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Abstract. This paper presents a survey of Simultaneous Localization And Mapping
(SLAM) algorithms for unmanned ground robots. SLAM is the process of creating a
map of the environment, sometimes unknown a priori, while at the same time local-
izing the robot in the same map. The map could be one of different types i.e. metrical,
topological, hybrid or semantic. In this paper, the classification of algorithms is done
in three classes: (i) Metric map generating approaches, (ii) Qualitative map generating
approaches, and (iii) Hybrid map generating approaches. SLAM algorithms for both
static and dynamic environments have been surveyed. The algorithms in each class
are further divided based on the techniques used. The survey in this paper presents the
current state-of-the-art methods, including important landmark works reported in the
literature.
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1. Introduction

An autonomous mobile robot has the capability to perform a class of pre-designated tasks on
its own. Autonomy is desirable across various functionality levels. It is necessary for processing
sensor data to get information of the environment, to formulate its plan to achieve the given goals,
to plan a path for movement to a designated location, to allow the robot to update itself con-
tinuously to incorporate observed changes in its plans, etc. Among these activities, autonomous
movement is very important for mobile autonomous behaviours. A robot has to reach the desired
location before performing any activity there. Planning to move to a specific location involves
the following three activities: (i) path planning, (ii) localization and (iii) mapping.

Localization is the problem of estimating the pose of the robot relative to a map. Proper
localization allows a robot to verify its current status w.r.t. the movement plan. This is needed
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because relying purely on odometry is fraught with errors. For example, in case of wheeled
robots, odometry fails to capture slippages of wheels. A Global Positioning System (GPS) sensor
can also be used for localization, but it could have errors in order of meters. The use of a Bayesian
filter e.g. Kalman Filter (Kalman 1960) and its variants, and Particle Filters (Doucet et al 2001)
for combining the output of the GPS sensor along with the inertial navigational system (INS)
and odometry, provides a good hybrid mechanism for estimating the location of the robot with
minimal errors.

Mapping is the process of creating a spatial model of the environment. Once the robot has
acquired a map of the environment, it updates new observations in the map w.r.t. its current
location. But since the robot also uses this map to obtain its location, and localization is error-
prone, the resulting map could also have errors. Thus simultaneous localization and mapping
(SLAM) (Bailey et al 2000) becomes a chicken-and-egg problem. In the literature, the concurrent
execution of these two tasks has also been known as concurrent mapping and localization (CML).
However, SLAM is now a more popular and a standard term.

Figure 1 depicts the interaction between these three tasks a robot needs to solve for autono-
mous movement. Autonomous navigation demands simultaneous planning, localization and
mapping (SPLAM). For path planning, a robot should know what its location is and should have
access to a map of the environment. Hence, SLAM is fundamental for autonomous navigation
(Dhiman et al 2012) in an unknown environment.

To perceive the environment, a robot should have adequate sensors and the capability to pro-
cess sensor data. Like any other physical system, these sensors are also prone to noise which
leads to uncertainties at various decision points. Errors in measurements due to noise are not
statistically independent; errors keep adding up as the number of measurements increase. This
leads to the correspondence problem or the data association problem. The problem lies in deter-
mining whether measurements taken at different times are of the same physical place or object
in the environment. The correspondence problem can also arise because of perceptual similari-
ties because of repetitive patterns in the environment, partial visibility of the scene because of
occlusions or limited range of the sensor, the change in the dynamic environment over time, etc.
It can also be a result of the uncertainties introduced while processing sensor data. The corre-
spondence problem can lead to loop-closure problems, wherein the robot is unable to recognize
that it is passing through an earlier visited place, and thus moving on a loop.

This paper presents a survey of algorithms and technologies for localization and mapping.
This paper is an extension of our earlier work (Dhiman et al 2012). Most of the state-of-the-art

Figure 1. Tasks to be solved by robot for autonomous behaviour (Stachniss 2009; Makarenko et al 2002).
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SLAM approaches assume a static environment. In a static environment, nothing changes in the
world when the robot is operating. SLAM is considered as a solved problem for static envi-
ronments. For any real world operations, environment is always dynamic. For SLAM in any
dynamic environment, the challenge is to keep track of moving and potentially movable entities,
and to decide whether to consider such entities for SLAM or not. In the following section, a
classification of the various approaches for solving the SLAM problem is presented. The section
also provides the roadmap to the rest of the paper in the context of this classification.

2. Classification of SLAM techniques

The output of a SLAM algorithm is a map and the location of the robot in the same map. The
map could be metrical, topological, hybrid or semantic.

A metrical map can represent the environment as a grid map or a feature map or a geomet-
ric map (Stachniss 2009). A landmark map represents the environment by specifying the exact
metric position of the relevant landmarks, features, etc. The features are encoded w.r.t. a single
metric frame of reference. The choice of features to use is influenced by the choice of sensors
used. Typically, features such as corners or lines are used for range sensors. More complex fea-
tures such as FLIRT (Fast Laser Interest Region Transform) (Tipaldi & Arras 2010) are also
being used. In the case of vision sensors, SIFT (Lowe 2004), SURF (Bay et al 2008), Bag of
Words methodologies (Cummins & Newman 2008), etc. have been used. In other applications it
could be observed radio signal strength (Kleiner et al 2007; Huang et al 2011). In some appli-
cation environments, such as mines and disaster areas (Kleiner et al 2007), the contamination
of the environment with artificial landmarks such as RFID may be allowed. The use of such
artificial landmarks can ease the burden of solving the correspondence problem in the mapping
process (Forster et al 2013). An example of landmark based map is shown as figure 2a. A grid
represents the environment as a grid of equal size cells. Each grid-cell is a representative sample
of the environment. The most used value for the grid cell is the probability of the cell being
occupied by an obstacle (Stachniss 2009). Such volumetric grid maps are also called occupancy

grid maps. An example of occupancy grid map is shown as figure 2b. A geometric metrical map
represents the environmental obstacles as geometric shapes e.g. circle and ellipse. The geometric

Figure 2. Example of metrical maps. (a) The output of g2o (generalized graph optimization)
(Kümmerle et al 2011) algorithm on Victoria Park data set. (b) The output of DP-SLAM (Eliazar & and Parr
2003) on Wean Hall data set. In this figure, black, gray and white colours represent obstacles, traversable
area and unexplored area respectively.
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map only models the obstacles in the environment, thus it needs less memory for storage. On
the other hand, volumetric maps require a lot of memory storage. Also, the accuracy of volumet-
ric maps depends on the discretization resolution as instantiated by the size of the grid-cell. The
advantage of using grid based maps is that a constant time access to the environment is possible.

A topological map describes the environment as a graph. The nodes in the graph represent
locations, objects of interest, etc. The edges express the relationship between nodes which maybe
topological (left, right, front, etc.), mereological (part-of relationships) or just representing con-
nectivity. An example of this kind of map is the Metro-rail line link maps or subway-maps. Such
maps tell a user at which station one metro rail line meets another metro rail line, to which other
stations is a particular station is directly connected to, etc. A second example is a topological map
of rooms in a building where each node is a room and edge defines the adjacency. Topological
maps do not provide metrical information. These are usually more compact than metrical maps,
and thus require much lesser memory for storage. An example of a topological map is shown in
figure 3a. In this example, the nodes (red circles) in the map represent the distinct places in the
map and the edges (dashed red lines) in the map represent the connectivity among the nodes.
Topological maps are useful for high level planning activities where the metrical information is
not required. For example, output of such a planning task, evolved based on a topological map
could be ‘stay to the left of point A and move along the edge connecting point B and point C’.

A hybrid map consists of both topological and metrical knowledge. For example, some met-
rical maps are connected via a topological relationship. Each node in hybrid map can be either a
small metric map or contain some qualitative information about some place or both. The advan-
tage of hybrid maps is that depending on the usage, information at different granularity levels
can be accessed. An example of a hybrid map is shown in figure 3b.

Semantic maps provide semantic information associated with the elements of the map e.g.

labelling of objects like cup, saucer, bottle, table, building, lamp-post and tree, information about
relationship between objects, properties of objects like colour, etc. The advantage of semantic
maps is that they allow interaction with the robot at a conceptual level. For example, with the
availability of a semantic map, a command to the robot could be, ‘take the second left turn after
the green building’.

Various other classifications (Thrun & Leonard 2008) of SLAM are: (i) full SLAM vs online
SLAM, (ii) any-time SLAM vs any-space SLAM, (iii) active SLAM vs passive SLAM, (iv)
offline SLAM vs online SLAM. A full SLAM estimates the map and the entire path traversed by
the robot on this estimated map. Online SLAM algorithms estimate the most recent pose of the
robot in the context of the estimated map. While both online SLAM and full SLAM algorithms
estimate the map, online SLAM algorithms estimate only the current pose of the robot w.r.t. the
map estimated, on the other hand full SLAM algorithms estimate the full trajectory traversed
by the robot based on the history of the robot poses. In Active SLAM, the robot drives itself
autonomously, in an exploratory manner, to acquire data of the environment, while in Passive
SLAM the robot is manually driven around. Any-time and any-space algorithms can operate
in resource-constraint robots, and depending on resource availability can demostrate graceful
degradation in the output. Any-space SLAM algorithms will work irrespective of the available
memory size. Any-time SLAM algorithms will return the best possible map that can be generated
based on the sensor observations in a specified amount of time. A mapping approach may be
offline or online. In online mapping approaches, the sensor data is included for map generation as
soon as it is observed. For fast responses in real environments, it is desired that the existing map
is augmented with the latest observed data rather than creating the map again from scratch. The
updated map is used for all future purposes by the robot. In the offline mapping approaches, as a
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Figure 3. (a) An example of topological map (Tapus 2005). Red circles are nodes in the map. Edges are
represented as dashed red lines, depicting the connectivity among nodes. A topological map is overlaid
over a metric map for ease of visualization. (b) an hybrid map (Marder-Eppstein et al 2011). Each node
in topological map is an occupancy grid map. Each node is shown as green square. The square grid with
obstacle information is the current active grid. The graphical map is shown in purple colour. An open-
source implementation for this algorithm is available as a package named topological_navigation with
Robot Operating System (ROS) (ROS 2014).

first step, all the data is collected. The robot is tele-operated or moved through some pre-planned
path. Consequent to data acquisition, the complete dataset is processed in the batch mode.

SLAM using vision sensor is known as Visual SLAM (VSLAM). VSLAM is a problem iden-
tical to Structure from Motion (SfM) and Bundle Adjustment (BA). An environment can be
represented as a collection of observations from a vision sensor i.e. a set of images. An image
can be represented as a collection of visual features. There is a high probability that many images
in this set have common environment observations, and hence common features. Therefore, the
collection of these visual features in the set of images provides an abstract representation of the
environment. VSLAM aims to estimate the correct 3D location of these features, along the loca-
tion of the camera from where the images are captured. SfM is essentially the same task. SfM
is an offline activity and a batch-operation is executed on the given collection of images. Real-
time SfM is VSLAM. VSLAM may have access to more information than SfM as the robot’s
wheel odometry may be available. This will provide some estimate of the camera position to
the VSLAM algorithm. Bundle Adjustment is a batch optimization procedure on the stream of
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Figure 4. The classification hierarchy of the SLAM approaches presented in this paper.

selected images. The aim of BA is to find 3D coordinates of each point feature along with relative
motion between images and the characteristics of the camera from which images are captured.
VSLAM, SfM and BA refer to the same problem. A recent survey on SLAM techniques using
vision sensors is presented in (Fuentes-Pacheoco et al 2012). Similary, a recent survey on SLAM
techniques using vision sensors for driverless cars is presented in (Ros et al 2012). Hence, this
paper does not cover SLAM methods specific to vision sensors in detail.

A number of surveys and tutorials have been presented. Thrun (2002b) has presented a survey
on initial SLAM techniques. A tutorial on SLAM and its aspects is presented by Durrant-Whyte
& Bailey (2006) & Bailey & Durrant-Whyte (2006). This paper focuses on the general meth-
ods and state-of-the-art techniques for SLAM. This paper also does not cover semantic maps.
Figure 4 summarizes the classification presented in this paper. The following sections describe
various map generating approaches. SLAM algorithms for metric, topological and hybrid maps
are discussed in Sections 3, 4 and 5 respectively. In Section 6, SLAM algorithms for dynamic
environments are presented based on the type of dynamic objects. High dynamic objects are
entities which move frequently and should not be part of the map e.g. cars and moving peo-
ple. These objects should be identified and removed during the mapping process. Low dynamic
objects are entities which should be part of the map and can help the robot in localization. Such
objects move with low frequency or are so slow that their movement is invisible to the robot e.g.

door (open or closed), furniture, and items stored in a warehouse.

3. Metrical map generating approaches

Most of the state-of-the-art solutions for metrical maps are probabilistic in nature. They use
probabilistic models of the environment, the robot and its sensors. They rely on probabilistic
inferencing mechanisms for transforming the sensor outputs into the map. Probabilistic tech-
niques play an important role because they provide established methods for modelling sources
of noise and its effect on the model of the environment, and the robot pose. These approaches
mostly focus on feature-based map building and more effectively work for a small-scale space.
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As explained in Kuipers et al (2000), this paper distinguish between a large-scale space, with
spatial structure larger than the agent-sensory horizon, and a small-scale space, with structure
within the sensory horizon. The following subsection will discuss approaches based on Bayesian
Filters e.g. Kalman Filter (Kalman 1960) and its variants, Particle Filters (Doucet et al 2001),
Information Filters (Thrun et al 2006) and graph-based approaches.

