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ABSTRACT

The classical resonance branches that construct the response of a freely vibrating circular or elliptic cylinder at low Reynolds numbers, Re, are
“initial” and “lower.” The existence of additional response branches, if any at low Re via alteration of controlling parameters, is unavailable
in the literature. In this computational work, relating to a low mass ratio (m∗ = 1) and zero damping, i.e., m∗ζ = 0 transverse-only vortex-
induced vibrations of an elliptic cylinder over Re = 50–180, four response branches that are unreported in the literature are identified. The
lock-in at such a low mass ratio is non-classical, and the new response branches are resolved close to the lock-in boundaries. These additional
branches are designated as extended initial branch, extended lower branch, terminal branch, and quasi-periodic desynchronization branch.
The method proposed by Kumar et al. [“Identification of response branches for oscillators with curved and straight contours executing VIV,”
Ocean Eng. 164, 616–627 (2018b)] has been employed to identify the branches by locating the Re region concerning the change of slope and
discontinuous jumps of oscillation frequency. It is further shown that branching at a low mass ratio depends on structural damping, oscillator
shape, and degree-of-freedom.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5141030., s

I. INTRODUCTION

A rigid or flexible obstaclemounted flexibly in amoving viscous
fluid of density, ρ, interacts with the flow field in either of the two
ways: one-sided interactions and mutual or two-sided interactions.
In the former, the motion of the obstacle is controlled externally,
and hence, the fluid medium is unable to impart any influence on
the motion of the solid. Such oscillator motions where the ampli-
tude and frequency of the oscillator enter as input variables/known
quantities come under the domain of forced vibrations. Therefore,
for forced vibrations, the velocity and pressure fields are the pri-
mary unknowns. In the numerical approach, these quantities are
obtained by solving the Navier–Stokes equations of motion. Since
the oscillator response is known beforehand, the equation of rigid
body motion is not solved. In the latter, motion of the solid and
fluid media is intrinsically coupled, and hence, motion of both the
fluid and solid is influenced by each other. In particular, the essential
no-slip boundary condition at the fluid–solid interface along with

the instantaneous fluid forcing couple the governing differential
equations of flow and rigid body motion. These are the instances
of free or vortex-induced vibrations (VIVs). The VIV can be stud-
ied experimentally or numerically. In numerical analysis, the flow
and rigid body equations can be handled simultaneously (coupled
approach) or separately/sequentially (partitioned approach). The
VIV is a strong function of the oscillator shape (because of its close
bearing on the location of separation points) and degree-of-freedom
(DOF) besides several structural and flow quantities. The influenc-
ing parameters are mostly non-dimensional and are listed as mass
ratio, m∗, or relative density of the oscillator; structural damping
coefficient, ζ; reduced or non-dimensional natural frequency, FN , or
reduced speed, U∗ ≙ 1

FN
, of the oscillator; and Reynolds number, Re,

of the flow. It may be noted that both oscillator shape and Re influ-
ence the free and forced vibrations. Since no rigid body equation
is solved in forced vibrations, the quantities such as m∗, ζ, and FN

appearing in the rigid body equations [see Eqs. (6) and (7)] do not
affect the forced vibrations. For a bluff oscillator with characteristic

Phys. Fluids 32, 023605 (2020); doi: 10.1063/1.5141030 32, 023605-1

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

dimension, D (projection of the bluff body across the flow), facing
a free-stream speed, U, these influencing parameters are defined as
follows:

Mass ratio: the ratio of oscillator mass, m, per unit length to
the mass, md, of displaced fluid per unit length. At a low mass ratio,
the VIV is non-classical (Khalak and Williamson, 1997) as the con-

dition of lock-in is not met, i.e., the cylinder oscillation frequency
differs from (surpasses) the structural natural frequency. By lowm∗,
we imply, in this work, the mass ratio of unity. Such low mass ratios
are encountered in marine structures (Stappenbelt et al., 2007).

Structural damping coefficient: this is different from fluid
damping and is given by the c

2
√

km
ratio, where c and k denote the

damping and stiffness of the oscillator system, respectively.
Reduced natural frequency: the reciprocal of reduced speed or

normalized free-stream speed. It is defined as FN ≙ fND

U
, where f N is

the dimensional natural structural frequency of the oscillator. Thus,

U∗ ≙ U
fND

represents the free-stream speed normalized with natural

frequency and characteristic dimension.
Reynolds number: the product UD

ν
, where ν is the kinematic vis-

cosity of the fluid. The minimum Re at which the VIV of a circular
cylinder is found to exist is ≈18 (Kou et al., 2017).

For oscillators of large mass ratio or m∗ ≫ 1, Bearman (1984)
suggested that resonance (or lock-in or synchronization) corre-

sponds to FN ≈ St0 ≈ StY , where St0 is the vortex-shedding fre-

quency of the oscillator when held stationary and StY is the nor-
malized transverse oscillation frequency. St stands for the Strouhal
number and signifies non-dimensional frequency. Depending on the

value of U, the stationary vortex-shedding frequency approaches FN

and eventually locks onto it, rendering the structure to vibrate with
StY , the magnitude of which is approximately equal to FN (Blevins,
1990). This is the classical lock-in observed for moderate to large
mass ratios. For a low mass ratio, such as unity, both StY and the
vortex-shedding frequency of the oscillating cylinder, StCl , depart
significantly from FN within synchronization. Mittal and Kumar
(1999; 2001) referred to this phenomenon as “soft lock-in.” Under
such circumstances, the lock-in becomes non-classical (Khalak and
Williamson, 1999). To take into account the mismatch of StY and FN

within synchronization for the VIV with low m∗, Sarpkaya (1995)
and Khalak and Williamson (1999) correlated the occurrence of
lock-in with matching of StY with StCl , where StCl signifies the fre-
quency of the periodic wake vortexmode. The quantities StY and StCl

may, however, differ from FN (Prasanth and Mittal, 2008). Kumar
et al. (2016) numerically examined the relationship between StY and
StCl in context of forced vibrations of a circular cylinder and identi-
fied three distinct regimes: lock-in, transition, and no lock-in. These
regimes correspond to satisfaction of (i) StCl ≙ StY besides minor
frequencies of lift becoming integer multiples of StY , (ii) StCl ≙ StY
only, and (iii) none of (i) and (ii), respectively. This method of locat-
ing various states of vibration has been recently implemented by Jiao
and Wu (2018).

