broman et al. 2003). For R scripts

for this and other QTL mapping, see File S2.

Mapping GEI

GEI occurs when the effect of a QTL is environment-dependent. Such

QTL were identified by pooling data from two environmental con-

ditions and including the effect of the environment as a covariate. The

LOD scores were calculated using the “scanone” function in R/qtl

(using the Haley–Knott regression algorithm) (Broman et al. 2003),

including the environmental variable as an additive and interactive

covariate (see File S1 for details). P values were computed in R/qtl

with a permutation test (100 permutations).

Mapping multi-QTL interactions

A two-QTL (QTL-QTL) and three-QTL interaction occurs when the

QTL effect at a single locus depends on the genotype at another locus

(see File S1 for details). For targeted multi-QTL interaction mapping,

markers from both the growth parameters identified in single-

environment (P , 1) and GEI (P , 0.5) QTL mapping were collated.

This combined set of markers was tested for both parameters. A cus-

tom python script was written to compute this LOD score for pairwise

n Table 2 Gene–environment interaction QTL

Doubling
Time Ethanol Fructose Glucose Glycerol Lactose Maltose Sucrose

Ethanol chrXIV(465,
189), 9.58, 0.01

chrXIV(465,
189), 9.29, 0.01

chrVII(1,069,012),
13.01, 0.01

chrXIV(465,189),
9.16, 0.01

Fructose chrXIV(467,221),
14.47, 0.01

chrVII(1,069,012),
20.63, 0.01;
chrXV(656,568),
3.12, 0.2

Glucose chrXIV(468,490),
14.12, 0.01

chrVII(1,069,012),
20.49, 0.01

Glycerol
Lactose chrVII(1,069,012),

16.44, 0.01
chrXIV(468,490),

13.28, 0.01
Maltose chrVII(1,069,012),

20.07, 0.01; chrXV
(656,568), 3.05, 0.2

Sucrose

maxOD Ethanol Fructose Glucose Glycerol Lactose Maltose Sucrose

Ethanol chrV(377,
186)a,b, 6.76,
0.01

chrV(377,
186)a,b, 3.58,
0.1

chrV(377,
186)a,b,
4.33, 0.02;
chrVII(25,
442)a,b,
3.03, 0.17

chrII(708,904)a,b,
3.78, 0.02;
chrXVI(295,
943)a,b, 3.92,
0.01

chrVII(1,069,000),
28.25, 0.01

Fructose chrIII(248,850)a,
3.16, 0.13;
chrVII(1,069,012),
21.09, 0.01;
chrXV(288,
114)a, 3.07, 0.14

chrV(371,899)a,b,
4.52, 0.01

Glucose chrVII(1,069,012),
26.70, 0.01

Glycerol chrVII(1,069,000),
26.19, 0.01

Lactose chrVII(1,069,012),
24.85, 0.01

Maltose chrVII(1,069,000),
26.17, 0.01

Sucrose

Each entry lists the chromosome, chromosome position in bp within brackets, LOD score, and P value for markers involved in a gene–environment interaction.
Markers with P # 0.2 are listed.
a

Novel QTL that was not identified in concerned environments in environment-specific QTL mapping (see Table 1).
b

QTL that had a crossover effect (antagonistic allelic effect with non-overlapping 6 1 SE bars).

772 | A. Bhatia et al.



comparisons among a set of markers (see File S1 and File S2 for

details). P values were computed using a permutation test (10,000

permutations).

RESULTS

Mapping previously identified and novel QTL

Growth rate (doubling time) and biomass accumulated (maxOD) were

measured for parental haploid strains S96 (indicated as S) and YJM789

(indicated as Y) and their haploid meiotic segregants separately in the

presence of seven different carbon sources: five fermentable (glucose,

fructose, sucrose, maltose, lactose) and two non-fermentable carbon

sources (ethanol and glycerol; see Materials and Methods).

For the two growth phenotypes, phenotypic correlations between

different environmental conditions ranged from 20.02 to 0.63

(Pearson correlation coefficient) (Table S1). For easily utilizable

carbon sources (glucose, fructose, and sucrose), the segregants

showed higher correlation for doubling time (ranging from 0.41 to

0.53) but a comparatively lower correlation for maxOD (ranging

from 0.12 to 0.27). This suggested a distinct genetic basis for regu-

lation of growth in different environments, and this hypothesis was

later supported by our findings.