3.1 Bayesian filter based approaches

The aim of the Bayesian filter based approach is to formulate the SLAM problem as a system
state estimation problem. Here, the system’s state refers to the robot’s pose(s) and location of
landmarks detected till the current time. Figure 5 represents a mobile robot moving through the
environment. We define the following quantities at time t to facilitate the discussion (Durrant-
Whyte & Bailey 2006):

– xt : the robot pose (the location and the orientation). x0 represent the starting position of the
robot.

– ut : the control vector applied at xt to reach xt+1.
– mk: the location of kth landmark.
– zk: a vector representing observations made by the robot at time t . An individual

observation i.e. an observation for landmark i, will be denoted as zit .
– X0:t = { x0, x1, ..., xt } = {X0:K−1, xk} represents the trajectory of the robot till time t .
– U0:t = {u1, u2, ..., ut } is set of all control inputs.
– m = {m1, m2, ..., mn} is the map, the set of all landmarks’ positions.
– Z0:t = {z1, z2, ..., zt } is the set of all observations.

In probabilistic formulation of SLAM, the following probability distribution is required to be
computed at time t

– For online SLAM: P(xt , m|Z0:t , U0:t , x0)

– For full SLAM: P(X0:t , m|Z0:t , U0:t , x0)

Figure 5. Graphical model for Online SLAM. The robot moves from xt−1 to xt using motion command
ut−1. At xt−1 position, the robot observes the zt−1 landmarks.
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Using Bayesian filters, estimation of these probabilities can be implemented as a two step
recursive process, namely (i) Prediction step, (ii) Correction step. For online SLAM, the
Prediction step is

P(xt , m|Z0,t−1, U0:t , x0) =
∫

P(xt |xt−1, ut ) ∗ P(xt−1, m|Z0:t−1, U0:t−1, x0)dxt−1 (1)

and the Correction step is

P(xt , m|Z0:t , U0:t , x0) =
P(zt |xt , m)P (xt−1, m|Z0:t−1, U0:t−1, x0)

P (zt |Z0:t−1, U0:t−1)
. (2)

The correction step introduces the measurements into our estimates from the previous step,
thereby improving them. P(xt |xt−1, ut ) is the motion model of the robot. It estimates the prob-
ability distribution of the vehicle location on moving with motion command ut . P(zt |xt , m) is a
measurement model which describes the probability of making an observation zt given a loca-
tion and a map of the surroundings. These steps can be implemented using a number of Bayesian
filters which are explained in subsequent sub-sections.

3.1a Kalman filter: For any real life scenarios, both motion model and measurement model
are non-linear in nature. Kalman Filter based approaches like EKF-SLAM (Guivant & Nebot
2001; Thrun et al 2006) linearise the motion model and the measurement model of the robot for
prediction, and update equations to adapt the SLAM problem to EKF-filter equations. This lin-
earization is carried out using first order Taylor’s series expansion. As new terrain is explored,
the number of features/landmarks in the environment increases. This results in an increase in
the size of the state vector and the covariance matrix. Since EKF equations involve matrix oper-
ations including matrix inversion, the increase in the size of the covariance matrix leads to a
prohibitive increase in the computation cost. The cost of updating a full stochastic map of N

landmarks is O(N2) (Motalier & Chatila 1989). This makes such approaches unemployable for
online operations for large areas. The other major problem is filter inconsistency. In particu-
lar, when the robot’s orientation uncertainty is large, the extent of inconsistency is significant.
This is because of imperfect linearization of the robot-motion model and the robot-measurement
model (Castellanos & Neira 2004; Bailey et al 2006). As the filter diverges, uncertainty in esti-
mations increases, and this results in improper loop closures. EKF-SLAM is also very fragile to
incorrect data associations as there is no provision in EKF-SLAM to undo any committed data
association. EKF-SLAM uses maximum likelihood data association. An incorrect data associa-
tion leads to certain failure. EKF-SLAM approaches assume Gaussian noise models, which may
not be true. Another problem with EKF is its inability to incorporate negative information (Thrun
2002a). For example, absence of an expected observation of a landmark represents the negative
information. The use of negative information avoids false positives in data association.

MonoSLAM (Davison et al 2007) algorithm presents a method for doing SLAM using a
monocular camera at real time (30Hz). This algorithm works best for room size feature rich
environments. MonoSLAM generates a probabilistic feature based map of current estimates of
feature locations and camera position using Extended Kalman Filter. The algorithm is aided
by initializing it with the position of a known target. This helps MonoSLAM in estimating the
correct scale of operation as a single camera cannot estimate depth information. As the camera
moves, active search for features is carried out for existing features and new features. The state
vector is updated accordingly. An open-source implementation of this work is available on the
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author’s website (Davison ). In Strassdat et al (2012), authors have provided an analysis of
filtering methods for visual SLAM.

One cause of error in EKF based solutions is linearization via Taylor’s series expansion.
Unscented Kalman Filter (UKF) (Thrun et al 2006) overcomes this via use of unscented trans-
form, resulting in an equal or better result than provided by EKF based solutions. A set of points,
called sigma points, are selected deterministically. These points are passed through non-linear
motion and measurement models and the resulting mapping of these points is represented as a
Gaussian. The UKF algorithm calculates without the use of any Jacobian, hence it is also known
as a derivative free method. The unscented transform is equivalent to computing the first two
terms in Taylor’s expansion while EKF uses only the first term in Taylor’s expansion. Thus, UKF
provides better results for non-linear systems, but is slightly slower than EKF. UKF is much
more suited for estimation of approximate Gaussian probability distribution (Thrun et al 2006).

3.1b Information filters: The efforts to reduce increased complexity either focus on (i) achiev-
ing approximate/sub-optimal solutions (Thrun et al 2004; Walter et al 2007) or (ii) they result
in exact maps with a large reduction in cost as a result of delays in the global map upda-
tions (Guivant & Nebot 2001; Tardos et al 2002; Castellanos et al 2007), but still are of O(n2)

complexity.
The information filter based method falls in the first category. The information filter (IF) is the

dual of the Kalman filter (Thrun et al 2006). IF represents the Gaussian in a canonical represen-
tation i.e. using an information matrix � and an information vector ξ . Let μ and � be the mean
vector and covariance matrix of the Gaussian distribution. The following relation holds

� = �−1 and μ = �.ξ = �−1.ξ. (3)

IF has much simpler update steps because of the canonical representation. The information
matrix represents constraints between relative locations of a pair of features in the map. The
strength of each link is related to the distance of the corresponding features. The more distance
apart two features are, weaker is the link (Thrun et al 2006). Most features are connected to
a small number of other features. Thus, most of the entries in the information matrix are rela-
tively very small i.e. very close to zero, which can be neglected. The resulting approximation is
a sparse information matrix. Memory required for storing a sparse information matrix is linear
in the number of features. Because of the sparse nature of the information matrix, by use of effi-
cient data structures and algorithms, computation efficiencies can be improved. Sparse Extended
Information Filter (SEIF) based algorithms (Thrun et al 2004; Walter et al 2005) reduce the com-
plexity of the algorithm using the key idea that maintains the sparsity of the information matrix
by removing the weak robot-landmark constraints. SEIF provides efficient but approximate or
suboptimal solutions.

All landmarks can be classified as either active, denoted as, m+ or passive, denoted as, m−.
The active landmarks are the ones which are currently being observed by the robot. During fil-
ter update via motion model, the filter introduces new links between the active landmarks and
weak links between the robot pose and the active landmarks. SEIF (Thrun et al 2004; Eustice
et al 2005) maintains the sparsity in the information matrix by removing weak links between the
robot pose and active landmarks. This can be achieved by reducing the number of active land-
marks at any time. As a result, a sparsification sub-step is executed in the filter update step. The
sparsification step removes the links between the robot’s pose and the subset of active landmarks,
denoted as, m0 which become passive in the sparsification step. This sparsification is equivalent
to a conditional independence of the robot’s pose from the m0 landmarks given the active (m+)
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and passive (m−) landmarks. The time required for all the update steps is independent of the
size of the map for known data association and logarithmic for unknown data association (Thrun
et al 2006. Thus, SEIF is computationally efficient and can be employed as an online algorithm.
The extraction of the mean vector μ is performed using efficient optimization techniques e.g.

coordinate descent. It is faster than the EKF based solution. The quality of the map depends on
the approximation involved in the sparsification and how accurately μ is computed. Improper
sparsification could lead to filter divergence and to incorrect data associations.

Decouple SLAM (D-SLAM) (Wang et al 2007a) reduces the computational burden of filtering
approaches by decoupling mapping and localization tasks of SLAM. SLAM problem is refor-
mulated as consisting to two concurrent but separate processes: (i) non-linear static estimation
problem for mapping and (ii) low-dimensional dynamic estimation problem for localization. The
state vector is transformed and consists of two parts: part p1 consists of distances and angles
among the features, part p2 consists of distance and angles between features and the robot pose.
D-SLAM assumes that at each observation, the robot observes atleast two landmarks f1 and
f2 which have previously been observed as well. All distances to observed landmarks are com-
puted from this previously observed first feature f1. All angles are measured w.r.t. f1 and f2.
This way, all observations are represented relative to two previously observed landmarks. The
mapping process is formulated using Extended Information Filter. For large environments, a sig-
nificant portion of the environment remains unobserved. Thus, the information matrix largely
remains sparse. Localization is achieved by combining the EKF-based local SLAM approach
with the map input from the mapping task of D-SLAM. The information matrix in D-SLAM
remains sparse. This eliminates the need of the sparsification step as in SEIF (Thrun et al 2004).
The recovery of feature location estimates and respective covariances is performed using Pre-
conditioned Conjugate Gradient method. The feature estimates can be achieved in O(N) time,
where N is the number of features. Since information about robot poses and their relation with
features is not used in the mapping task, this leads to information loss in mapping. An extension
to D-SLAM (Wang et al 2006) uses absolute feature location rather than relative location.

Exactly Sparse Extended Information Filter (ESEIF) (Walter et al 2005) maintains robot pose
as part of the state vector. ESEIF is different from D-SLAM in the manner in which the sparsity
of the information matrix is achieved. In D-SLAM, sparsity is achieved as a consequence of
formulation of a separate mapping task. ESEIF imposes sparsity by performing updates on the
information matrix by periodic solving for ‘kidnapping robot and relocating problem’. In the
robot kidnapping problem, the robot is picked from one place and placed in some other place.
During this movement, the robot is not able to observe the environment. Hence, the robot is not
aware of its relocation. Such scenario arises in some operations, where the robot is switched off
at the current place and switched on again at some other place, by physically moving the robot,
for restarting the operations.

3.1c Particle filters: All above approaches assume the probability distribution to be unimodal
Guassian. Particle Filter (PF) (Doucet et al 2001) based approaches overcome the limitation
of representation for non-Gaussian probability distribution characterized by data association
problems. PFs are non-parametric recursive Bayes filters. A particle filter represents a proba-
bility distribution as a collection of weighted random samples. This allows PF to represent any
arbitrary distribution. Different particles can represent different data association hypotheses. A
Particle filter recursively performs the following three steps:

(i) Sampling: In this step, the filter generates a set of samples, called particles, to represent
the distribution from a proposal distribution. Each particle represents a candidate solution.
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More the proposal distribution is near to the actual distribution, earlier the filter converges
i.e. the filter reaches a correct stable state.

(ii) Weighting: An importance weight is assigned to each particle. A particle with higher weight
represents a better quality solution.

(iii) Resampling: This step selects a subset of samples according to the individual weight of the
sample. Low weight particles represent unlikely or low quality solutions. Such particles are
liable for rejection or replacement by higher weight samples in this step. It guides the filter
to an optimal representation of the distribution.

PF are examples of a sequential Markov Chain Monte Carlo sampling approach, namely,
sequential importance resampling.

Particle filter (Thrun 2002a) based SLAM approaches try to examine a huge number of
hypotheses as samples of a probability distribution over the space of maps. Each particle rep-
resents a hypothesis. This allows for representation on non-Gaussian probability distribution.
These approaches may not always identify a unique correct solution and might end up with an
approximation of the environment. Particle filter based approaches do not make any assumption
about the nature of noise in the system and the environment. The Particle filter based approaches
require O(MN) time, where M is the number of particle and N is the number of landmarks.
Negative information can be incorporated by reducing the weight of the sample. Hence, these
are better than Kalman Filter based approaches that assume the noise to be Gaussian.

Fast-SLAM (Montemerlo et al 2002; Montremerlo et al 2003) uses the Rao-Blackwellised
particle filter (Doucet et al 2000) approach. The assumption is that given the correct location of
the robot poses, measurements are independent of each other. SLAM problem is factored as a
localization problem and N independent landmark identification problem (Murphy 1999).

P(X1:t , m|Z0:t , U0:t , x0) = P(X1:t |Z0t , U0:t , x0).P (m|X0:t , Z1:t ). (4)

In FastSLAM, the robot trajectory is represented as weighted samples and the position of each
landmark is represented as an independent Gaussian. While sequential important sampling is
used for estimating robot poses, an EKF based approach is used for updation of each landmark
given the robot pose. FastSLAM maintains a tree for data association, hence reducing complexity
to O(M log(N)).

The problem with particle filter based approaches is how to maintain diversity (after resam-
pling) in minimal size set of particles to cover the complete probability distribution. As the robot
explores a larger environment, more number of particles are required. This lead to an increase in
computational load. The challenge is to reduce the number of particles required. In Grisetti et al

(2007) & Stachniss (2009), authors provide an empirical measure to determine when to resample.
This measure is based on weights of the samples. The intuition is that as samples become more
true to target distribution, individual weights of samples tend to become equal. Thus, whenever
difference in the weight of the samples varies over a threshold, a resampling step is performed.
For grid maps, an improved proposal distribution is also explained. For accurate sensors, e.g.