This study explores the branching phenomenon of response
for an elliptical oscillator of low mass ratio. Certain segments of
response within and outside the regime of synchronization con-
stitute the response curve of an oscillator and are referred to as
response branches. The segment of response in the steady regime
of flow (prior to the onset of vortex-shedding or due to suppres-
sion of vortex-shedding) forms the steady state (SS) regime (Navrose
et al., 2014) shown in Fig. 1(a) where the mean transverse force and
response are both zero. The steady state regime may be composed of
a pair of components [Fig. 1(b)]. The low amplitude response of an
oscillator corresponding to its non-locked-in state contributes to the
decoherence or desynchronization branch, DS. The DS is composed
of DS I and DS II, i.e., the segments of decoherence prior to the onset
of lock-in and post the lock-out, respectively (Navrose et al., 2014).
It is emphasized here that the desynchronization regime discussed in
the literature is periodic and no description of a quasi-periodic DS
regime is available.We resolve in this work, for the first time, a quasi-
periodic component of DS II and designate it with the symbol DS II
(QP) (see Subsection V A). The periodic part of DS II is denoted by
DS II (P). The major branches that constitute the response under
synchronization are initial branch, IB; upper branch, UB; and lower
branch, LB (Khalak and Williamson, 1996; 1997; and 1999). The
initial and lower branches are located at the lower and upper U∗

(or Re) extremity of lock-in, respectively. Thus, the initial branch
forms at the onset of lock-in, while the end of the lower branch

FIG. 1. Undamped free vibrations of an elliptic cylinder: (a) the relationship between response and Re (or U
∗) for an elliptic cylinder of AR ≙ 10

9
(see Fig. 3 of Navrose

et al., 2014) and (b) modification of response when AR changes to 0.5 (see Fig. 6 of Kumar et al., 2018a). For (b), the cylinder executes undamped transverse-only VIV at
Re = 100. For AR > 1, the major axis is perpendicular to the flow, whereas it is parallel to the flow for AR < 1. Panel (a) is reproduced with permission from Navrose et al.,
“Free vibrations of an elliptic cylinder at low Reynolds numbers,” J. Fluids Struct. 51, 55–67 (2014). Copyright 2014 Elsevier. Panel (b) is reproduced with permission from
Kumar, D., Mittal, M., and Sen, S., “Modification of response and suppression of vortex-shedding in vortex-induced vibrations of an elliptic cylinder,” Int. J. Heat Fluid Flow
71, 406–419 (2018a). Copyright 2018 Elsevier.
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marks the closure of lock-in. The upper branch, located in between
the IB and LB, is associated with the maximum response. While the
amplitude of oscillations in the upper branch can exceed a cylinder
diameter, the amplitude in the lower branch is smaller, i.e., of the
order of 0.6D (Fig. 2 of Khalak andWilliamson, 1999). According to
Carberry et al. (2004) the IB, UB, and LB correspond to high,
medium, and low frequency states, respectively. In Subsections
I A–I C, the concepts of response branching and its development
are discussed. The discussion also includes the role of parameters
influencing the branching and summary of response branching.
The closure of this section highlights the primary objectives of this
work.

A. The origin of response branching

Themost important output variable in the VIV is themaximum
response in the transverse direction, Ymax. This is because the fluc-
tuations in the lift force, Cl, acting across the flow surpass those in
the drag force, Cd, along the flow by at least an order of magnitude.
Thus, oscillations in the body are predominantly across the flow. The
earliest known experimental investigation of the VIV is due to Feng
(1968) at subcritical Reynolds number. For Re of the order of 104

andm∗ζ = 0.36, he presented detailed results for transverse response
of a rigid circular cylinder executing single-degree-of-freedom VIV.
Here, the quantitym∗ζ (≥0) represents the combinedmass-damping
parameter. Feng (1968), however, did not explore the branching
of response. Based on experimental results of the VIV of a flex-
ible circular cable of m∗ζ = 0.41 in air (implies high m∗) over
Re = 3400–11 800, Brika and Laneville (1993) discussed the upper
branch and lower branch of hysteresis loop (not exactly the same as
the upper and lower branches of response). The concept of branch-
ing of response was more clearly introduced for the first time by
Khalak and Williamson (1996) in context of transverse-only VIV of
a rigid circular cylinder at highRe. They, however, did not specify the
exact values of Re. For very low values of mass and damping of the
oscillator system (m∗ = 2.4, m∗ζ = 0.013, thus, ζ ≙ 0.013

2.4
≙ 0.0054),

they conducted experiments for hydroelastic vibrations in a water
channel. Khalak andWilliamson (1996) interpreted that the highm∗

response obtained by Feng (1968) and Brika and Laneville (1993) for
a circular cross section is composed of an upper branch followed by
a lower branch. The response is high in the UB, and it is of mod-
erate magnitude in the LB. Khalak and Williamson (1996) found
that the decomposition of response in the upper and lower branches
for high values of the combined mass-damping parameter remains
valid for low values of m∗ζ (such as 0.013) as well. In a subsequent
experiment at Re ≈ 6000 using the same water channel, Khalak and
Williamson (1997) revisited the transverse response of the circular
cylinder for the same low m∗ of 2.4 but slightly lower ζ (=0.0045).
For the VIV with such low m∗ζ, the U∗ range of cylinder excitation
quadrupled and Ymax/D almost doubled, as compared to the high
m∗ζ results of Feng (1968). Concerning this wide regime of cylinder
excitation, Khalak andWilliamson (1997) identified the existence of
two additional branches of response: the initial excitation regime or
initial branch occurring at the onset of excitation and desynchro-
nization (DS) or decoherence regime appearing post the closure of
excitation. Overall, the response, therefore, is composed of IB, UB,
LB, and DS. The transition from the IB to UB is hysteretic, while the
UB to LB transition involves an intermittent switching between the
UB and LB. They further subdivided the IB into two sub-branches:

the quasi-periodic initial branch at lower U∗ and the periodic initial
branch at relatively higher U∗. The earlier decomposition of Feng
(1968) and Brika and Laneville (1993) response into the UB and LB
by Khalak and Williamson (1996) was later replaced by decomposi-
tion into the IB and LB by Khalak andWilliamson (1999) where they
classified the response of a circular cylinder into two families based
on the magnitude ofm∗ζ. In the first family of response correspond-
ing to lowm∗ζ, the response consists of IB, UB, and LB, while for the
second family at high m∗ζ, it comprises IB and LB. It may be noted
that the range of Re considered by Khalak and Williamson (1999) is
3500−10 000. They conjectured that the value ofm∗ζ mainly governs
the presence or absence of the upper branch. Through experimental
observations, Klamo et al. (2006) demonstrated that a combination
of high Re and low m∗ζ is linked to the formation of UB. By con-
ducting three-dimensional numerical experiments form∗ = 50.8 and
m∗ζ = 0.122, Blackburn et al. (2000) resolved the upper branch of
response for a much lower Reynolds number range of the order
of 500. The response curves presented by Anagnostopoulos and
Bearman (1992) in Figs. 2 and 8 (for increasing Re) and Fig. 9 (for
decreasing Re) of their paper suggests that the response for Re = 90–
150 comprises the IB, LB, and DS regimes; the UB does not appear.
Anagnostopoulos and Bearman (1992) conducted VIV experiments
in a water channel for a circular rod of m∗ = 0.004 27. Zhu et al.
(2019) numerically investigated the damped (ζ = 0.01) VIV of a cir-
cular cylinder of m∗ = 1 at Re = 100 and resolved the IB, LB, and
DS. Numerical investigations at low Re by Singh and Mittal (2005)
and Prasanth andMittal (2008) form∗ = 10 and zero damping ascer-
tain that the response is composed of IB, LB, and DS regimes. Using
two-dimensional computations for the VIV of a circular cylinder of
m∗ = 10 at Re = 200, Leontini et al. (2006) resolved two response
branches that are similar in nature to the upper and lower branches
captured in three-dimensional flow. It may be noted that branching
in the synchronization regime was not discernible from response but
from other VIV parameters.

As a counterpart of the upper branch corresponding to
transverse-only VIV of a circular cylinder, Williamson and Jau-
vtis (2004) identified, for m∗ = 2.6, a new high amplitude response
branch when the cylinder executes two-degrees-of-freedom (2-
DOF) VIV, i.e., simultaneous in-line and cross-stream VIV. This
branch, where the value of the maximum transverse response equals
three times the cylinder diameter, was named as the “super-upper
branch,” SUB by them. The water channel experiments were con-
ducted for Re = 1000–15 000, and the mass-damping parameter was
varied from 0.001 to 0.01.

B. Factors influencing the branching

As apparent from the above discussion, the branching of
response depends on the degree-of-freedom as well as the values of
m∗ζ and Re. Another important influencing parameter is the shape
of the oscillator. For aeroelastic vibrations of a square cylinder of
high mass-damping parameter (m∗ζ = 905 × 0.000 828 = 0.7493)
over Re = 2000–8000, Amandolese and Hemon (2010) interpreted
their response curve to be composed of IB and LB. A close inspec-
tion of their response curve however, reveals that it is composed of
IB, LB, DS, and galloping branch, GB. GB is characteristic to non-
axisymmetric cross sections and hence is absent in the response of
an isolated circular cylinder. For 2-DOF undamped vortex-induced
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motion of a square cylinder of m∗ = 10 (here, m∗ζ = 0) and 60 ≤ Re≤ 250, Sen and Mittal (2011) found that the response is composed of
IB, LB, and DS regimes and GB. For high Re and low m∗ζ, Nemes
et al. (2012) (using m∗ζ = 0.006 49) and Zhao et al. (2014) (using
m∗ζ = 0.006 81) experimentally explored the branching of a freely
vibrating square cylinder for various angles of incidence bounded by
0○ and 45○. For zero incidence, Nemes et al. (2012) found that the
motion is composed of VIV and galloping, but they did not explore
the branching in the VIV regime. For 45○ incidence, the branching is
similar to that of a circular cylinder, i.e., IB, UB, LB, and DS consti-
tute the response. A new branch withmaximum response surpassing
even that of the UB was noted when the angle of incidence ranged
between 10○ and 22.5○. They coined the term “higher branch,” HB,
to denote this branch. Zhao et al. (2014) identified the IB, UB, and
DS regimes for the zero angle of attack. They provide finer details
of the UB, but identification of the LB is not clear. For 20○ inci-
dence, they identified the HB that was first noted by Nemes et al.
(2012). The response comprised IB, UB, HB, and DS regimes. Inter-
estingly, the LB appears to be absent. In context of undamped VIV
of elliptic cylinders of various aspect ratios, AR (ratio of lengths of
the major and minor axes of an elliptic cylinder), in the laminar
vortex-shedding regime (Re = 60–140), Navrose et al. (2014) pro-
vided a detailed account of response branching. Depending on the
aspect ratio of a cylinder, they found that a regime of steady state
exists in the vicinity of the lowest Re considered. A regime of desyn-
chronization, designated as DS I by them, follows thereafter. The
standard DS regime, thus, reduces to the second regime of desyn-
chronization orDS II. They further sub-divided the LB in its periodic
and quasi-periodic components. Figure 1(a) (after Navrose et al.,
2014) illustrates all the possible branching of response for low Re
undamped VIV of an elliptic cylinder ofAR ≙ 10

9
. Further simplifica-

tion of this branching was recently reported by Kumar et al. (2018a)
in context of undamped VIV of an elliptic cylinder of AR = 0.5 at
Re = 100. They observed that the response for such a thin cylinder is

composed of the LB and two regimes of the steady state, i.e., steady
state I and steady state II [Fig. 1(b)]. The IB, DS I, and DS II regimes
do not exist. It may be noted that the major axis of the elliptic cylin-
der is normal to the incoming flow for AR > 1, while for AR < 1, it is
parallel to the flow.

C. Summary of response branching

For oscillators with smooth contours and straight edges (e.g.,
a circular cylinder and a square cylinder at incidence), the first
and second columns of Fig. 2, respectively, illustrate the response
branching subject to various input conditions. Figures 2(a) and 2(b)
depict the response branching due to Khalak andWilliamson (1999)
for transverse-only VIV of a circular cylinder of high and low val-
ues of the combined mass-damping parameter, m∗ζ, respectively.
Irrespective of the values of m∗ and ζ (Bahmani and Akbari, 2010),
Fig. 2(a) is also valid for SDOF or 2-DOF VIV of a circular cylin-
der at low Re. Inclusion of the in-line degree-of-freedom induces
further alterations of response branching as illustrated in Fig. 2(c)
(Jauvtis and Williamson, 2004). In Fig. 2(c), SS and AS stand for
streamwise symmetric and streamwise anti-symmetric, respectively.
For a square cylinder at zero incidence, Fig. 2(d) depicts the branch-
ing for low as well as high mass ratios. For Re ≥ 150 and U∗ ≥ 10,
the galloping branch is absent if m∗ < 4 and all the branches
become present when m∗ ≥ 4, approximately (Li et al., 2019). As
already stated, Zhao et al. (2014) resolved the initial, upper, and
higher branches and the desynchronization regime for flow-induced
transverse-only vibrations of a square cylinder at 20○ incidence and
high Re [Fig. 2(e)]. For transverse-only VIV of a square cylinder at
45○ incidence, i.e., a diamond cylinder, the response [Fig. 2(f)] at
low Re, such as 100, consists of the initial and lower branches and
desynchronization regimes (Sourav et al., 2020). Figure 2, therefore,
illustrates the effects of geometry (first and second columns of this
figure), combined mass-damping parameter [Figs. 2(a) and 2(b)],