QTL mapping was performed in all conditions for doubling time

and maxOD. Many QTL (with P # 0.2) were identified for both the

growth parameters in different environmental conditions (Table 1,

Figure S1). A chrII(516,338) QTL, containing the AMN1 gene [also

identified in the analysis of this data by Gagneur et al. (2013)] was

mapped for doubling time in glucose. The same locus was also map-

ped for fructose and sucrose, the other two highly fermentable sugars

(Table 1), consistent with the observed high correlation for doubling

time of the segregants between these fermentable carbon sources.

Apart from being identified in glucose and maltose (Gagneur et al.

2013), the chrXIV QTL, containing the gene MKT1, was also map-

ped for lactose doubling time (Figure 1A). Because the S strain has

a mal13 mutation (Charron et al. 1986), the chrVII locus containing

MAL13 gene was identified as a regulator of both doubling time

(Figure 1B) and maxOD in maltose (Figure S1). A locus on chrV

was also mapped, which affected fructose maxOD (Figure 1C), and

was later found to be involved in various epistatic interactions in

different media conditions (see Results below). Apart from the

chrVII QTL containing MAL13, no common loci was identified

for both growth parameters (Table 1). This again was consistent

with the correlation analysis and with previous studies (Warringer

et al. 2008; Cubillos et al. 2011, 2013).

Weak-effect QTL interact antagonistically in different
carbon sources

To identify environmental effects on QTL, mapping was performed

using the environment as an interactive covariate between pairs of

growth media (Table 2, Figure S2). Although there is no conventional

way of differentiating scale and crossover GEI QTL, studies have used

different methods, for example, comparing variance (Lacaze et al.

2009). We categorized the GEI QTL in the three classes on the basis

of non-overlapping 6 1 SE. By mapping GEI between pairwise com-

parisons of growth media, three classes of GEI QTL were identified.

The first was scale effect interactions, which occur when a single-

environment QTL contributes to variation in both environments

but with different magnitude. For example, a chrXIV QTL affected

doubling time in both lactose and glucose but the polymorphism

resulted in a larger growth rate difference in lactose (Figure 2A).

Second was the environment-specific QTL, which contribute to

Figure 2 Reaction norms of three classes of GEI QTL. (A) Scale effect GEI
QTL: mean doubling time for segregants grown in glucose and lactose,
carryingeitherS (blue)orY (red)alleleatchrXIV(468,490)markerposition. (B)
Environment-specific GEI QTL: mean doubling time for segregants grown
in glucose and maltose, carrying either S (blue) or Y (red) allele at chrVII
(1,069,012)markerposition. (C)CrossovereffectGEIQTL:meanmaxODfor
segregants grown in lactose and ethanol, carrying either S (blue) or Y (red)
allele at chrII(708,904) marker position. Error bars indicate6 1 SE.
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growth in only one of the two media (to the limit of our mapping

resolution), for example, the maltose-specific chrVII QTL affecting

doubling time (Figure 2B). Third was the crossover effect QTL, where

the parental alleles have effects in opposite directions on the growth

parameters in the two environments, for example, a chrII QTL affect-

ing maxOD in lactose and ethanol (Figure 2C). Most of these GEI

QTL were either antagonistic or present only in one environment. We

identified nine novel QTL, out of which seven were antagonistic.

There were two scale effect GEI QTL for doubling time between

lactose and glucose [chrXIV(468,480)] and ethanol and glucose

[chrXIV(465,189)] (Table 2, Figure S2).

Some of these QTL were below the genome-wide significance

threshold in each individual environment but were identified as

genome-wide significant GEI QTL when their effects between environ-

ments were considered. Thus, the set of significant GEI QTL identified

by this study not only included QTL identified in either of the

conditions independently but also included several that were not

identified in independent mapping (Table 2).

Epistatic interactions contributing to yeast
growth plasticity

We computed the broad-sense heritability for each phenotype and

found that, in many cases, this exceeded the component of phenotypic

variance attributable to individual QTL (Table S2 and Table S3).