LIDAR, observation likelihood is peaked. Usually the motion model is used as proposal distri-
bution. If the motion model is used as proposal distribution, its product with the observation
likelihood will also be peaked. For covering a peaked distribution, a dense spread of particles is
required. This will increase the computational burden. To reduce the number of required parti-
cles, an adaptive proposal distribution is centred around the maximum of likelihood function of
the scan-match procedure. A scan-match procedure matches the current scan with another scan
in the history to estimate the overlap between these two scans. A larger overlap is indicated by



1396 Nitin Kumar Dhiman et al

a higher value of the maximum likelihood function. This method uses a Gaussian approximated
around the maximum likelihood region to draw samples. This method is suitable to generate
occupancy grid maps. Dieter Fox (Fox 2003) has presented an approach to adaptively bound
the number of particles required through KLD (Kullback-Leibler Divergence)-sampling. This
approach adapts the sample set size by computing KLD error between the sampled distribution
and a discrete distribution computed over the complete map. An open-source implementation
of Rao-Blackwellised Particle Filter based SLAM algorithm is available as a software package,
named GMapping, with the Robot Operating System (ROS) (ROS 2014). It has been extensively
used for generating occupancy grid maps for medium size environments.

Distributed Particle SLAM (DP-SLAM) (Eliazar & and Parr 2003) is a particle filter based
SLAM algorithm for use with LIDAR sensor. DP-SLAM does not make any assumption about
the landmarks. It uses particle filters to represent both the robot pose and the possible map.
For efficient storage and maintenance of grid maps, only one grid map is maintained for all
particles. Data structure used for storage of this single occupancy grid map is a matrix of grid
cells. Each cell is represented as a balanced tree, called as the observation tree. This storage
approach enables saving in memory requirements and time saving by avoiding copying of maps
during the resampling phase. Each particle is assigned a unique identification number, called as
ID. Whenever a particle makes an observation about a cell, it inserts its ID and the observation
data into the associated tree. Each particle behaves as if it maintains its own private map. An
ancestry tree is used to maintain the parentage history of each particle. All current particles are
leaves. Parent nodes in the ancestry tree are particles from the previous iteration. Updates to
the map are done using the ancestry tree. This ancestry tree allows the algorithm to maintain a
consistent grid map. DP-SLAM2.0 (Eliazar & Parr 2004) provides an improvement in storing
the probability of cell occupancy. DP-SLAM is an offline algorithm. The source code of this
algorithm is shared by the authors as website (Parr ). Figure 2b is generated using this code.

tinySLAM (Steux & Hamzaoui 2010) is a simple particle filter based algorithm which main-
tains a single map of the environment. It integrates the laser measurements into a map using
a particle filter based localization in the environment. It is very easy to implement but its
applicability is limited to small lab environments.

Range-only SLAM (RO-SLAM (Blanco et al 2008b)) is a probabilistic mapping approach
where the evironment is observable only via beacons. The location of each beacom is estimated
without any prior known information. A beacon could be an underwater beacon or wifi emitter. In
this approach, authors have assumed that the observing sensor is able to distinguish between dif-
ferent beacons. Hence, the data-association problem is not present. The probability distribution
of the location of each beacon is modelled as a sum of Gaussians. This probabilistic approach
provides a much better estimation than a unimodal representation. The inference is performed
using the Rao-Blackwellised Particle Filter. The location of each beacon is conditionally inde-
pendent of the location of any other beacon. This observation was used in formulation of the
inference algorithm. An open-source implementation of this algorithm is available at Mobile
Robotics Programming Toolkit (MRPT) (Blanco 2014).

OctoMap (Hornung et al 2013; Wurm et al 2010) is a 3D map generating algorithm which
uses an Octree representation for evolution of the map. An Octree is a hierarchical data struc-
ture for spatial subdivision of space in three dimensions. Each node represents a cubic volume,
usually called a voxel. Each voxel could be further divided into eight equal size sub-volumes.
A node in a octree is further divided, only if sensor data is available. Hence, this representation
scales well in any direction, and allows representation in full 3D. Each volume can represent
any property e.g. for a robotics application the representative property would be, occupancy of
that volume. The occupancy of voxels is modelled probabilistically. As each voxel could have
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Figure 6. Octomap (Hornung et al 2013; Wurm et al 2010) output for Frieberg Campus dataset (Wurm
et al 2010).

eight further divisions of its volume, it allows multi-resolution planning. This algorithm requires
a good estimate of the robot’s odometry for correct output of the map. Figure 6 shows the output
of OctoMap algorithm on Frieberg-Campus dataset. This is generated using dataset and software
available at author’s website (Wurm et al 2010). OctoMap algorithm maps both free cells and
occupied cells. In Figure 6, only the occupied cells are visualised. OctoMap algorithm is also
available as a ROS (ROS 2014) package for manipulation of the objects by a PR2 (ROS 2014)
robot.

Metrical map generating approaches discussed till now provide reliable localization in the
frame of reference of the local neighbourhoods. However, these solutions have not been able
to scale well to large-scale spaces because of computation costs and increased uncertainties
in estimation of robot pose and location of landmarks. Odometric errors add up as the robot
moves along long paths. Errors become more pronounced in environments with long paths
with less distinguished features and in complex environments. In particular, these methods fail
when the environment involves large loop closures. Feature Appearance Based Mapping (FAB-
MAP) (Cummins & Newman 2008) and approaches discussed in section 3.2 have overcome
these problems.

FAB-MAP (Cummins & Newman 2008) uses a probabilistic framework for a fast appearance
based mapping which has been able to overcome these problems. FAB-MAP uses visual vocab-
ulary i.e. images which encapsulate the visual features that are common in a particular type of
environment. It uses a bag of words (image vocabulary) approach in which positive or negative
observation of visual words in a scene is used to distinguish between a place already visited and
a new place. A generative model which captures the fact that certain combinations of appear-
ance words tend to co-occur, is learnt. Intuition is used to recognize the common objects in the
scene as they lead to common appearance words. FAB-MAP 2.0 (Cummins & Newman 2009)
has been demonstrated over a dataset that extends over a distance of about 1000 Km.

3.2 Graph-based SLAM approaches

The Graph-based SLAM (Thrun & Montemerlo 2006) approaches generate a network or graph
of constraints from the measurements. In this approach, information about the environment is
encoded as a graph of soft constraints. To obtain a refined map of the environment, these set of
constraints are globally optimized so that errors due to constraints are minimized. Lu & Milios
(1997) were the first to introduce this approach.
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Figure 7. Components of Graph-based SLAM approach (Sünderhauf 2012; Konolige et al 2010). SLAM
Front-end creates an abstract graph from sensor observations. SLAM Back-end optimizes the graph and
returns graph node locations.

In Graph-based SLAM approach, the problem is divided into two parts: (i) SLAM Front-end:
It is responsible for graph construction and (ii) SLAM Back-end: It is responsible for graph
optimization. Figure 7 shows the interaction between front-end and back-end. During execution
of the algorithm, front-end and back-end interact with each other. For online operations, these
two sub-problems need to be solved alternatively.

Section 3.2a presents a detailed analysis of SLAM front-end systems. Section 3.2b presents a
survey on SLAM back-end algorithms. Improvements to SLAM back-end systems are discussed
in 3.2c and 3.2d.

3.2a SLAM front-end algorithms: In SLAM front-end, a graph is constructed using the mea-
surements made by the sensors on the robot and robot motion details. The nodes in the graphs are
either robot poses or the landmarks in the map. An edge between two nodes represent the spatial
constraints between the two nodes. A constraint is the measurement of one node from the posi-
tion of the other node. The edge between two sequential robot poses xj and xj+1 corresponds
to a motion event. The spatial constraint for such edges is generated using odometry data. The
odometry data may be obtained using the wheel movement encoders or using the visual odome-
try (Geiger et al 2011), etc. The edge between nodes for robot pose xi and landmarks Li in the
environment is created by using measurements Zi made by robot at pose xi (Thrun et al 2006).
The set of landmarks Li are observed in measurements Zi . The notation is the same as described
in Section 3.1. For more information visual odometry, we refer readers to KITTI vision dataset’s
odometry evaluation webpage (Geiger et al 2014). This webpage provides a tabular comparision
of 34 odometry computation algorithms.

The front-end is heavily sensor dependent as it involves sensor-data interpretation to add edges
between nodes and landmarks. Data association is a challenging task and sensor specific solu-
tions are implemented. Olson (2008) presented a method based on spectral clustering for outlier
rejection during graph formulation. For effective data association, maximum likelihood solution,
statistical test such as Joint Compatibility Branch and Bound (JCBB) (Niera & Tardòs 2001) and
χ2 test have also been used.

The front-end could result in a very big resultant graph. Since the computation time needed by
the back-end non-linear optimization can grow as a cubic in the size of graph. Such large graph
can be bottle-necks. To overcome this, the graph is converted to a pose-graph by eliminating
nodes in the graph which correspond to the landmarks. A pose-graph is a graphical represen-
tation of the environment where all nodes in the graph refer to robot poses. The nodes, which
correspond to landmarks in the environment, are eliminated either by marginalization (Frank
Dellaert & Michael Kaess 2006; Thrun & Montemerlo 2006) or by directly matching the sensor
measurements (Thrun et al 2006). This leads to addition of constraints between pose nodes in the
graphs from which this landmark was observable (Thrun et al 2006) e.g. between robot pose xi
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and xj , |i − j | �= 1. The edge now represents a probability distribution over the relative location
of the two poses, conditioned on their mutual measurements (Grisetti et al 2010a). Such con-
straints are also known as loop-closure constraints. Loop closure constraints are derived using
various approaches which include laser scan matching (Olson 2009a) and appearance based
methods (Kon 2009; Olson 2009b; Cadena et al 2012; Galvez-Lopez & Tardos 2012).

RGB-D SLAM (Endres et al 2012) provides a front-end using the depth sensor e.g. Microsoft
Kinect. This algorithm generates a dense 3D model of the environment. Kinect sensor provides
a RGB image and a depth map for the same environment. In this four step approach (i) First,
visual features are extracted from images. Visual features may be SIFT, SURF or ORB, etc.
(ii) These are matched with visual features from previous images. (iii) For the matched visual
feature, depth value is read from the depth map. This provides a point-wise 3D correspondence
between any two frames. The relative SE3 transformation between these two frames is obtained
using the RANSAC algorithm. (iv) This processing between any two frames is encoded as a edge
in the pose graph. Each node represents a frame i.e. a sensor location. The edge between these
two nodes represents the relative transformation i.e. movement from one sensor location to next
location. The loop closure edges are generated by comparing the current frame to 20 previous
frame. These 20 frames consist of (i) three most recent frames and (ii) rest are uniform sampled
from the remaining frames.

This algorithm uses g2o (Kümmerle et al 2011) algorithm as a SLAM back-end algorithm,
which will be explained in the next section. After the optimization by SLAM back-end algorithm,
a global consistent trajectory of the sensor movement is obtained. It has been shown to be useful
for small indoor environments. This algorithm cannot function in outdoor sunny environment
because of the sensor involved. An open-source implementation of this algorithm is available at
author’s website and also as a software package for ROS (ROS 2014). OctoMap (Wurm et al

2010) is used for visualization of the algorithm’s results.
In Kerl et al (2013), authors have extended the previous approach (Endres et al 2012) to

achieve better accuracy by reducing photometric errors and depth errors in RGB-D sensor based
SLAM. In order to avoid accumulation of drift errors, key frames are selected from the input

Figure 8. (a) The input dataset named Bovisa04. Bovisa04 dataset is available in RAWSEEDS
(RAWSEEDS 2009). (b) The output of robust SLAM back-end algorithm RRR (Latif et al 2012a, 2013). It
is able to reject wrong loop closures. The source code of RRR algorithm and input dataset are taken from
author’s website (Latif 2014). (c) Output of plain SLAM back-end. This output is generated using imple-
mentation of Gauss–Newton algorithm in g2o (Kümmerle et al 2011) library. The source code of g2o is
available at author’s website (Kuemmerle 2014).
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stream of images. An entropy based method is implemented for this purpose. Incoming images
are compared to the recent most key frame. On selection of a new key frame, 3D transformation
w.r.t. previous key frame is computed using ICP. The loop closure constraints are computed
between key frames. An open source implementation of these algorithms is available as a tool
DVO (Kerl et al).

SLAM front-end approaches are not hundred percent accurate. A plain back-end SLAM algo-
rithm will get misguided by these front-end errors and can result in inaccurate maps. Figure 8a
shows a variant of Bovisa04 dataset in which false loop closures have been introduced. Figure 8c
shows the output of a plain back-end algorithm. It is not able to identify the prescence of out-
liers in the output of SLAM front-end and results in a wrong map. Figure 8b shows the output of
RRR, a robust SLAM back-end, algorithm. It detects the presence of wrong loop closures and do
not considers such edges during the optimization. In section 3.2c, we will discuss robust back-
end algorithms which can generate accurate results even in the presence of errors in the SLAM
front-end output. Section 3.2b introduces SLAM back-end algorithms.