FIG. 2. Illustration of classical response branches for oscil-
lators with smooth contours (first column) and straight
edges (second column) executing free vibrations: (a) Y -
only motion of a circular cylinder of high m

∗ζ (Khalak and
Williamson, 1999), (b) Y -only motion of a circular cylinder
of low m

∗ζ (Khalak and Williamson, 1999), (c) X–Y motion
of a circular cylinder of low m

∗ζ (Jauvtis and Williamson,
2004), (d) Y -only motion of a square cylinder at zero inci-
dence (Li et al., 2019) showing both VIV and galloping, (e)
Y -only motion of a square cylinder of m

∗ = 2.4 at 20○ inci-
dence (Zhao et al., 2014), and (f) undamped Y -only motion
of a square cylinder of m

∗ = 10 at 45○ incidence (Sourav
et al., 2020).
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TABLE I. Summary of response branching for oscillators of various cross sections.

Study Cross section Input parameters Response branches

Feng (1968) Circle Re = O(104),m∗ζ = 0.36, Y-only . . .

Anagnostopoulos and Bearman (1992) Circle Re = 90–150,m∗ = 0.004 27, Y-only IB, LB, and DS
Brika and Laneville (1993) Circle Re = 3 400–11 800,m∗ζ = 0.41, Y-only UB and LB
Khalak and Williamson (1996) Circle m∗ = 2.4,m∗ζ = 0.013, Y-only UB and LB
Khalak and Williamson (1997) Circle Re ≈ 6 000,m∗ = 2.4, ζ = 0.004 5, Y-only IB, UB, LB, and DS

Khalak and Williamson (1999) Circle
Re = 3 500–10 000, Y-only

IB, UB, and LB
Lowm∗ζ [=O(0.01)],
Highm∗ζ [=O(0.1)] IB and LB

Blackburn et al. (2000) Circle Re ≈ 500,m∗ = 50.8,m∗ζ = 0.122, Y-only IB, UB, and LB
Jauvtis and Williamson (2004) Circle Re = 1 000–15 000,m∗ζ = 0.001–0.01, X–Y IB, SUB, LB, and DS
Singh and Mittal (2005) Circle Re = 50–500,m∗ = 10, ζ = 0, X–Y IB, LB, and DS

Klamo et al. (2006) Circle
Re = 525–2 600,

IB, UB, LB, and DSm∗ = 7.1–156.7,
ζ = 0.016–0.977, Y-only

Prasanth and Mittal (2008) Circle
Re = 60–200,m∗ = 10,

IB, LB, and DS
ζ = 0, X–Y

Amandolese and Hemon (2010) Square (0○)
Re = 2 000–8 000,

IB and LB
m∗ζ = 0.749 3, Y-only

Sen and Mittal (2011) Square (0○)
Re = 60–250,m∗ = 10,

IB, LB, DS, and GB
ζ = 0, X–Y

Nemes et al. (2012)

Circle Re = 2 500–12 500, IB, UB, and LB
Square (0○) Re = 2 500–12 500, . . .

Square (20○) U∗ = 2–18,m∗ = 2.2, IB, UB, HB, and DS
Square (45○) ζ = 0.006 49, Y-only IB, UB, LB, and DS

Zhao et al. (2014)
Square (0○) Re = 2 000–13 000, . . .

Square (20○) U∗ = 2.75–17,m∗ = 2.64, IB, UB, HB, and DS
Square (45○) ζ = 0.002 58, Y-only IB, UB, and DS

Re = 60–140,
Steady state, DS I, IB (QP), IB (P), LB (P),

Navrose et al. (2014) Ellipse AR = 0.7–1.43,m∗ = 10,
LB (QP), and DS II

ζ = 0, X–Y

Kumar et al. (2018a) Ellipse
Re = 100,m∗ = 10, Steady state I, LB,

ζ = 0, Y-only steady state II

Kumar et al. (2018b)

Circle Re = 60–150,m∗ = 1, 10, DS I, IB, LB, DS II
Square (0○) AR = 0.9, 1, 1.11, DS I, LB, DS II
Ellipse ζ = 0, X–Y DS I, IB, LB, and DS II

D-section DS I, IB, LB, and DS II

Sourav and Sen (2019) Square (0○)
Re = 60–250,m∗ = 3.3–4 DS I, IB, LB,

ζ = 0, X–Y DS II, GB

Sourav et al. (2020) Square (45○)
Re = 100, U∗ = 1–12, DS I, IB,
m∗ = 10, ζ = 0, Y-only LB, DS II

Present Ellipse

Re = 50–180, AR = 1.11,m∗ = 1 DS I, IB, LB, ELB,
ζ = 0, Y-only TB, DS II (QP), DS II (P)

ζ = 0.044, Y-only
DS I, IB, LB,
ELB, DS II

ζ = 0, X–Y
DS I, IB, EIB,
LB, DS II
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degree-of-freedom [Fig. 2(c)], mass ratio, Re, andU∗ [Fig. 2(d)], and
angle of incidence [Figs. 2(e) and 2(f)]. The branching of a circular
cylinder further alters if the aspect ratio of the cylinder differs from
unity, i.e., the cylinder shape becomes elliptic (Navrose et al., 2014
for 60 ≤ Re ≤ 140). An extensive summary of response branching is
provided in Table I. This table also includes the new branches, such
as Extended Initial Branch (EIB), Extended Lower Branch (ELB),
Terminal Branch (TB), and Quasi-periodic second regime of desyn-
chronization [DS II (QP)] resolved in this work. In Table I, (QP)
and (P) signify the quasi-periodic and periodic segments of a branch,
respectively.