Hence, the independent effect of QTL may not fully explain the her-

itable phenotypic variance observed in the segregants. Furthermore,

large-effect QTL may have their effect mediated through interactions

with QTL of small individual effect. To investigate this possibility, we

performed a two-QTL interaction analysis to identify interacting

alleles contributing to growth variation. Previously, it has been shown

that if neither of the parental strains shows an independent QTL effect,

then two-QTL interactions in their segregants are rare (Bloom et al.

2013). Due to multiple testing for large number of markers in the

whole genome, large sample sizes are needed for adequate power of

identifying two-QTL interactions. To alleviate this problem in our

relatively small sample size, a subset of markers, selected as described

below, was analyzed for potential two-QTL interactions. A caveat of

using a subset for epistasis mapping was that it is possible that an

interaction may not be finely mapped because the marker could be in

partial linkage with the causal locus.

To increase our initial sets of loci for the interaction scan and

thereby increase our sensitivity in detecting interactions, the LOD score

cutoff was lowered. Hence, we considered as candidate locus for the

interaction scan any locus with a LOD score larger than the smaller

maximum genome-wide LOD score obtained in the 1000 random

permutations. We also considered candidate loci with evidence for

a GEI QTL (P , 0.5 across 100 permutations). This analysis showed

that QTL of weak independent effect (i.e., those that do not pass

a stringent genome-wide significance threshold) combined with GEI

QTL can be involved in statistically significant two-QTL interactions

(Table 1, Figure 3, A and B, Figure S3). For QTL involved in the same

pathway, the variation in phenotype due to a polymorphism at one

locus depends on the phenotypic direction of the allele at the second

locus. The probability of this will depend on the effect size of the

second locus. To identify such epistatic interactions, we conducted

a targeted scan where we identified interactions among a large-effect

Figure 3 Scatter plots for growth
parameters in sucrose showing two-
QTL and three-QTL interactions. (A, B)
Two-QTL scatter plots for chrV
(371,899) and chrXV(473,018) for dou-
bling time and maxOD, respectively.
The QTL are indicated as chromo-
some number followed by marker
position in bp within brackets. The x-
axis indicates biallelic marker geno-
type in the QTL order written above
the plots. (C) A three-QTL scatter plot
for chrV(525,070), chrXV(473,018), and
chrV(371,899) for maxOD. The QTL
are indicated as chromosome number
followed by marker position in bp
within brackets. The x-axis indicates
triallelic marker genotype in the QTL
order written above the plot. The
color of error bars (6 1 SE) indicates
allele of chrV(525,070) marker with S
allele (blue) and Y allele (red).
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QTL and small-effect single or GEI QTL. We chose the following

large-effect QTL from both the parameters: chrII(558,465), chrVII

(1,069,000), and chrXIV(467,221) from doubling time and chrV

(371,899), chrV(525,070), and chrVII(1,069,012) frommaxOD (Table

1 and File S2). In addition to previously mapped two-QTL interac-

tions, this approach identified novel interactions (Table 1).

Analogous to the results of QTL mapping, no overlap was ob-

served in two-QTL interactions across growth parameters except for

two interactions, namely, chrI(33,865)-chrV(377,186) in glucose and

chrV(371,899)-chrXV(473,018) in sucrose, which were identified for

both doubling time and maxOD (Table 1). Thus, most of the potential

epistatic interactions were both growth parameter–specific and envi-

ronment-specific.

However, it is very likely that a gross phenotype like growth is

regulated by interactions among more than two QTL. It is challenging,

both experimentally and computationally, to identify such genetic

interactions. A targeted three-QTL analysis was performed where we

searched for interactions between large-effect QTL (see above) and

QTL involved in two-QTL interactions (Table 1).

DISCUSSION
Although rich conditions result in high growth, mild stress results in

increased survival (Lin et al. 2002). Depending on the evolutionary

pressures in the environment, either high growth (in conditions of

competition between species and strains) or longer survival (in scarce

conditions) could contribute to fitness. In growth itself, trade-offs

between growth rate and growth efficiency have been extensively dis-

cussed (Maclean 2008). Hence, environment-dependent growth plas-

ticity, especially for a sessile organism like yeast, would aid in

maintenance of optimum fitness. For yeast, the availability and utili-

zation of carbon sources affect every aspect of growth (Broach 2012),

and many genes are known to respond to a change in the type and

level of carbon sources (Daran-Lapujade et al. 2004; Wu et al. 2004).