3.2b SLAM back-end algorithms: A SLAM front-end converts the sensor observations into an
abstract graph. After construction of the graph, it is passed to the SLAM back-end. The back-
end optimizes the robot poses at nodes such that the configuration of the robot poses maximally
satisfy all the constraints i.e. the error introduced by the constraints is minimized and likelihood
of observations is maximized. The back-end approach is agnostic to sensors as it operates on
the abstract representation of the environment i.e. the graph. The constraints in the graph are
non-linear because rotations are involved in robot motion (Huang et al 2010b). The constraints
are linearized for purpose of optimization. During the non-linear optimization process, the pos-
terior probability distribution of poses and landmark location given measurements and motion
commands is converted into a system of linear equation. This is based on the assumption that
the outcome of the robot motion and the measurements are normally distributed (Thrun et al

2006) and the system has zero mean Gaussian noise models. A tutorial on this approach is
published by Giorgio et al (Grisetti et al 2010a). Once the correct robot poses are obtained, the
map of the environment can be generated by appropriate placement measurements at corre-
sponding points of the observations. The back-end implementation uses the properties of SLAM
problems. The graphical model perspective for probabilistic inference is used. In the last decade,
a large number of different efforts have been made to optimize the graph network. Some use
Maximum Likelihood Estimation (MLE) using non-linear optimization methods such as Guass–
Newton, Levenberg–Marquardt (LM) and sparse matrix factorization methods e.g. Cholesky,
LDL and QR.

The SLAM back-end algorithms can operate in batch mode and online node. Graph-based
SLAM algorithms which have also been extended for online-operations include SPA (Konolige
et al 2010), TJTF (Paskin 2003), Treemap (Frese 2006), iSAM (Kaess et al 2008; Kaess 2008),
iSAM2 (Kaess et al 2012), Max-Mixture (Olson & Agarwal 2013), RRR (Latif et al 2012a),
SC (Sünderhauf & Protzel 2012), RISE (Rosen et al 2012), DDF-SAM (Cunningham et al

2010, 2013), COP-SLAM (Dubbelman & Browning 2013) and the algorithm in Kretzschmar &
Stachniss (2012). Max-Mixture, RRR, SC and RISE algorithm are explained in Section 3.2c.
DDF-SAM are explained in Section 3.4. The rest of the algorithms are explained below.

A number of approaches model the SLAM back-end problem using graphical models, such
as Markov random graphs (Ranganathan et al 2007), factor graphs (Frank Dellaert & Michael
Kaess 2006) and junction trees (Paskin 2003), so as achieve effective probabilistic inference.
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Thrun & Montemerlo (2006) use a conjugate gradient based optimization method to find a max-
imum likelihood solution in 6D space. Olson (2008) explains the use of optimization algorithms
to iteratively build a maximum likelihood map given a set of measurements. In Kümmerle et al

(2011), the authors explain g2o (general graph optimization), a general framework for graph
optimization. The source code can be accessed at author’s github repository (Kuemmerle 2014).
g2o provides algorithm implementation of various optimization algorithms with edge constraints
from SE2 and SE3 groups. An experimental implementation of online and incremental graph
optimization algorithms is also provided.

In Olson et al (2006), Edwin B Olson presents a method based on a variant of preconditioned
stochastic gradient descent (SGD) to optimize the graph network. At each optimization iteration
step, one constraint is randomly selected. The nodes of the network are moved such that error in
the network due to this constraint is minimized. This way, all constraints are optimized one after
the another.

Grisetti et al (2009) extended the SGD approach (Olson et al 2006), with the use of a tree
based parametrization of the graph. This method is named as TORO. This resulted in better con-
vergence speed and execution time. This method uses Spherical Linear Interpolation (Barrera
et al 2004) for distributing rotational error. Translational errors are distributed after the rotation
errors have been distributed to the nodes. Because of this, this method produced accurate 3D
maps and maps for non-flat environments. To keep the number of constraints less, whenever the
robot revisits a place, the current pose of the robot can be assigned to an existing node. The exist-
ing constraint for this node is updated with the constraint for latest observation. This keeps check
on the number of constraints, and hence on computation time required for optimization of the
graph. The source code of this algorithm is available at website www.openslam.org (Stachniss
et al 2014).

Thin Junction Tree Filter (TJTF) by Paskin (2003) provides an incremental filtering solution
based on junction trees. TJTF uses a lazy message passing scheme. New data is propagated
to fixed near-by clusters, not to every cluster in the junction tree. The approximation is that
the marginal of remaining clusters will not be conditioned on the observation (Paskin 2003).
Or in adaptive message passing scheme, a message is passed only as long as the message
induces significant changes in the belief state. The significance of a message from one cluster to
another cluster over a separator is measured using the Kullback–Liebler divergence of the orig-
inal separator marginal from the new separator marginal. This keeps the complexity of solving
the inference on the junction tree manageable, resulting in linear-time filtering operations. An
open source implementation of TJTF is available at website www.openslam.org (Stachniss et al

2014).
Treemap (Frese 2006; Frese & Schröder 2006) provides a highly efficient Gaussian inference

mechanism based on a hierarchical decomposition of the region. The motivation of Treemap is
to exploit locality of sensor perception horizon, as errors are small in local perceptions. Treemap
expects the topology of the environment to be such that it can be recursively divided into halves
with little overlaps. This decomposition leads to a hierarchy of regions which is stored as binary
tree. Each region stores a set of only those landmarks which are observable from outside this
region. To keep inference efficient, Treemap uses Kernighan–Lin heuristic (Hendrickson 1995)
to keep the tree balanced. For computational gains, Treemap assumes that there are no com-
mon features between the regions. These sparsification methods work for assumed topological
restriction. This approach is more effective for multilevel structures. The core computation of
Treemap is similar to TJTF (Paskin 2003), but Treemap uses a different representation of the
messages (distribution). The source code of this algorithm is available at website www.openslam.
org (Stachniss et al 2014).
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In most of the robotic operation, the range of the robot sensor is much smaller than the actual
size of the environment in which the robot is deployed for the desired operations. In such deploy-
ment environments, the resulting graph of the front-end SLAM module is sparse in connection.
This has lead to the use of sparse linear algebra methods in solution to SLAM. Frank Dellaert
& Michael Kaess (2006) explain the use of factor graph (Kschischang et al 2001) to model the
SLAM problem and the use of Bayesian inference methods to arrive at the solution. They also
explain how inference on factor graph is equivalent to solving SLAM as least square problem.
Frank Dellaert & Michael Kaess (2006) also explain the use of sparse matrix factorization for
back-end optimization of the graph. The SLAM problem is formulated as a smoothing problem
which is further transformed into a least square optimization problem. The matrix associated
with smoothing is typically sparse. Using sparse linear algebra techniques such as Cholesky
factorization and Levenberg-Marquardt algorithm, the smoothing information matrix is factor-
ized into square root information matrix R. The matrix R is used to compute the optimal node
positions. The authors also explain how good variable ordering techniques for variable elimina-
tion lead to reduce fill-in in the graph, resulting in significant saving in computation time. This
provides an offline solution. An open source implementation of this algorithm is available as
GTSAM (Georgio et al ). Agarwal & Olson (2012) have presented a comparison of various vari-
able ordering techniques. Ranganathan et al (2007) present a method which uses Loopy Belief
Propogation (LBP) on Gaussian Markov random graph as generated in

√
SAM (Frank Dellaert

& Michael Kaess 2006). In Sparse Pose Adjustment (SPA) method (Konolige et al 2010), Kurt
et al explain a method to extract the sparse graph matrix from the graph and the use of a variant
of Levenberg–Marquardt non-linear optimizer to solve it in incremental and batch modes.

HOG-Man (Grisetti et al 2010b) uses a hierarchical pose graph representation of the graph
for optimization. The output graph of the SLAM front-end is abstracted at various levels of
detail. The lowest level is the original input graph and top level is coarsest, thus representing the
problem as a hierarchy of graphs. The hierarchical pose graph is incrementally augmented with
new observations at the lowest i.e. densest level. The change is propagated to the next higher
level only if this could lead to a change in the graph at the next level. The optimization of the
graph starts at coarsest i.e. highest level. The optimization operation is based on Gauss–Newton
with Cholesky factorization on manifold based representation of the state space. A manifold is a
mathematical space that is not necessarily Euclidean on a global scale but can be approximated as
Euclidean in the local neighbourhood (Lee 2003). The manifold based representation avoids the
singularities, which may occur during optimization due to non-Euclidean rotational components
of the state space. The optimization results are propagated to the next lower level only if the
optimization has lead to significant changes to the node configuration. This leads to gain in
computation time. An open source implementation of HOG-Man is available at website www.
openslam.org (Stachniss et al 2014).

The incremental Smoothing And Mapping (iSAM) (Kaess et al 2008; Kaess 2008) approach
provides an incremental solution for the SLAM problem by performing fast incremental updates
of the square root information matrix and efficient online data association. The incremental
updates to the square root information matrix are carried out using Givens rotation (Golub &
Loan 1996). iSAM is an improvement over

√
SAM (Frank Dellaert & Michael Kaess 2006).

This algorithm allows reuse of the most of previously computed square root information matrix.
Linearization of measurement function and periodic variable reordering (Davis et al 2004)
are performed in batch steps because these are computation intensive steps. These steps keep
iSAM consistent and efficient for incremental operations. The source code of iSAM algorithm
is available at author’s website (Kaess 2014). Figure 9 shows the output of iSAM algorithm on
Manhattan3500 dataset. This dataset is available with the source code of iSAM.
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Figure 9. (a) Manhattan3500a is a simulated pose graph consisting of 3500 poses and 5598 constraints
(including 2099 loop closing constraints). (b) The result of iSAM algorithm.

iSAM2 (Kaess et al 2012) has been made more efficient method by use of a novel data struc-
ture, the Bayes tree (Kaess et al 2010). A bayes tree is a directed graph where a node in the tree
corresponds to cliques in the graph. It is similar to junction trees (Cowell et al 1999). The Square
root of the Information matrix is stored as a Bayes tree. Any incremental measurement affects
only a small part of the tree, as new measurements affect only a small subset of the complete
state space. Only these parts of the tree are reverted back to the factor graph. By using a new
variable elimination order, a new Bayes tree is found for this new graph. The unaffected parts of
the tree are reattached. The variable reordering is done at every incremental update. This elimi-
nates the need of periodic batch update step as in iSAM (Kaess et al 2008). iSAM2 allows fluidic
relinearization of a reduced set of variables. iSAM2 relinearises a variable only if its estimate
deviates from the linearization point more than some predefined threshold.

Rosen et al (2012) present an incremental method for inference on sparse factor graphs based
on Powell’s Dog-Leg optimization (Lourakis & Antonis 2005) algorithm. This method is called
as Robust Incremental Learst-Squares Estimation (RISE) (Rosen et al 2012). This method is
an improved version of iSAM. RISE is shown to be robust to non-linearity because of Pow-
ell’s Dog-Leg otpimization. RISE method has performance comparable to iSAM. In Rosen et al

(2013), the author further extend this approach by using non-Gaussian probability distributions
for factorization.

3.2c SLAM back-end: robust algorithms: A lot of improvements to SLAM back-end process-
ing have been presented in the SLAM literature. SLAM back-ends use least-square optimization
methods. These methods are prone to outliers e.g. incorrect data-associations and false loop clo-
sure detection by the SLAM front-end. Such errors are common in real-world environments. A
number of approaches overcome these problems by either allowing for better probability density
modelling (Olson & Agarwal 2013; Rosen et al 2013; Pfingsthorn & Birk 2012) or by allowing
inferencing mechanisms in optimization mechanisms (Sünderhauf & Protzel 2012; Latif et al

2012a; Rosen et al 2012). Using these two approaches, robustness to the SLAM back-end
solutions can be obtained.
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Sünderhauf & Protzel (2012) & Sünderhauf (2012) present the switchable constraint (SC)
approach, to increase robustness of SLAM back-ends by subjecting the topology of factor graph
to optimization. This is achieved by introducing a new variable, switch variable, in the factor
graph for each constraint which could be an outlier. The most of outliers are because of wrong
loop closure constraints. The incorrect loop closures are because of the inaccuracy of the SLAM
front-end methods. SC is the first method to a provide mechanism to deal with SLAM front-end
errors in SLAM back-end. A switch variable can have value on or off. If the value of a switch
variable is on, the corresponding loop closure constraint is included in the optimization pro-
cess otherwise not. The incorrect edges can be removed during the optimization process. This
allows the topology of the factor graph to be subjected to optimization. The Switch variable
influences the information matrix value of the corresponding factor component through a switch
function � : R → [0, 1]. The value can vary from original value to zero, thus influencing the
covariance associated with the factor. These methods fail in some degenerate cases. Some envi-
ronments consist of distinct parts, which are connected by sparse connections e.g. the Parking
Garage dataset. In degenerate cases, if outliers are present in the sparse connection between dis-
tinct parts of the environment, this method fails. SC fails in such cases because of the insufficient
amount of information connecting distinct parts of the environment. Dynamic Covariance Scal-
ing (DCS) (Aggarwal et al 2013) proposes a closed form solution for computing value of the
switch function for each individual loop closing constraint. DCS do not introduce switch vari-
able as in SC. DCS computes a upper bound by which information matrix component for any
loop closure constraint can be scaled. It implements a robust cost function (M-estimator). DCS
results in much faster converges than SC to solution even in the presence of outliers. The source
codes for SC and DCS are released by respective authors at website OpenSLAM (Stachniss

Figure 10. Figure depicts the output of City dataset of DCS algorithm. The edges in light pink colours
have been rejected during optimization and dark edges have been retained.
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et al 2014). Figure 10 shows the output of DCS algorithm on City dataset. The input dataset was
infused with 0.1 std. dev. noise in edges.