D. Objectives of the current work

The variation of angle of incidence or aspect ratio amounts
to change in the oscillator shape. The above discussion, therefore,
establishes that besides DOF, m∗ζ, and Re, the oscillator shape is
also a key influencing parameter affecting the branching. The con-
struction of response branching is a strong function of the value of
m∗ζ (Govardhan and Williamson, 2000). For the VIV of a circular
cylinder over Re = 80–160, Table 2 of Bahmani and Akbari (2010)
demonstrates that different combinations of m∗ and ζ for identi-
cal values of m∗ζ affect the maximum response and range of lock-
in. A quest, therefore, arises naturally: Do the components of m∗ζ,
i.e., m∗ and ζ, individually influence the response branching? For
Re = 50–250, Sen and Mittal, 2015; noted that the response of
an undamped square cylinder comprises IB, LB, and DS regimes
and GB for m∗ > 5 and the GB does not appear for m∗ = 1. This
study, though restricted to Re = 250, suggests that m∗ individually
is indeed a parameter to alter the branching. Klamo et al. (2006)
experimentally investigated the role of structural damping on the
response and frequency characteristics. They varied ζ from 0.0005
to 0.0410 and a set of three mass ratios, i.e., m∗ = 7.1, 78.3, and
156.7, was considered. For Re = 525–2600, decreasing ζ caused a
decay in the amplitude of the UB and also shortened its extent. The
effect of damping on response was investigated by Sun et al. (2016)
for the VIV of a rough circular cylinder at Re = 30 000–120 000.

The components of response were IB, UB, LB, and DS regimes and
GB. They observed that increasing damping reduces the extent of the
VIV regime, advances the occurrence of GB, and overall decreases
the response in all branches. Thus, no fundamental modification of
branching due to damping is seen from the studies of Klamo et al.
(2006) and Sun et al. (2016). It is, therefore, interesting to see if the
damping effects alter the branching at low Re and lowm∗.

As discussed, the details of response branching concerning 2-
DOF VIV for an elliptic cylinder of AR ≙ 10

9
and m∗ = 10 were

presented by Navrose et al. (2014). The response is composed of
SS, DS I, IB (quasi-periodic and periodic), LB (periodic and quasi-
periodic), and DS II. The response of this cylinder is known to be
devoid of GB. The AR ≙ 10

9
cylinder is considered in this study

since all the basic branches exist in its response. An Re range of
50–180, in which the flow is known to belong to the laminar vortex-
shedding regime, is used. The initial question that we address is as
follows: Does the branching of response for undamped 2-DOF VIV
alter if m∗ is lowered down to 1? The answer to this is found to be
affirmative (see Subsections V A and V B). Identification of a new
branch provides us the basis to explore the VIV with this mass ratio
of unity subject to varying conditions. The pioneering studies by
Khalak and Williamson (1996; 1997; and 1999) defining response
branches relate to damped transverse VIV of low m∗ (thus, m∗ζ≠0)
cylinders at high Re. The identification of a super-upper branch by
Williamson and Jauvtis (2004) establishes degree-of-freedom as a
parameter controlling branching. Through the findings by Khalak
and Williamson (1996; 1997; and 1999) and Williamson and Jau-
vtis (2004), it appears to one that ζ and degrees-of-freedom may be
factors to alter the response branching. We, thus, explore the inde-
pendent effects of degree-of-freedom, ζ, and, in addition, cylinder
shape on the response.

In this work, we have followed the method proposed by Kumar
et al. (2018b) for identifying the response branches and associ-
ated transitions. They demonstrated that, irrespective of oscillator
cross section, changes in the slope of oscillation frequency, StY , in
the StY vs Re (or U∗) profile mark a transition from one response
branch to another. Such transitions are difficult to identify from the

FIG. 3. Undamped 2-DOF free vibrations of an elliptic cylinder of AR ≙ 10
9

(major axis normal to the flow) and m
∗ = 10 over Re = 60–150: (a) the variation of oscillation

and shedding frequencies with Re (or U
∗) [see Fig. 9(c) of Kumar et al., 2018b] and (b) identification of corresponding response branches and jumps in non-dimensional

frequency represented by St [see Fig. 3(b) of Kumar et al., 2018b]. The response for this case is shown later in Fig. 12(f). Panels (a) and (b) are reproduced with permission
from Kumar, D., Singh, A. K., and Sen, S., “Identification of response branches for oscillators with curved and straight contours executing VIV,” Ocean Eng. 164, 616–627
(2018b). Copyright 2018 Elsevier.
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response of oscillators with low mass ratios or oscillators contain-
ing straight edged contours. For AR ≙ 10

9
and m∗ = 10, Figs. 9(c)

and 3(b) of Kumar et al. (2018b), respectively, illustrated the depen-
dence of oscillation and vortex-shedding frequencies on Re as well
as branching of response. These figures are reproduced in this paper
as Figs. 3(a) and 3(b), respectively. In Fig. 3(a), St is the Strouhal
number signifying the normalized frequency. The vortex-shedding
frequency is denoted by StCl . As obvious from Figs. 3(a) and 3(b),
the response of the AR ≙ 10

9
elliptic cylinder withm∗ = 10 comprises

DS I, IB, LB, and DS II. The initial segment of response stretching
linearly up to Re = 77 is the DS I branch. The first change of slope of
StY at Re = 78 and associated with a jump discontinuity indicates the
transition to IB as well as commencement of synchronization/lock-
in. The transition of IB to LB at Re = 83 is associated with the sec-
ond slope change of StY as well as the second discontinuous jump.
Finally, the onset of regime of desynchronization/decoherence or DS
II relates to the third change of slope of the oscillation frequency
curve at Re = 133.

The remaining of this article is organized as follows: the gov-
erning equations for incompressible fluid flow and motion of rigid
body are discussed in Sec. II. Section III contains brief description of
the space-time finite-element formulation. The problem statement
is detailed in Sec. IV. The main results are presented in Sec. V. The
appearance of four new low amplitude response branches close to
the lock-in boundaries, one of them near the onset and remain-
ing three close to the lock-out are noted. Finally, few concluding
statements are given in Sec. VI.

II. THE GOVERNING EQUATIONS

A. The incompressible flow equations

Let the time-varying spatial domain and the temporal domain
are denoted byΩt ⊂ IR2 and (0,T), respectively. Let Γt ≙ (Γt)g∪(Γt)h
denote the boundary of Ωt and is piecewise smooth. (Γt)g and (Γt)h
denote the parts of boundary with the prescribed essential (Dirich-
let) and natural (flux or Neumann) boundary conditions, respec-
tively. The spatial and temporal coordinates are denoted by x = (x,
y) and t, respectively. In strong form, the Navier–Stokes equations
of motion governing incompressible flow are

ρ(∂u
∂t

+ u ⋅∇u) −∇ ⋅ σ ≙ 0 on Ωt × (0,T), (1)

∇ ⋅ u ≙ 0 on Ωt × (0,T). (2)

In the above stress–divergence presentation of the Navier–Stokes
equations of motion, u = (u, v) and σ are the fluid velocity vector
at a point and stress tensor, respectively. The constitutive relation
for the stress tensor at a point in terms of its isotropic and deviatoric
components reads as

σ ≙ −pI + T, T ≙ 2 με(u), ε(u) ≙ 1

2
((∇u) + (∇u)T), (3)

where p, I, T, μ, and ε are the pressure, identity tensor, vis-
cous or deviatoric stress tensor, dynamic viscosity of the fluid,
and strain rate tensor, respectively. Both the essential and natural
boundary conditions are considered. The initial condition on the
velocity is

u(x, 0) ≙ u0 on Ω0, (4)

where u0 is divergence-free, i.e., u0 satisfies the condition of zero-
dilatation enforced by the incompressibility constraint or conserva-
tion of mass [Eq. (2)].