Attempts have been made to identify loci contributing to variation in

yeast growth under different environmental conditions (Cubillos et al.

2011; Bloom et al. 2013). However, the mechanisms by which genetic

interactions affecting different aspects of yeast growth are modulated

by the nature of available carbon sources in a growth medium are not

well-understood.

In the present study, we mapped variation in phenotypic plasticity

across various carbon sources for a large number of segregants of

yeast, and performed a genome-wide single-environment QTL analysis

as well as focused multi-QTL interaction analyses for doubling time

and maxOD (Table 1). A number of loci associated with carbon-

source–dependent phenotypic plasticity for the two growth parameters

were mapped (Table 2). This plasticity variation was attributable to

different sets of GEI QTL for growth rate and for biomass. Using our

targeted approach, multi-QTL interactions involving known and novel

loci contributing to variation in growth were identified.

We identified large-effect QTL independently in each environment

for both of the growth parameters. GEI mapping was performed to

identify small-effect QTL that contributed to growth plasticity across

Figure 4 Environment-specific interactions of chrVa [indicated as chrV(371,889) in the main text] QTL. (A, B) Two-QTL and three-QTL interactions,
respectively, for doubling time. (C, D) Two-QTL and three-QTL interactions, respectively, for maxOD. Environment is indicated on the interaction
line. For QTL on the same chromosome, two genetically distant markers are indicated as (a) and (b). The marker positions, LOD scores, and P

values for each interaction are given in Table 1.
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pairs of environments. This mapping identified alleles that acted

antagonistically across pairs of environments. Such crossover inter-

actions might occur when one allele is sensitive to an environmental

variable and the other shows a resilient phenotype in the same

environment. Alternatively, the parental strains might be oppositely

adapted to different environmental conditions at these loci. For

example, glycerol and ethanol, both non-fermentable carbon sources,

have a low correlation for maxOD (0.11) compared to doubling time

(0.58) (Table S1). Although no GEI QTL were identified between

them for doubling time, three crossover GEI QTL were identified

between them (Table 2) for maxOD, suggesting that not only different

but also antagonistically acting genetic loci regulate growth in them.

In this study, a two-QTL analysis identified epistatic interactions of

known QTL contributing to variation as well as novel epistatic

interactions among QTL, which did not have an independent effect as

single-environment QTL. Similarly, for many conditions in which

single-environment QTL mapping did not identify any loci, epistatic

interactions between QTL were observed, suggesting that environ-

ment-specific epistatic interactions contribute to differential growth of

a population in different media. We identified an interaction between

Y allele of chrV(371,899) and S allele of chrXV(473,018), which

resulted in increased doubling time and decreased maxOD in sucrose

(Figure 3, A and B). A three-QTL interaction analysis among these

two markers and an additional marker chrV(525,070) for sucrose

maxOD suggested that such a two-QTL interaction exists only in

presence of Y allele of chrV(525,070) (Figure 3C). However, such

a three-QTL interaction was not significant for doubling time. These

results suggested that varying degrees of genetic interactions regulate

yeast growth plasticity.

The chrV(371,899) QTL, which had an independent effect only in

fructose maxOD, modulated growth variation in different environ-

ments (fructose, glucose, maltose, sucrose, and glycerol) through

growth parameter–specific epistatic interactions (Figure 4). These ge-

netic interactions were identified through a targeted two-QTL (Figure

S3) and three-QTL (Figure S4) analysis for both the growth param-

eters. This suggested that such mechanisms exist by which some loci

[e.g., chrV(371,899)] regulate growth plasticity in different environ-

ments through varied sets of genetic interactions.

Yeast growth is a complex phenotype, with multiple QTL con-

tributing to the various growth parameters (biomass and growth rate)

across different carbon sources. The yeast strains in this study dem-

onstrate phenotypic plasticity across these carbon sources, as well as

a large variation in this phenotypic plasticity. The presence of QTL–

environment interactions and environment-specific multi-QTL inter-

actions contribute to this variation in plasticity. Furthermore, these

interactions are parameter-specific, suggesting that yeast has the abil-

ity to modulate different aspects of growth independently to maximize

its fitness across varied environments. Such targeted studies of genetic

interactions can help uncover the genetic factors driving the environ-

mental regulation of complex traits.
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