The Realizing, Reversing, Recovering (RRR) (Latif et al 2013, 2012a) algorithm optimises the
pose graph using the intuition that correct loop closure constraints agree with the odometry con-
straints and are consistent with each other, on the other hand wrong loop closures constraints are
not. Thus correct loop closures in conjunction with odometry can be used to identify incorrect
loop closures. This approach assumes that odometric errors are small. On optimizing the pose
graph with wrong loop closure constraints, larger metrical changes will be required in compar-
ison to optimization with correct loop closures. The false positive loop closure identification is
performed using a number of χ2 tests for checking the consistency of the loop closure constraints
and deviation in resultant metric change from odometric data after optimization of the graph.
This approach first clusters the loop closure constraints according to their timestamps. A thresh-
old is used to define the neighbourhood. After each cluster formation, intra-cluster consistency

check determines whether the complete cluster is consistent. If yes, this test checks for single
constraints which are inconsistent in this cluster and rejects them. The test is performed as opti-
mization task on a graph which contains all odometric constraints and loop closure constraints
only from this cluster. The acceptance of constraints or clusters is based on χ2 error tests. After
this, in inter cluster consistency, the mutual consistency of clusters is determined. The aim of the
algorithm is to find the biggest set of consistent clusters of loop closure constraints. During long-
term experiments, new observations can be integrated session by session. This way previous
possible failures can also be corrected. This approach is further extended for online operations in
iRRR (Latif et al 2013, 2012b). An open source implementation of RRR algorithm is available
at author’s webpage (Latif 2014). Figure 8b shows the output of RRR algorithm on Bovisa04
outdoor dataset. This dataset is available with the author’s released source code. Author has also
provided a script to introduce errors in loop closure constraints.

In the conventional formulation of pose graph SLAM using factor graphs, it is assumed
that all distributions are unimodal Gaussians (Sünderhauf & Protzel 2013). An ambiguous data
association cannot be accurately represented using unimodal probability distribution. This rep-
resentation is also not sufficient to model arbitary probabilistic distributions e.g. non-Gaussian
noise. The source of such noise could be odometric errors (because of slip or skid) and wrong
data associations (leading to incorrect loop closures). The odometric sensor is not able to capture
the robot movement because of the slipping of wheels. It can happen because of the nature of the
current operating surface. The odometric sensor is also not able to capture the non-movement of
the robot in situations where the wheels are moving but the robot is not. This problem is known as
the Slip or Grip problem. In the Max-Mixture (MM) Models (Olson & Agarwal 2013) approach,
the spatial constraints are represented as a max-mixture of Gaussian distributions rather than a
unimodal Gaussian. This approach permits representation of complex non-Gaussian probabil-
ity density functions. The loop closures are represented using a two-component max-mixture
(i) the front-end loop closure, (ii) a null hypothesis with a very low weight. The null hypothe-
sis represents the possibility of a wrong loop closure. It is represented with the same mean as a
first component and with a very large covariance. During optimization, a maximum likelihood
selection process selects the best component. This component maximizes the likelihood of the
factor’s error function. To handle the Slip or Grip problem, the two component mixture model is
proposed. The components are: (i) 15% noise model with large weight, (ii) mean centred com-
ponent with low weight. To have an alternate solution for detection of the Slip or Grip other
than odometry, a scan matching system is used to generate loop closures. This improved odom-
etry model results in improved maps. The weights of the mixture are tunable parameters. The
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insights of sparse factorization and variable order heuristics are applicable here as well for effi-
cient computation. This method is demonstrated to operate in both modes: online and batch. In
Pfingsthorn & Birk (2012), the authors have explored the use of mixture of Gaussian (MoG) to
model probability distributions. But it has been shown that Max-Mixtures approach provides a
computational advantage over the MoG (Olson & Agarwal 2013).

In Sünderhauf & Protzel (2013), authors present a comparision of SC, MM and RRR methods.
Niko et al report that RRR performs best, followed by SC on real world datasets the Bovisa-
06 (RAWSEEDS 2009) and the Bicocca (RAWSEEDS 2009). MM does not perform well on the
real world dataset as it rejects a lot of correct loop closures. Whenever the error in the initial guess
is very high, MM is prone to select wrong mixture components. On synthetic datasets Manhattan
and City10000, additional false positive loop closures were added. SC and MM outperform
RRR on synthetic datasets. RRR is not able to cope with false positive loop closures. SC has an
advantage over the other two algorithms as it has only a single variable to tune.

3.2d SLAM back-end: compressed graph algorithms: The computation time and memory used
by the SLAM back-end algorithms is directly influenced by the size of the input graph to opti-
mize. Most of the current approaches use only the robot pose graph for optimization. Some
approaches prune the graph. Cyrill et al (Kretzschmar & Stachniss 2012) presents information
theoretic compression of the pose graph. Based on the analysis of the information gain achieved
by addition of the input laser measurement, this measurement is either rejected or added. This
compression method is lossy. The marginalization of a node could lead to fill-in edges in the
graph, which destroys the sparsity of graph structure. To avoid this, an approximate marginal-
ization scheme is introduced. Whenever a node is marginalized, it introduces a clique in the
graph. This elimination clique is replaced with a tree-shaped approximation e.g. the Chow–Liu
tree (Chow & Liu 1968).

Size of the graph to be optimized can also be reduced by converting the pose-graph to a pose-
chain graph. The pose-chain graph contains the nodes only representing robot poses, not those
representing landmarks as in the pose graph. In this sparse graph, pose nodes are strictly ordered
in time for edge connections. This can be understood with the help of figure 11. Pose-chain graph
contains only two kinds of edges (Dubbelman & Browning 2013) (i) Successive edges: which
connect successive nodes i.e. xt and xt+1. (ii) Loop closing edges: these edges connects nodes for
time step t back to time step t − l. Each edge represents relative pose displacements. Pose-chain
graphs are generated by the SLAM front-end systems. Such graphs are natural outputs of SLAM
front-ends which use accurate and reliable data-association methods. Such front-ends have low
error due to drifts. In Closed-form Online Pose-chain SLAM (COP-SLAM) (Dubbelman &
Browning 2013), multi-loop pose-chain graphs are optimised using trajectory bending (Dubbelman
et al 2010). In trajectory bending, piece-wise distribution of displacement is performed over the

Figure 11. Different types of graphs in SLAM (Dubbelman & Browning 2013). (a) represents a general
slam graph. (b) represents a pose graph. (c) represents a pose-chain graph. In this figure, triangles represent
the robot poses. The initial robot pose is shown in green color and subsequent absolute robot poses are
shown in orange colour. Landmarks are shown as blue stars. Edges model the landmark observations and
relative pose displacements. In (c), dark edges represent the loop closure hypotheses.
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complete trajectory. COP-SLAM is computationally more efficient than g2o (Kümmerle et al

2011) but less accurate. The reason is that COP-SLAM is only piece-wise optimal for SE(2) and
SE(3) for trajectory bending. The second reason is that COP-SLAM does not back propagate
the optimization information of new loop closures to previous loops. The SLAM front-end of
COP-SLAM uses visual odometery and appearance based methods for data association.

3.3 Submap joining SLAM approaches

A number of approaches aim to ease the complexity of the SLAM problem by joining a num-
ber of submaps. A submap is a metrical map of a small size. Most approaches keep the size of
the submap small enough to avoid loop-closure problems. As the metrical map generating algo-
rithms are efficient and accurate for small size maps. Each submap is an accurate description.
Submap joining approaches attempt to achieve efficient and accurate results by joining these
tiles of small size submaps. It has been shown that nonlinearity and non-convexvity is reduced
by using submap-joining approaches (Huang et al 2010b). These approaches include Hierarchi-
cal SLAM (Estrada et al 2005), Divide and Conquer SLAM (Paz et al 2008), Techtonic-SAM
(T-SAM) (Ni et al 2007), SLSJF (Huang et al 2008b; Huang et al 2008a), 3D-I-SLSJF (Hu et al

2009) and Linear SLAM (Shao et al 2013). Here SLSJF stands for Sparse Local Submap Joining
Filter.

Hierarchical SLAM (Estrada et al 2005) and Divide and Conquer SLAM (Paz et al 2008) are
based on the intuition. Hierarchical SLAM builds an adjacency graph of the independent local
maps, using the relative position of the local maps. To build a global map, it combines the local
maps in the order of their generation. Here, non-linearities have been successfully addressed
using standard non-linear least-squares optimization techniques (Deans & Hebert 2000; Newman
& Leonard 2003).

Another application of this approach is Monocular SLAM (Clemente et al 2007). This is a
vision sensor based algorithm. It uses a web camera as the only sensor because of which it cannot
provide any scale for the map.

Techtonic-SAM (T-SAM) (Ni et al 2007) is a divide and conquer approach using graph-
based SLAM formulation. This algorithm is offline in nature. T-SAM does not differentiate
between pose nodes and landmark nodes. It partitions the graph into submaps using a k-way
cut mechanism. Each submap is optimized independently as in

√
SAM (Frank Dellaert &

Michael Kaess 2006). Each submap maintains a local coordinate system and local base pose.
Some measurements span the submaps i.e. these are involved in more than one submap, called
inter-measurements. The nodes corresponding to such measurements are called separators. The
complete set of submaps are aligned together by optimizing the separator nodes. In smoothing
and mapping approaches, one of the most computationally expensive operation is linearization
for obtaining the measurements (Frank Dellaert & Michael Kaess 2006). T-SAM caches the
linearization points and the factorization of the submaps. Since each submap uses a local coor-
dinate system, the linearization point remains valid even after the local base pose has undergone
transformation. While aligning the submaps into a complete map, only the nodes corresponding
to inter-measurements are required to be linearized. The cached factorization of the submaps is
also reused for gain in computational time. This approach provides a better result compared to
the EKF-based approaches as it is exact in nature. T-SAM can be used to solve large-scale prob-
lems which cannot be solved in one go due to limitations of computer memory as T-SAM needs
only one submap and one separator in memory at a time.

Sparse Local Submap Joining Filter (SLSJF) (Huang et al 2008b; Huang et al 2008a) is local
submap joining algorithm for building large-scale feature based maps. A local map may be
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Figure 12. The output of LinearSLAM algorithm for 3D Parking Garage dataset.

generated using any reliable SLAM algorithm. SLSJF fuses each local submap into a global
map one at a time. SLSJF uses Extended Information Filter to exploit the sparsity of information
matrix for computational gains. In Hu et al (2009), authors further extend this approach to handle
3D local submaps.

LinearSLAM (Shao et al 2013) makes the assumption that the two submaps for joining should
be in the same coordinate frame. The map joining operation requires solving linear least squares
optimization problem, followed by non-linear coordinate transformation. The strategy to com-
bine submaps may be divide-and-conquer or sequential map joining, but two submaps should
be in the same coordinate frame. An open-source implementation of this algorithm is available
at author’s webpage and at website www.openslam.org (Stachniss et al 2014). Figure 12 shows
the output of Matlab implementation of LinearSLAM algorithm for 3D Parking Garage Dataset.
This dataset is available with the source code as a sequence of small submaps.

3.4 Metric SLAM using multiple robots

For a number of application e.g. exploration and search, a team of robots provides a better
solutions. Most of the multi-robot mapping strategies are extension of the single robot SLAM
approaches e.g. Kalman filter, Particle Filter,

√
SAM and its extentions. The challenge for

multi-robot SLAM includes when and how robots share their map with other robots.
Particle Filter based methods have been demonstrated in Howard (2006) for SLAM using

a team of robots. In Howard (2006), the author presents an online mapping algorithm. In this
approach, each robot is capable of generating maps using Rao-Blackwellised Particle Filter
methods. It is assumed that during the life-time of the operation, each robot will atleast once
observe other robots. It is also assumed that robots have the capability to identify other robots.
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This mutual observation of robots allows the computation of their pose relative to each other.
Consequent to determination of relative poses on the first encounter, the observations made
by the observed robot are included into the map of the observing robot, by assuming that the
observed robot is driving backwards. The inclusion of the recorded observation into the current
map of the robot is achieved by feeding recoded observations to the filter in reverse time-order.

In Andrew Howard & Matarić (2006), authors present a SLAM approach for two dimensional
space using manifold representation. The authors assume that data from all robots is sent to a
central location and processed in this central location. In this approach, the Maximum Likelihood
Estimation (MLE) technique is adapted for manifold representation. The advantage of manifold
representation based approach lies in its delayed data association capabilities. The manifold is
discretized into a set of overlapping patches. Each patch has a local planar coordinate system and
finite extent. A set of pose constraint relations are defined between patches using scan matching
algorithms and odometry. A local map is a set of patches such that all patches fit together. The
best fit set is obtained using the MLE approach. The mutual observation of the robot is also used
to establish a correspondence between the points on the manifold, which leads to loop closures.
During loop closure operations, the robot may be required to halt because of computational
delays.

A map fusion approach based on neural-networks is presented in Saeedi et al (2011). Each
robot generates a occupancy grid map using EKF and a laser sensor. These occupancy grid
maps are fused together to generate a compound consistent map. Each occupancy grid map from
each robot is preprocessed using segmentation. Each segment is fed to a Self Organizing Map
(SOM) (Ultsch & Siemon 1990) algorithm for clustering. Since the number of clusters is much
smaller than the number of cells in the map, the processing of clusters requires much less time
during map fusion. To account for uncertainty of occupancy grid map cells, cells with higher
probability of being obstacles are used more frequently as inputs for SOM training. The map of
the world is abstracted as arrangement of cluster points by the SOM. To obtain relative orienta-
tion between clusters, the Radon transformation (Deans 1983) is used. The relative translation
between clusters is obtained using the norm vector of cluster points. This is followed by a ver-
ification step. A sum of squared-euclidean-distance-metric is used to measure accuracy of the
match between clusters. A verification index is used to measure the similarity of maps. The pur-
pose of the verification step is to choose the best hypothesis among candidates or reject false
matches.

The D-SLAM (Wang et al 2007a) framework is also used for multi-robot SLAM (Wang
et al 2007b). The prior knowledge of the robots’ starting locations is not required. Each robot
generates local maps using EKF SLAM. These local maps are fused into a global map using
the D-SLAM framework. Each local map is treated as a single local observation of the envi-
ronment for fusing in the global map. For finding overlap between local maps, an approach
based on robust point feature matching of medical image registration method is used. The joint
compatibility test is used to select among the candidate hypotheses.