B. Equations of motion for an elastically mounted
rigid elliptic cylinder

Simultaneous in-line and cross-stream (or two-degrees-of-
freedom) translations of an oscillator are governed by Newton’s sec-
ond law of motion expressed along the streamwise and cross-stream
directions, respectively, as

m(d2X
dt2

,
d2Y

dt2
) + c(dX

dt
,
dY

dt
) + k(X,Y) ≙ Fx(t),Fy(t) for(0,T).

(5)

Equation (5) represents a pair of uncoupled dimensional ordi-
nary differential equations of motion. The terms in the left-hand side
represent the inertia force, viscous damping, and restoring force,
respectively. The instantaneous fluid forcing terms Fx(t) and Fy(t)
on the right-hand side act at the no-slip fluid–solid interface and
couple the flow and rigid body equations. The quantities X(t) and
Y(t) are the streamwise and transverse degrees-of-freedom or dis-
placements of the oscillator, respectively, measured from the origin
of the fixed coordinate system (discussed in Sec. IV). The rigid ellip-
tic section oscillator is flexibly mounted and fully immersed in a
moving viscous fluid [Fig. 4(a)]. The major axis of the cylinder is
normal to the incoming flow. Normalization of the spatial scales
is performed by the characteristic dimension, D. Here, D is the

FIG. 4. Two-degrees-of-freedom vibra-
tions of a rigid elliptic cylinder of AR
≙ 10

9
: (a) the problem definition and

(b) the undeformed finite-element mesh.
The displacements X and Y are mea-
sured from the origin of the fixed coor-
dinate system.
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length of major axis of the cylinder. The temporal scale is normal-
ized by U and D. The instantaneous drag and lift coefficients are

defined as Cd(t) ≙ Fx(t)
0.5ρU2D

and Cl(t) ≙ Fy(t)
0.5ρU2D

, respectively. After

non-dimensionalization (see Sourav and Sen, 2017), the equations
of rigid body translation along and across the flow, obtained from
Eq. (5), reduce to

d2X∗

dt∗2
+ 4πFNζ

dX∗

dt∗
+ (2πFN)2 X∗ ≙ 2Cd

πm∗
AR for (0, TU

D
),
(6)

d2Y∗

dt∗2
+ 4πFNζ

dY∗

dt∗
+ (2πFN)2 Y∗ ≙ 2Cl

πm∗
AR for (0, TU

D
),
(7)

where the normalized response and time are defined as X∗ ≙ X
D
,

Y∗ ≙ Y
D
and t∗ ≙ tU

D
, respectively. From the definition of reduced

speed, one gets U∗ ≙ U
fND
≙ UD

ν
1

fND
ν
D
≙ ν

fND2 Re. For a given setup

of the oscillator system, ν, f N , and D are fixed. Therefore, U∗ is lin-
early and FN inversely proportional to the Reynolds number. Hence,
U∗ (or FN) can be coupled with Re. To evaluate the constant of
proportionality, Re = 100 is chosen as a reference Reynolds num-
ber since the study involves an Re range of 50–180. The stationary
vortex-shedding frequency (=0.1691) of the AR ≙ 10

9
cylinder at Re

= 100 is matched with the reduced natural frequency of the vibrating
cylinder at Re = 100. Accordingly, the value of FN at Re = 100 equals
0.1691. From this, FN ≙ 0.1691 ≙ 0.1691 100

100
≙ 0.1691 100

Re
(since FN

is inversely proportional to Re)⇒ FN ≙ 16.91
Re

or Re = 16.91U∗. Such
interdependence of key influencing (input) parameters Re and U∗ is
obvious from the experimentally obtained response and frequency
plots by Anagnostopoulos and Bearman (1992). This kind of rela-
tionship has been employed previously by Blackburn et al. (2000),
Willden and Graham (2006), Prasanth and Mittal (2008), and Bah-
mani and Akbari (2010), among others, to compute the VIV of a
circular cylinder.

The springs [see Fig. 4(a)] are assumed to be linear and identical
along the directions of cylinder motion implying stiffness, kx = ky = k
(Jauvtis and Williamson, 2003). The spring stiffness that appears in
the dimensional rigid body equation of motion [Eq. (5)] contributes
to the dimensionless coefficient term (2πFN)2 appearing in the last
term of the right-hand side of normalized rigid body [Eqs. (6) and
(7)]. For the present computations, Re is the input variable render-
ing the values of FN ≙ 16.91

Re
or U∗ ≙ 1

FN
being specified a priori.

The relationship between the reduced natural frequency and spring

stiffness is obtained as FN ≙ fN
D
U
≙ 1

2π

√
k
m

D
U
. Thus, the specifica-

tion of Re, U∗, or FN indirectly specifies the value of k. In particular,
k ≙ m(2πFN U

D
)2, where FN ≙ 16.91

Re
.

III. THE FINITE-ELEMENT FORMULATION

A stabilized space-time finite-element formulation incorporat-
ing the same order (here, bilinear) of interpolation for the flow vari-
ables, i.e., velocity and pressure, is used in this study. The equations
for rigid body motion are also analyzed using the space-time for-
mulation. The interpolation functions for u and p are bilinear in
space and linear in time. Globally, these interpolation functions are

continuous in space but discontinuous in time. The details of the
space-time method can be found in Tezduyar et al. (1992a; 1992b).