A number of approaches are based on graph-based SLAM. These include C-SAM (Andersson
& Nygards (Andersson & Nygards 2008), DDF-SAM (Cunningham et al 2010, 2013), (Reid
& Braünl 2011), (Olson et al 2013), etc. Collaborative Smoothing and Mapping (C-SAM)
(Andersson & Nygards 2008) is multi-robot robot SLAM based on

√
SAM (Frank Dellaert &

Michael Kaess 2006). Each robot generates a local map using
√

SAM . The robots share local
maps with each other. The local maps joining is performed using rendezvous observations and
features of the environment. The rendezvous observations refer to the observations when the
robot observes other robots. A new set of constraints for these common observations, called con-
nector, is added to the optimization process. For alignment of robot maps to a common reference
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frame, a new node called base node is added. This base node is used to define nodes of one robot
in the coordinate frame of other robot. A distributed mapping algorithm based on maximum
likelihood estimation using Gauss-Seidel relaxation is presented in Rizzini & Caselli (2010).

DDF-SAM (Decentralised Data Fusion Smoothing And Mapping) (Cunningham et al 2010) is
an extention of

√
SAM (Frank Dellaert & Michael Kaess 2006) for multi-robot mapping. DDF-

SAM achieves fusion information in a decentralised manner. Each robot in a team of robots
is equipped with a SAM (Frank Dellaert & Michael Kaess 2006) module, a local optimization
module, communication module and neighbourhood optimizer module. SAM module is used
to generate local maps of the environment. A local optimization module compresses the local
map into a condensed graph by marginalizing out all the pose nodes, as only landmark map
is needed by the other robots. This helps in conserving communication bandwidth. Each robot
maintains a neighbourhood, a bounded size set of robots in its communication range. This neigh-
bourhood can vary with time. Each robot shares the condensed graph within its neighbourhood
using the communication module. Each robot maintains a cache of such neighbourhood con-
densed graphs. The Neighbourhood Optimizer module merges the cached condensed graphs into
a single neighbourhood graph. This is performed as a batch operation. Each robot maintains two
incomplete maps of the environment: the local map and the neighbourhood map. This separation
between local and neighbourhood map is maintained to avoid double counting of the informa-
tion. Double counting of the information could lead to over-confidence in these observations. A
Constrained Factor Graph (CFG) representation is used for generation of single neighbourhood
graphs. CFG contains hard constraints to represent the frame of reference constraints and data
association constraints between the neighbourhood graph and the local graph available with the
robot. This leads to a constrained non-linear optimization problem. As each robot maintains a
cache of neighbourhood maps, DDF SAM is robust to node failures and network topology.

DDF-SAM reconstructs a new neighbourhood map, whenever new summarized maps are
available. This operation becomes increasingly costly with increase in area-coverage by
the robot. DDF-SAM 2.0 (Cunningham et al 2013) provides this improvement over DDF-
SAM (Cunningham et al 2010). Using DDF-SAM 2.0 approach, each robot maintains a single
consistent map, Augmented Local Graph. The local and neighbourhood measurements are sum-
marized into a single incremental Bayes Tree solver as in iSAM (Kaess et al 2008). To avoid
double counting of information, anti-factors are used in the SLAM graph. An anti-factor is a
factor which results in subtraction of information. Before sharing the map with other robots, sum-

marization of the graph is done by introducing anti-factors for neighbourhood measurements i.e.

those measurements which have come from other robots. Summarization can be performed by
marginalization using Schur Complement Reordering for exact inference or using Naive–Bayes
approximation. DDF-SAM and DDF-SAM2.0 approaches assume known data associations.
Cunningham et al (2012) proposed a RANSAC based matching method. A Delaunay traigula-
tion of the landmarks is computed. A set of correspondences C is calculated between two set of
triangles using geometric features, for example, perimeter of the triangle and area of the triangle.
The RANSAC algorithm is used on C to find the correct matches while avoiding ambiguities
due to the outliers.

Reid & Braünl (2011) demonstrate a large scale multi-robot graph-based non-linear map opti-
mization approach for a hybrid decentralized and distributed computation in Mutli Autonomous
Ground-robotics International Challenge (MAGIC) 2010. In MAGIC 2010, the challenge for a
team of robots was to map an urban semi-structured environment while at the same time avoid-
ing static and dynamic dangerous elements in the environment. In this approach (Reid & Braünl
2011), each robot has a local SLAM module which generates submaps of a predefined size. Each
submap has its own local coordinate system. Primary sensor used was the 2D laser. After closure
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of a submap, it is compressed and broadcasted. The robot’s local pose estimate is also broad-
casted as odometric constraints between the broadcasted map and the new map. The Mapbuilder
module is a SLAM back-end module and each robot has this module. It has three components (i)
Submap Optimizer (ii) Submap Builder and (iii) Submap Matcher. The Submap Optimizer mod-
ule is an implementation of SPA (Konolige et al 2010) for multi-robot computation. Each robot
maintains its perception of the consistent global map. A Ground Control Station (GCS) is desig-
nated as master and all other ground robots as slaves. To have a consistent global map across all
the robots, GCS periodically broadcasts the correction to the global map. All other robots incor-
porate these corrections in their map. This approach is called as hybrid-decentralised approach.
Each robot also has a Submap Matcher module to generate spatial constraints between submaps
in a local neighbourhood. This module looks for potential loop closures. Submap Matcher is
an efficient implementation of scan matching (Olson 2009a) on GPU for parallel matching of
submaps. On GCS, this module searches for matches which could enable large loop closures.
Submap Builder module fuses all overlapping submaps into a single map using the GPU for
visualization purposes.

Olson et al (2013) demonstrated a centralized mapping system for a team of 14 robots in
the MAGIC 2010 competition. Each robot periodically generates a maplet of its surroundings
and transmits it to a ground control station (GCS). The GCS fuses these maplets together by
performing inference on a factor graph. Each maplet acts as a node in the graph. The edges
in the graphs are generated using odometry, IMU and scan matching modules. The key idea
implemented in scan matching modules is to use a multi-resolution matching system (Olson
2009a). In order to reduce the false positive matches, a loop validation module is implemented.
The idea is that multiple matches agree with each other (Olson 2008). A human operator can
override any match and force matches among some maplets to improve the quality of the map.

Lee et al (2012) present a survey on techniques for Cooperative-SLAM (C-SLAM).
A number of opensource metrical SLAM algorithm implementations are available on the

OpenSLAM website (OpenSLAM 2014).

4. Qualitative map generating approaches

Qualitative map generating approaches build a topological map that describes the environment
as a graphical representation having nodes as places and objects of interest, and edges as the
spatial relation or path between the vertex. In this paper, the terms qualitative map and topo-
logical map are used interchangeably. Topological maps provide a more compact representation
of the environment as compared to global metrical maps. This representation also allows for
high level symbolic reasoning for map-building, navigation and planning. One of the problems
in the metrical mapping process is accumulation of odometric errors over time. Qualitative map
building approaches allow a map to evolve without worrying about the metrical aspects. Since
the environment is abstracted to a graph in this representation, odometric errors that accumulate
between graph nodes do not necessarily accumulate across the global frame of reference. This
allows room for overcoming problems like loop closures, which are a result of metrical uncer-
tainties. The idea is, that in order to solve complex loop closing problems in a tractable manner,
a robot should be able to reason with a symbolic topological map. Also, the metrical map rep-
resentations do not accurately represent the incompleteness in the information gathered by the
robot during the exploration.

The problem with such approaches is how to achieve reliable abstraction of meaningful sym-
bols from a continuous, noisy perception of the environment. In simple words, how can the robot
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reliably detect, identify and recognize elements of the topological map, for example places and
paths. In general, this is known as the Symbol Grounding problem. Some approaches use robot
motion control as a way to detect and identify the distinct place (Choset & Burdick 1995; Kuipers
et al 2000; Marinakis & Dudek 2010; Tao et al 2011). Other approaches make use of sensor data
to extract unique landmarks or places (Ranganathan et al 2006; McClelland et al 2013; Paul &
Newman 2010).

A number of qualitative approaches generate a Generalised Vornoi Graph (GVG) (Choset &
Burdick 1995) as the output. A vornoi graph consists of nodes corresponding to positions in the
map which are three way equidistant to the obstacles in the environment. The edges represent
feasible paths such that each point on the edge is two way equidistant from the obstacles. Using
various robot motion control laws, the robot is made to travel in a manner so as to follow the
vornoi graph (Choset & Burdick 1995). The problem with this generalised vornoi graph is that
the robot should always maintain sufficient number of obstacles in its sight. This is not achiev-
able during exploration in open areas. The Saturated Generalized Voronoi Graph (S-GVG) (Tao
et al 2011) overcomes this limitation by following a single obstacles at a saturated distance. The
saturated distance is a predefined distance which shall be maintained from the obstacle, in case
when only one obstacle is visible. The loop closing is performed using a multi-hypothesis fil-
ter. A hypothesis tree is constructed. Each level of tree corresponds to a different time-steps.
The leaves in this tree represent the latest time-step. A posterior probability is assigned to each
hypothesis. This value measures the fitness of the hypothesis to the observed sensor data. A
low probability value hypothesis poorly fit the sensor observations. To achieve computational
efficiency, the algorithm periodically prunes low probable hypotheses from the hypothesis tree.

Ranganathan et al (2006) present a method, named Probabilisitic Topological Maps (PTM),
which uses Bayesian inference in the space of topological maps. The intuition is that all possible
loop closure hypotheses will be considered during the process of evaluation of the hypothe-
ses. Each hypothesis will represent a probable topology with a probability value. Low probable
topologies will be rejected. Authors use appearance data in conjunction with odometry to assign
a probability to each candidate topology. This provides a measure of correctness of the topol-
ogy. The Fourier signatures of the panoramic camera images are used as appearance. The
space of topological maps is very large because of the perceptual aliasing problem. A Markov-
chain Monte Carlo (MCMC) sampling algorithm, the Metropolis–Hastings algorithm is used to
approximate the posterior probability distribution over the space of candidate topological maps,
given the sensor measurements. In this approach, for sampling purpose, each topology is mod-
elled as a set partition over the set of all the landmarks. Each set in this set partition corresponds
to a single physical landmark. The sampling algorithm samples over the space of these set parti-
tions. Online Probabilistic Topological Maps (OPTM) (Ranganathan & Dellart 2011) approach
extends the PTM approach for online operations. A Rao-Blackwellized Particle Filter (RBPF) is
used to maintain joint posterior distribution of landmark locations and topologies. The landmark
locations posteriors are computed analytically.

Spatial semantic hierarchy (SSH) (Kuipers et al 2000) is an influential work on topological
map generation and navigation. SSH provides a framework in which large-scale spatial knowl-
edge is represented over different ontological levels. It is inspired by cognitive findings about
how humans assimilate and process large-scale spatial information. SSH describes a computa-
tional model that includes abduction of topological maps from the sensorimotor experience of a
robot. As shown in figure 13, there are four levels of knowledge representation in SSH, structured
in a hierarchy of abstraction and dependencies. As explained in Savelli (2005), at the control

level, the agent repeatedly selects a hill-climbing control law to converge to and localize at a
distinctive state (dstate); and then selects a trajectory-following control law to move from the
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Figure 13. The Spatial semantic hierarchy (Kuipers et al 2000). Closed-headed arrows represent depen-
dencies; open-headed arrows represent potential information flow without dependency.

current dstate to the neighbourhood of another. Thus hill-climbing converges to the next dstate,
eliminating cumulative errors. This way, the controlled movements of the robot help to avoid
and solve the correspondence problem. The causal level abstracts this pattern of behaviour to a
deterministic automation, consisting of states (the distinctive ones), actions (sequences of con-
trol laws), schemas < x, a, x′ > (asserting that state x′ results from performing action a in state
x), and views (the perceptual images of states, view(x, v)). The topological level distinguishes
between turn and travel actions, and aggregates states into places, paths, and regions, related by
connectivity, order, and containment. The metrical level consists of local metrical attributes for
objects at the causal and topological levels, local metrical models of small-scale space in place
neighbourhoods, and (when resources permit) global metrical models of the large-scale environ-
ment (Modayil et al 2004). A formalization of the topological map in non-monotonic logic, and
an algorithm for identifying minimal models according to a prioritized circumscription policy is
given in Remolina (2001). The circumscription policy formalizes preference and default crite-
ria, which are well suited for the ontology of many real-world classes of environments such as
offices or urban street networks.

In Marinakis & Dudek (2010), the author presents a solution for pure topological mapping. A
graphical environment for robot operations is assumed, along with the robot’s ability to detect
landmarks and cyclic labelling of edges. To avoid a number of data association errors, the author
presents a number of exploration strategies such that the robot revisits a number of potential
problem prone areas. As the robot explores the environment, the candidate topological hypothe-
ses are populated in an exploration tree. A feature vector is maintained for each node in the
graph. The ranking of topological hypotheses favours a topological structure with lesser vertices
and a more completely explored section. The top N models are selected for further evolution.
This approach is demonstrated for a graph of upto 30 nodes. According to results presented in
this paper (Marinakis & Dudek 2010), for a graph of 50 nodes, the algorithm took approximately
one hour to converge to a solution.
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McClelland et al (2013)present the Qualitative Relationship Map (QRM) framework in which
geometric relationships are encoded between the landmarks. The geometric relation between the
landmarks are defined using a triplet of landmarks. This representation is called as Extended
Double Cross (EDC). EDC is an extension of Freska’s Double Cross (Freksa 1992) method.
QRM assumes that landmarks are sufficiently distinct, either point-like or with known geome-
tries. QRM also assumes that a relative ordering of distance of visible landmarks can be done.
For any three landmarks A, B and C, EDC defines a qualitative state between C and a vector
−→
AB, from point A to point B. C can be either on the right or the left of

−→
AB, in front or behind

of A or B, or in the direction of
−→
AB. This qualitative representation allows one to capture angles

in the triangle ABC. EDC also compares the distance of C to A against the distance from C

to B, etc. This way, EDC adds explicit qualitative statements about edge lengths |AB|, |BC|,
|CA|. By using unary and compositional operators on EDC, combinations of various states can
be obtained. The map structure is represented as 3-uniform hypergraph. Each node corresponds
to an observed landmark. Each edge connects three nodes. Each edge also contains a qualitative
state which defines geometric features among these three nodes.

Another line of research is to learn from the spatial cognitive ability of living species and
emulate it. RatSLAM (Milford & Wyeth 2008) is one such influential effort which tries to emu-
late the rodent’s hippocampus. The hippocampus is an area in the brain of mammals that plays
an important role in long-term memory and spatial navigation. This effort has established com-
putational models inspired by the rodent hippocampus. The effort has demonstrated that such a
SLAM solution works better than current state-of-the-art visual SLAM systems. A rodent main-
tains a representation of its own pose as certain cell types in its brain. An example of such cells
is place cells, which get fired consistently when the agent is at a particular location in the envi-
ronment, and not anywhere else. It has been demonstrated that Rats are also able to update and
even “relocalize” their neural estimate of pose using external sensing such as vision, olfaction,
and whisking. Unlike modern day robots, they do not build detailed geometrical representa-
tions of the environment. They rely on learnt associations between external perception and the
pose belief created from integration of self-motion cues. The self-motion cues are rotation,
forward speed and visual scene description. Other kind of neural cells discovered are head direc-

tion cells. These get fired when the rodent’s head is at a certain global orientation. Another
complex-behaviour exhibiting cell discovered is the grid cell. As explained in the paper on Rat-
SLAM (Milford & Wyeth 2008), a single grid cell will fire when the rat is located at any of the
vertices of a tessellating hexagonal pattern across the environment. There are also conjunctive
grid cells – cells that fire only when the rat is at a certain location and facing in a specific orien-
tation. All the cell types have two fundamental characteristics: (i) they are anchored to external
landmarks and (ii) they persist in darkness. Experiments with landmark manipulation show that
the rodent brain can use visual sighting of familiar landmarks to correct its pose estimation. A
similar function is performed to the update process in robotic SLAM. Figure 14 represents broad
connectivity between the various cells used in RatSLAM. As with robots, pose estimates degrade
with time in the absence of external cues, suggesting similar computation must be part of the
prediction process in robot SLAM. Results demonstrated by RatSLAM are very encouraging. It
has demonstrated successful mapping over data-sets which involve a total path length of around
66 Km, with 44 loop closures. The largest loop closure had a size of around 5000m. An open
source implementation of this algorithm is available at website www.openslam.org (Stachniss
et al 2014).

FAB-MAP 3D (Paul & Newman 2010) is an evolution of FAB-MAP framework for appear-
ance based navigation and topological mapping. It models a location as a collection of words (as
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Figure 14. Broad Connectivity between RatSlam system (Milford & Wyeth 2008).

done in FAB-MAP) along with spatial information in terms of the range information for words.
Hence, the algorithm has been able to cut down on false negative rate of loop closure detections
of FAB-MAP.

5. Hybrid map generating approaches

Hybrid approaches combine the advantages of both metrical map generating solutions and qual-
itative methods. Most of the hybrid mapping approaches generate a global topological map of
the environment and insert metrical data into the topological map. Each node in the topological
map represents a distinct place or feature in the environment or a submap of the environment.
Each edge represents topological relation or coordinate transformation between nodes. The loop
closure is handled either at a metrical level or at topological level. As the robot explores the
environment, a number of topological hypotheses satisfy current observations. These are usually
arranged in a tree structure for further extensions. Since metrical maps are handled for smaller
areas, complexity of the metrical map generating approaches remains manageable and within
computational bounds.

In some approaches, each node in the topological map is a distinct place in the environment.
The robot acts as the local observer during the exploration of the envorinment. It gathers obser-
vations continuously and at the same time avoids obstacles (Ko et al 2004; Tomatis et al 2002).
In such approaches, the effort is focussed on finding qualitatively distinct locations from the met-
rical data. The problem with such an approach is that the number of locations increases as the
exploration progresses. A number of detected distinct locations may refer to the same physical
location. To maintain consistency, and in order to solve the loop closure problem, such locations
should be suitably collapsed. Also, the count of detected distinct places should be kept as small
as possible. This decision of when to add a new distinct place is difficult to characterize. Some
methods use arbitrary heuristics; for example, reduce locations after every some meters of explo-
rations (Zimmer 2000; McClelland et al 2013). Some approaches accept user inputs for location
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definition (Thrun et al 1998). Other approaches try to model the full Bayesian distribution over a
topological hypothesis (Blanco et al 2008a). They make use of topological constraints to create
a consistent global topological map. The efforts focus is on solving the loop closing hypothe-
sis by minimizing the possible number of places (qualitatively distinct locations) in the world.
Each possible hypotheses is assigned a probability value. Only high probable candidate maps
are evolved with further observations.

In some approaches, each node of the topological map represents a small metric map of the
environment (Bosse et al 2003; Lisien et al 2005; Tully et al 2012; Beeson et al 2010). The
edges between the nodes encodes the path traveled by the robot from the center point of one
metric map to the center point of the next metric map. In the Atlas framework (Bosse et al 2003),
each node in the topological graph represents a submap of fixed size. Each submap maintains a
local coordinate frame. Each edge represents the transformation between the connecting frames
with uncertainty. For transformation between arbitrary frames, Dijkstra’s projection is used. A
Dijkstra’s projection is a global arrangement of the frames using composition along the Dijkstra’s
shortest path. Loop closures are handled using efficient matching based on the map’s features
matching. For selection of topological hypothesis among candidates, a performance metric is
used. This metric is based on how much is the robot uncertainty and how well this hypothesis
explains the sensor data.

In the hierarchical atlas (HSLAM) (Lisien et al 2005) approach, the topology is based on
generalized voronoi graphs, known as Reduced GVG (RGVG) (Nagatani & Choset 1999). Each
node contains degree and equidistant value. When robot travels along an edge, a feature based
map is generated. The authors suggest any method can be used for this purpose. Mahalanobis dis-
tance is used to compare the node and the edge maps for narrowing down on possible topological
configurations. The loop closures are handled at the topological level.

In Tully et al (2012), Tully et al present a unified filtering framework for hybrid SLAM and
localization of robot in metric/topological maps. The hybrid map representation is based on the
hierarchical atlas (Lisien et al 2005). For each topological hypothesis in the topological forest,
an Extended Kalman filter is used to estimate the robot location and a metrical submap. Each
metrical map is of fixed sizes and loop free. The loop closures are handled at topological lev-
els. A hypothesis forest is maintained where each node in it represents the candidate topological
hypotheses. For each robot action, topological hypotheses are extended based on the status of the
current vertex. The best topological hypotheses is chosen based on the value of posterior proba-
bility of each hypothesis given a sequence of sensor measurements and robot motion inputs. The
intuition is that the correct hypothesis will better fit the sensor measurements, therefore better
equipped to estimate the true robot state. A penalty is imposed for wrong observation of land-
marks locations. A high penalty is imposed to a topological hypothesis if it is not consistent
with the environment observation i.e. the robot is in a different submap. A graph which explains
the sensor data with the simplest representation (lesser number of nodes and edges) is preferred.
This helps in avoiding over-fitting of data. The pruning of hypotheses is based on a number of
tests which includes degree test, planarity test, likelihood update test and posterior probability
test. A garbage collector hypothesis is used to represent all those hypotheses which have been
pruned. If by mistake, a correct hypothesis is pruned, likelihood of garbage collector hypothesis
will become high. This will signal the algorithm to backtrack as the correct hypothesis has been
wrongly pruned.

The hybrid spatial semantic hierarchy (HSSH) (Beeson et al 2010; Kuipers et al 2004) is
another important work based on SSH approach. It extends SSH (Kuipers et al 2000) and makes
strong assumptions about the sensory capability of a navigational agent. It assumes the kind of
sensors available, like range sensor, which can be used for distinct place recognition through
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controlled movements of the robot. These assumptions allow the basic SSH to be extended by
using various existing metrical mapping techniques to create a precise metrical model of the local
surroundings (Beeson et al 2010). The HSSH framework is shown in figure 15. At the Local Met-

rical Level a small-space local map of the environment, known as Local Perceptual Map (LPM),
is created. This can be done using the latest metrical map generating approaches. It allows the
robot to be at a distinct place quickly. Using this LPM, the robot localizes itself and uses it for
local navigation and hazard avoidance. In the next level, the Local Topological Level, the robot
identifies discrete places in the environment and symbolically describes the paths through these
places. This is called the local topological map. This topological map is extracted from the LPM
using gateways. A gateway is a place that makes a particular region qualitatively distinct from
another. For example, a door in the room is a gateway as it differentiates between the room
region and the outside room region. At the Global Topological Level, the robot combines these
local topological maps, resolves structural ambiguities and describes the environment in terms
of path, places and regions in the best possible manner. The Global Metrical Level specifies a
layout of the environment (places, paths, regions) in a single frame of reference. With the use
of the LPM generated at distinct places and the topological skeleton structure, global metrical
maps are evolved.

An approach which uses hybrid metric-topological maps for navigation is discussed
in Marder-Eppstein et al (2011). It uses topological maps overlaid with local occupancy grids.
Figure 3a is an example of this. The aim of this paper is to provide effective and fast navigation
using hybrid map rather than maintaining an accurate hybrid map at every instant. It assumes a

Figure 15. Hybrid-SSH framework (Beeson et al 2010).
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hybrid map as the input. A plan is formed over the topological map and followed in local grids
of correspondent nodes. As changes are observed in the map, occupancy grids are overlaid. To
avoid long time-delays, only the grids in the immediate neighbourhood of the change are recom-
puted. Other grids are recomputed only on demand, for example, when an area is visited by the
robot. For each change in position of the node or addition of a new node, occupancy grids are
overlaid.

Some application scenarios, such as mines, disaster areas, may allow placement of RFID tags
in the environment. These tags may be already existing in the environment or placed during
the robotic operation. In Forster et al (2013), Christian Forster et al present a Radio Frequency
Identification (RFID) tags-based hybrid mapping approach. The features of the environment are
perceived using RFID tags. This approach maintains a weighted graph, called co-occurrence
graph. This graph can be extended in an online fashion. Each node in this graph stands for
observed RFID tags. Edge weight between two nodes reflects an estimate of how closely these
two tags are located. This closeness is computed using radio signal strength (RSS). Using min-
Ncut criterion (Malik & Shi 2000), a group of RFID-tags is grouped as one virtual topological
node. Particle filter based mapping is used for building metric submap of RFID tag location.
SLAM is performed only at a topological level. For localization purposes, an active topological
node along with the metrical submap is always maintained in which the robot is currently located.

In Oberländer et al (2008), the authors propose a FastSLAM based method to generate topo-
logical and semantic maps of the environment. Environment is represented as using a new type
of feature, named regions. A region is a feature descriptor which approximates the environment
with a set of rectangles. Topological relations between the regions are stored using links between
regions. Each region is associated with a semantic tag and a confidence value. Each link also has
a confidence value associated with it.

In T-SLAM (Ferreira et al 2008), the authors present a method to integrate topological
and metrical maps. The assumption made is that the topological and metric maps are created
independently. The metrical maps are registered with topological map nodes.

6. SLAM in dynamic environments

All the above mentioned methods assume a static environment of operation, which is obviously
not true for real world deployments. Two types of dynamic objects can be identified (i) Type
I: High dynamic objects or entities which should not be part of the map e.g. cars and moving
people. These objects should be identified and removed during the mapping process (ii) Type II:
Low dynamic objects or entities which should be part of the map. Such objects move with low
frequency or are so slow that their movement is invisible to the robot e.g. door (open or closed),
furniture and items stored in a warehouse. Mapping process needs to maintain different config-
uration of such objects for capturing this dynamism. The different dynamic objects may move
or change at different rates, gradually or adruptly. SLAM methods for static environments can
be adapted to use in dynamic environments by providing appropriate treatment of the dynamic
objects. The correct treatment of dynamic objects is crucial for long-term operation specially
when the robot makes multiple passes over the same environment. Otherwise, the SLAM module
could fail because of incorrect localization and wrong data association due to dynamic objects.

For SLAM in dynamic environments, Type I dynamic objects are continuously detected and
tracked (Hähnel et al 2003; Wang et al 2002; Montemerlo & Thrun 2002; Zhao et al 2008).
The dynamic objects could be moving people, moving cars, etc. The environmental sensor mea-
surements are processed to filter out the dynamic objects. The resultant measurements are used
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for the SLAM process. In Huang & Wong (2005), authors have presented a unified solution for
online SLAM and multi-target tracking. This approach based on filtering out of dynamic objects
from sensor measurements is effective only for highly dynamic environments.