IV. THE PROBLEM STATEMENT

Figure 4(a) depicts the problem setup for a symmetric rigid
elliptic cylinder of AR ≙ 10

9
executing free undamped translations

simultaneously along and across the flow. The cylinder is mounted
flexibly in the fluid domain. An inertial or fixed frame of reference is
used for analysis of the cylinder motion. At impending motion, the
origin of this reference frame and the center of the cylinder coincide
at (0, 0). Both undamped (ζ = 0 orm∗ζ = 0) and damped (ζ = 0.044 or
m∗ζ = 0.044) free vibrations are investigated. The springs are linear,
and the value of spring stiffness is identical along and across the flow.
A rectangular computational domain of length 35.5D and width 20D
[exterior boundary of the mesh shown in Fig. 4(b)] is truncated from
the fluid domain.With this setup, the blockage or ratio of the oscilla-
tor width to the width of the truncated domain equals 0.05. Relative
to the origin of the fixed (x, y) coordinate system, the upstream and
downstream boundaries are located at distances of 10D and 25.5D,
respectively. The boundary conditions employed are free-stream
inlet, slip side boundaries, stress-free exit, and no-slip at the fluid–
cylinder interface. The no-slip condition on velocity at the cylinder
surface is dynamic or time-dependent. Besides fluid loading, the no-
slip condition also imposes a coupling between the fluid and solid
media. A five-blocked (one interior or central block and four sur-
rounding blocks) and structured non-uniform mesh composed of
bilinear quadrilateral elements is used for domain discretization.
The mesh consists of 7437 nodes and 7236 bilinear quadrilateral ele-
ments. To take into account the motion of the cylinder, the mesh is
reconstructed at each time step. The interior block accommodates
the oscillator and travels along with it as a unit. During remeshing,
the location of the outer rectangular boundary and coordinate sys-
tem remains fixed relative to time. However, the location of each
node, except for the four corners of the domain, changes. The mesh
shown in Fig. 4(b) is undeformed.

V. RESULTS

To the authors’ best knowledge, there exists only a couple of
studies in the literature on low Re VIV of an elliptic cylinder of low
mass ratio (m∗ ≈ 1). One of these studies, i.e., Sourav and Sen (2017)
for damped as well as undampedVIV of anm∗ = 1 elliptic cylinder of
AR ≙ 10

9
, focused on the response characteristics. This study, how-

ever, did not explore its branching using the frequency and hence
could not capture minute details of the response, particularly toward
the closure of lock-in. The other study by Leontini et al. (2018) for
AR = 1.5 and m∗ = 1 delves with the evolution of wake modes with
varying angles of incidence at Re = 200.

For certain combinations of degree-of-freedom, mass ratio,
damping, and AR, two-dimensional computations are carried out
over Re = 50–180. The focus is primarily on the m∗ = 1 cylinder. At
each time step, the asymmetric flow matrix is solved using the Gen-
eralized Minimal RESidual (GMRES) iterative equation solver due
to Saad and Schultz (1986). The solution of the ordinary differen-
tial equations for rigid body motion follows a numerical integration
technique (Mittal and Tezduyar, 1994). The mesh convergence and
validation are discussed in detail in Sourav and Sen (2017).
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A. Undamped Y -only VIV of AR = 10
9
elliptic cylinder

with m∗ = 1

In this subsection, we investigate, for the first time, the
construction of response branching for an AR ≙ 10

9
ellip-

tic cylinder of m∗ = 1 executing undamped transverse-only
VIV.

1. Identification of new branches ELB, TB,
and DS II (QP)

The oscillation and vortex-shedding frequencies are plotted
together in Fig. 5(a), while Fig. 5(b) depicts the discontinuous jumps
as well as slope changes in the oscillation frequency and, finally,
the identified six response branches. A total of five slope changes
at Re = 53, 65, 149, 155, and 155.2, respectively, and three discon-
tinuous jumps at Re = 53, 155, and 155.2, respectively, relate to a
total of six response branches. From this lot, two response branches
and a quasi-periodic segment of DS II are identified for the first

time. As one moves toward the upper end of desynchronization, the
order of appearance of the branches is DS I, IB, LB, ELB, TB, and
DS II, where the DS II is further decomposed as DS II (QP) and
DS II (P) segments. The newly identified branches are the extended
lower branch (ELB), terminal branch (TB), and quasi-periodic sec-
ond desynchronization branch [DS II (QP)]. Figures 5(a) and 5(b)
reveal stark disparity with the one for undamped 2-DOF VIV of
the same elliptic cylinder with a higher mass ratio of 10 (shown
in Fig. 3). The disparity in the form of fundamental modifications
of the standard frequency diagram is most prominent toward the
closure of synchronization [shaded region in Fig. 5(a)]. In this “V”-
shaped region, the frequency curve undergoes two additional slope
changes and a pair of discontinuous jumps underscoring the exis-
tence of two intermediate branches, i.e., ELB and TB between the
lower branch and DS II. No reference of such intermediate branches
with low amplitude of oscillations (because of the proximity of upper
boundary of lock-in) is available in the literature in context of VIV at
low Re.

FIG. 5. Undamped Y -only free vibrations
of an AR ≙ 10

9
and m

∗ = 1 elliptic cylin-

der (major axis normal to the flow): (a)
the variation of oscillation and shedding
frequencies with Re (or U

∗), (b) further
detailed presentation of (a) showing all
the branches, (c) Cd–Cl phase plot at Re

= 155, (d) power spectrum of Cl at Re

= 155, (e) Cd–Cl phase plot at Re = 156,
and (f) power spectrum of Cl at Re = 156.
Re = 155 and 156 belong to TB and DS
II (QP), respectively.
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The DS I continues up to Re = 52 and the first change of slope
of the frequency curve occurs at Re = 53. At this Reynolds number,
the DS I transits to IB. The associated jump discontinuity suggests
that the onset of IB also marks the onset of synchronization. The
next transition occurs at Re = 65, where StY (or StCl ) attains its peak
value of 0.1887. The third change of slope of StY occurs at Re = 149,
and StY continues to undergo smooth decay post the third change
of slope. This transition marks the identification of a new response
branch next to the LB (and forms the V region) that we denote as
“extended lower branch” (ELB). The extreme point of the ELB at
Re = 154.9 corresponds to the attainment of the minimum value
of StY or StCl (=0.1281) for the entire range of Re considered. For
oscillators with a higher mass ratio, such as 10, the least value of St

signifies the termination of lock-in (Kumar et al., 2018b). Form∗ = 1,
the minimum frequency, however, is not an indicator of the closure
of lock-in but an indicator of the upper limit of the ELB. The sec-
ond jump (of small magnitude) in StY at Re = 155 and associated
fourth change of slope marks the existence of a new branch that is
separated from the lower branch or its extension. This is the final res-
onance branch and is accordingly referred to as the terminal branch
(TB). The TB stretches over an extremely narrow Re interval of 155–
155.1. The magnitude of StY slightly rises in the TB. A discontinu-
ous (third) jump of frequency at Re = 155.2 and associated fifth or
final slope change marks the origin of the final non-lock-in response
branch, DS II. The vibrations in the TB and the initial part of DS II
are quasi-periodic such that StY < StCl in TB and StY ≙ StCl in DS II.