Some approaches maintain multiple spatial maps for the dynamic environment. Denis F Wolf
et al (Wolf & Sukhatme 2003; Wolf & Sukhatme 2004) maintain two different occupancy grids
for the static and the dynamic part of the environment, given the robot’s true location. The union
of these two maps provides a complete information about the environment. In Wolf & Sukhatme
(2004), a third map, representing static landmarks in the environment, is also maintained. This
map is used for correct robot localization. In Biber & Duckett (2009), Peter et al model the
environment using multiple time-scale maps to capture the dynamism of the environment. Each
map is represented as a set of samples taken from the measurements. The set of different time-
scale maps allows the representation of different hypotheses related to dynamic objects. Such
modelling of the environment is more suited to handle Type II dynamic objects. This method
makes the system robust to outliers. Each time-scale map is updated with a different time-scale
specific learning rate. The intuition is that old memories should fade at different rates for different
time scales (Biber & Duckett 2009). For localization, the robot compares current observation
with all the maps and chooses the map which better fits the current observations.

Some dynamic objects may not be moving at the time of measurements e.g. parked cars or
objects such as people and cars at traffic intersections which may be still for some time e.g.

as explained in Zhao et al (2008). Some objects may move with a relatively low frequency.
The rejection of all dynamic objects will not be helpful in such cases, as such low-frequency
moving objects can help in localization. In Biswas et al (2002), authors assume objects move
sufficiently slowly that they can be assumed to be static during the mapping process. In this
paper, an occupancy grid mapping algorithm called Robot Object Mapping Algorithm (ROMA)
is explained. ROMA is based on the Expectation-Maximization (EM) algorithm, ROMA builds a
static occupancy grid map of the environment at different operator specified times. The changes
in the environment are identified by taking the map differences. Zhao et al (2008) take a different
approach for change detection. In this approach, the laser scan data is divided into clusters. Each
cluster from sensor observations is identified as static, moving, unknown class (called seed) and
newly detected objects. The classification of seed class is done at the end of each iteration using
its size, shape and history of motion. If the seed remains static during the operations, only then
it is added to the map.

Daniel et al (Meyer-Delius et al 2010) propose the use of temporary local maps to enable
robust localization. The temporary maps represents the dynamic entities of the environ-
ment. The objects which change their location with low frequency are labelled as semi-static
objects (Meyer-Delius et al 2010) or low-dynamic objects (Walcott-Bryant et al 2012). The
example of semi-static objects is parked cars in parking lots and stored items in a ware-
house (Meyer-Delius et al 2010). The temporary local maps represent the measurements due to
semi-static objects in the environment. These maps are created using HOG-Man (Grisetti et al

2010b). In this paper, it is assumed that Type I dynamic objects are detected and filtered out. It is
also assumed that the static map of the environment is available. For the purpose of localization,
the temporary maps augment the static map of the environment for localization.

Cyrill et al (Stachniss & Bougard 2005) present a different approach to represent dynamic
environment by explicitly modelling low-dynamic objects’ (Type II) states. This allows capture
of various possible configuration of the environment. For example, a door can be either open or
close. The possible states or configurations of dynamic objects becomes part of the map. The
environment is divided into local sub-maps with the assumption that dynamic aspects of one
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sub-map is independent of neighbouring sub-maps. The dynamic aspects are modelled in each
sub-map.

Dynamic Pose Graph SLAM (DPG-SLAM) (Walcott-Bryant et al 2012) incorporates time
dimension into the mapping process. The movement of Type II dynamic objects as observed
during different passes of the same environment is modelled. DPG-SLAM maintains two dif-
ferent maps (i) active map: a current representation of the static part of the environment and
(ii) dynamic map: a map of dynamic objects. This algorithm also maintains a connected graph,
which represents the pose chain sequence of all previous passes. The graph is called as Dynamic
Pose Graph (DPG). The active and dynamic maps are continuously updated for observed changes
at each location from the previous pass. iSAM (Kaess et al 2008) is used as a state estima-
tion engine. As robot makes more passes of the environment, the size of the DPG grows. This
approach keeps the size of the DPG tractable by removing the inactive nodes in the graph. These
inactive nodes refer to removed data from the current active map i.e. observation corresponding
to previous locations of the dynamic objects.

For a known fixed environment, sensors in the environment can also be used to detect dynamic
objects (Cortés 2009; Zou & Tan 2013). These sensors complement the on-board sensing of
the robot. CoSLAM (Zou & Tan 2013) is a collaborative slam where multiple cameras are
present in the environment. These cameras may be static or moving independently. Feature points
are selected from cameras’ images and tracked using the Kanade-Lucas-Tomasi (KLT) (Shi &
Tomasi 1994; Tomasi & Kannade 1991) tracker. The dynamic points are detected as one with
large re-projection errors between (n − 1)th to nth frame. A dynamic point is considered to
become static if its projection has below a threshold re-projection errors for a predefined number
of continuous frames. This processed information from network sensors is communicated to the
robot for various usage.

In Ramdev et al (2013) & Kundu et al (2011), authors have discussed an incremental visual
SLAM (VSLAM) solution using a monocular camera. From the input image sequence, high
dynamic objects are segmented. A separate VSLAM module processes each moving object. A
Bearing-Only-Tracking (BOT) (Kundu et al 2011) algorithm is used to track the moving targets.
This module provides the movement trajectory of the moving object. One VSLAM module pro-
cesses the static contents from the image sequence. The output of this module is reconstruction
of the static world and trajectory of the camera movement. In this map, no dynamic object is
present. To incorporate the trajectory of the moving objects, these outputs are combined together
after finding relative scale of the object w.r.t. the stationary world. The only reported degenerate
case of this approach is when the movement of camera and objects is correlated e.g. both are
moving parallel in a straight line motion.

7. DataSets

For SLAM experimentation, good datasets capture is an important activity. Table 3 shows var-
ious open published datasets. In this table, The multiplicity of any sensor is captured using ‘x’
character. For example, 2xO represents that two omni directional cameras are present. IR, S, M,
O, B/W stands for infra-red, stereo, monocular, omni-directional and black-and-white monoc-
ular cameras respectively. 3D and 2D stands for three dimentional and two dimentional range
scanner respectively. Y and N stands for Yes and No respectively. D-GPS stands for differential
GPS.
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Table 1. SLAM algorithms for static environments.

Algorithm type Algorithms’ name/references

Metrical map EKF-SLAM (Guivant & Nebot 2001; Thrun et al 2006), UKF (Thrun et al 2006),
generating FastSLAM (Montemerlo et al 2002; Montremerlo et al 2003), (Fox 2003),
approaches DP-SLAM (Eliazar & and Parr 2003; Eliazar & Parr 2004),

D-SLAM (Wang et al 2007a), SEIF (Thrun et al 2004; Eustice et al 2005),
ESEIF (Walter et al 2005), Mono-SLAM (Davison et al 2007),
tinySLAM (Steux & Hamzaoui 2010), Divide & Conqueor SLAM (Paz et al 2008),
FAB-MAP (Cummins & Newman 2010), OctoMap (Wurm et al 2010),
(Kerl et al 2013), (Endres et al 2012)

√
SAM (Frank Dellaert & Michael Kaess 2006),

iSAM (Kaess et al 2008), iSAM2 (Kaess et al 2012), RISE (Rosen et al 2012),
(Rosen et al 2013), (Thrun & Montemerlo 2006), HOG-Man (Grisetti et al 2010b),
SGD (Olson et al 2006), (Grisetti et al 2009),
TJTF (Paskin 2003), g2o (Kümmerle et al 2011),
Max-Mixtures (Olson & Agarwal 2013), RRR (Latif et al 2012a),
iRRR (Latif et al 2012b) Switch Constraints (Sünderhauf & Protzel 2012),
MoG (Pfingsthorn & Birk 2012), SPA (Konolige et al 2010),
T-SAM (Ni et al 2007), Treemap (Frese 2006),
SLSJF (Huang et al 2008a), Linear SLAM (Shao et al 2013),
(Andrew Howard & Matarić 2006), (Saeedi et al 2011), (Rizzini & Caselli 2010),
D-SLAM (Wang et al 2007a), C-SAM (Andersson & Nygards 2008),
DDF-SAM (Cunningham et al 2010; Cunningham et al 2013), (Reid & Braünl 2011),
(Olson et al 2013), COP-SLAM (Dubbelman & Browning 2013),
(Kretzschmar & Stachniss 2012), Loopy-SLAM (Ranganathan et al 2007)

Topological map SSH (Kuipers et al 2000),
generating RAT-SLAM (Milford & Wyeth 2008), PTM (Ranganathan et al 2006),
approaches GVG (Choset & Burdick 1995),

SGVG (Tao et al 2011), (Marinakis & Dudek 2010),
QRM (McClelland et al 2013) FAB-MAP 3D (Paul & Newman 2010)

Hybrid map HSSH (Beeson et al 2010),
generating (Marder-Eppstein et al 2011), Hierarchical SLAM (Estrada et al 2005),
approaches Atlas (Bosse et al 2003), HSLAM (Lisien et al 2005),

(Tully et al 2012), HMT-SLAM (Blanco et al 2008a),
(Oberländer et al 2008), T-SLAM (Ferreira et al 2008),
(Forster et al 2013)

Table 2. SLAM algorithms for dynamic environments.

Dynamic object types Algorithms’ Names/References

Type I: High (Hähnel et al 2003; Wang et al 2002; Montemerlo & Thrun 2002)
dynamic objects (Zhao et al 2008; Huang & Wong 2005)

(Zou & Tan 2013; Ramdev et al 2013; Kundu et al 2011)

Type II: Low (Wolf & Sukhatme 2003; 2004),
dynamic objects ROMA (Biswas et al 2002), (Stachniss & Bougard 2005),

DPG-SLAM (Walcott-Bryant et al 2012), CoSLAM (Zou & Tan 2013),
(Ramdev et al 2013; Kundu et al 2011)
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Table 3. Details of open dataset. Refer 7 for legends.

Sr. no. Dataset Range sensor Vision RGB-D Odom IMU GPS Misc. remarks

1 Barcelona Lab Dataset (Catalunya 2012) 3D S N Y Y N Camera network
2 The Gravel Pit Lidar-Intensity Nod,2D N N N N D –

Imagery Dataset (Anderson et al 2012)
3 The Denvor Island Rover 3D S N N D Sun sensor,

Navigation Dataset (Furgale et al 2012) incliometer present.
4 SLAM Benchmarking Dataset x2D N N Y Y N Pose graphs

(Burgard et al 2009; Kümmerle et al2009) available
5 Malága 2009 2x2D SICK, Y N N 3x Y –

(Blanco et al 2009) 2x2D Hokoyu
6 PeRL 3D, 2x2D O N Y 2x Y Integrated

(Pandey et al 2011) GPS-IMU
7 Malàga Urban 2x2D SICK, S N N Y Y –

Dataset (Blanco et al 2014) 3x2D Hokoyu
8 RAWSEEDS (RAWSEEDS 2009) 2x2D S,O, 2xB/W N Y Y Y –
9 KITTI (Geiger et al 2013; Fritsch et al 2013; 3D S, B/W N N N Y HD-cameras

Geiger et al 2012)
10 The Canadian Planetary Emulation 2D S N Y Y D-GPS *

Terrain 3D Mapping Dataset (Tong et al 2013)
11 Victoria Park (Nebot 2000) 2D O N Y N Y –
12 Radish Dataset 2D N N Y N N Mostly

Repository (Howard & Roy 2003) indoor buildings
13 Robotic 3D Scan 3D Y N Y Y Y *, IR camera

Repository (Borrmann & Nüchter 2014)
14 The UTIAS Multi-robot Cooperative Localization N M N Y N N Ground truth using

and Mapping Dataset (Leung et al 2011) Vicon motion capture system
15 The Marulan Data 4x2D S, IR N Y Y Y includes milliMeter

Sets (Peynot et al 2010) wave radar
16 COLD The CoSy Localization 2D M, O N Y N N –

Database (Pronobis & Caputo 2009)
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Table 3. contd.

Sr. no. Dataset Range sensor Vision RGB-D Odom IMU GPS Misc. remarks

18 The New College Vision 2x2D S,O N Y N Y –
and Laser Data Set (Smith et al 2009)

19 MIT DARPA Urban 3D, 12x2D 5xM N Y Y Y –
Challenge Datase (Huang et al 2010a)

20 Navlab SLAMMOT 2D M N Y N N –
Datasets (Wang et al 2004)

23 Annotated Laser 2D Tri- Camera N Y N N A single Image
Data Set (Yang et al 2011) output of tri-camera

24 RGB-D Dataset (Nathan Silberman et al 2012) N N Y N N N –
25 ICL-NUIM (Handa et al 2014) N N Y N N N –
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8. Conclusion

This paper presents a survey on SLAM algorithms for unmanned ground robots using the lit-
erature presented till December, 2013. The characteristics of algorithms for static and dynamic
environments are presented. The classification of algorithms is based on metrical, topological
and hybrid map generating approaches and these are presented for static environments. Metrical
map generating algorithms for multi-robot SLAM are also discussed. Table 1 summarizes these
approaches. The Bayesian Filter based approaches are useful for structured and small environ-
ments. The graph-based SLAM approaches are useful for larger environments and for robots
with sufficient compute capabilities. The current research on SLAM focusses on evolving graph-
based SLAM algorithms for robust and online operations in large ambiguous environments.
Metrical map generating approaches do not scale well. For metrical maps, we presented bayesian
filter based and graph-based approaches. This paper also presents the treatment of dynamism
in the environment by various methods. The current research on SLAM also focusses evolving
algorithms for long-term autonomous operation of the robot in dynamic environments. Table 2
summarizes the algorithms for dynamic environments. Table 3 provides a detailed list of open
and published datasets. Semantic maps provide labels to map objects. This labelling can be use-
ful in high-level task planning and communication with the robot. This paper touches upon some
simple semantically enabled approaches. A more comprehensive discussion on semantic maps
will be attempted as a future work.
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