FIG. 6. Undamped Y -only VIV of an elliptic cylinder of AR ≙ 10
9

and m
∗ = 1: (a) St–Re and (b) Ymax–Re relationship close to the end of lock-in. The Cd–Cl Lissajou diagrams

at Re = (c) 154.5, (d) 155.2, (e) 156.5, (f) 156.9, and (g) 157. Time traces of Cd are shown at Re = (h) 154.9, (i) 155, (j) 156, and (k) 157.
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TABLE II. Undamped transverse-only VIV of a thick elliptic cylinder of AR ≙ 10
9

and m
∗ = 1: summary of the range of

response branches. For this case, a total of six transitions are identified.

Range Range Range Range Range Range of Range of
of DS I of IB of LB of ELB of TB DS II (QP) DS II (P)

50−52 53–64 65–148 149–154.9 155–155.1 155.2–156.9 157–180

Gross periodicity prevails in the remaining branches including the
later part of DS II. The quasi-periodicity at Re = 155 and 156 in TB
and early DS II, respectively, is reflected via respective Cd–Cl Lis-
sajou diagrams [Figs. 5(c) and 5(e)] as well as power spectra of Cl

[Figs. 5(d) and 5(f)].
The decomposition of DS II in its quasi-periodic and periodic

segments is analyzed in Fig. 6. The third discontinuous jump in StY
occurring at Re = 155.2 [Fig. 6(a)] signifies the commencement of
a response branch in which the slope of StY does not exhibit any
appreciable variation until Re = 180. This is the second regime of
desynchronization, the initial segment of which relates to quasi-
periodicity and the terminal part to periodicity. In may be noted
that discontinuous jump in StY at Re = 155.2 does not necessar-
ily translate to a discontinuity in Y [Fig. 6(b)]. Thus, identification
of the quasi-periodic DS II branch does not appear to be possible
from response and also from frequency (constant slope of StY over
155.2 ≤Re ≤ 180). The undampedY-only VIV of the elliptic cylinder,
therefore, represents an instance where the quasi-periodic and peri-
odic segments of DS II construct a continuous curve with StY ≙ StCl

throughout. This renders the demarcation of the boundary between
DS II (QP) and DS II (P) segments not possible via the method
of Kumar et al. (2018b). To locate the boundary, the time traces
of fluid forces as well as phase portraits are employed. For 155.2≤ Re ≤ 156.9, the Cd–Cl Lissajou diagrams [Figs. 6(d)–6(f)] clearly
reveal quasi-periodicity while StY ≙ StCl . This regime of Re forms the
quasi-periodic DS II branch. The segment of DS II stretching from
Re = 157 to 180 is periodic and corresponds to the DS II (P) branch.
We are unaware of any prior decomposition of DS II into peri-
odic and quasi-periodic parts. The figure eight profile of Cd–Cl

Lissajou diagram [Fig. 6(g)] ascertains periodicity at Re = 157.
Figures 6(h)–6(k) illustrate the time traces of drag. At Re = 154.9,
marking the extreme point of the ELB, the time signal reveals peri-
odicity [Fig. 6(h)] as expected from the periodic Cd–Cl Lissajou
diagram at Re = 154.5 [Fig. 6(c)] belonging to the same branch. A
quasi-periodic Cd signal [Fig. 6(i)] with StY ≠ StCl [Fig. 6(a)] and
associated jump discontinuity at Re = 155 essentially suggests that
Re = 155 is not located in the same branch asRe = 154; it is rather part
of a separate branch TB that, unlike ELB, is quasi-periodic. While, at
Re = 156 [Fig. 6(j)], the drag shows a similar trend as at Re = 155,
the St–Re segment containing this point relates to a further jump
discontinuity, and hence, Re = 156 is part of a different branch, i.e.,
quasi-periodic DS II. Beating is a phenomenon associated with low
amplitude vibrations where the fluid-structure system contains mul-
tiple frequencies (Willden and Graham, 2006). This generally occurs
close to the lock-in boundaries. The Cd signals for Re = 155 and 156
contain beats. Finally, periodicity is recovered at Re = 157 [Fig. 6(k)]
and constancy of slope of the St–Re profile indicates transition from
the quasi-periodic to periodic segment of the same branch, i.e.,
DS II.

Table II summarizes the range of Re for each response branch.
It is evident that the extent of ELB is the largest among all three
newly identified branches but significantly smaller than those of
the fundamental branches, i.e., IB and particularly LB. The cylin-
der response shown in Fig. 7 for Re = 50–180 illustrates all the
branches and transitions. The response in the ELB is smaller than
the response in the LB and hovers around 0.3D. The unique fea-
ture of response for low m∗ is that the transition of moderate
amplitude VIV toward the closure of lock-in to periodic decoher-
ence via DS II (QP) is continuous as against a sharp drop of Y
generally noted for high m∗ (Fig. 4 of Navrose et al., 2014 for
m∗ = 10).

2. The wake modes and mean surface pressure

Williamson and Roshko (1988) conducted extensive experi-
mental investigations on forced transverse vibrations of a circular
cylinder in a towing tank. For several values of oscillation ampli-
tude, the interactions among vortices shed in an oscillation cycle
were closely studied. The arrangements of shed vortices as a function
of amplitude andwavelength/reduced speed were presented in a vor-
tex synchronization map. Certain nomenclature for wake modes of
vortex-formation, such as 2S, C(2S), and P + S was introduced based
on the vortex arrangements. By “S” a single vortex and by “P” a pair
of opposite-signed vortices were denoted byWilliamson and Roshko
(1988). Accordingly, the basic Kármánmode of vortex-shedding was

FIG. 7. Undamped transverse-only VIV of a rigid elliptic cylinder of AR ≙ 10
9

and m
∗ = 1 over Re = 50–180: the relationship of response with Re and U

∗.
The branching of response is illustrated via regimes of varying colors. The newly
identified branches ELB and TB were erroneously considered by Sourav and Sen
(2017) as part of the lower branch.
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FIG. 8. Undamped Y -only VIV of an elliptic cylinder of AR ≙ 10
9

and m
∗ = 1: the wake modes of vortex-formation at Re = (a) 70 in LB, (b) 100 in LB, (c) 154 in ELB, (d) 155

in TB, (e) 156 in DS II (QP), and (f) DS II (P). The wake mode is C(2S) for panels (a) and (b), while for the rest, it is 2S. The origin of the fixed coordinate system is indicated
by ×.

designated by 2S. The C(2S) mode forms due to coalescence of like
sign vortices of 2S mode. Hence, 2S corresponds to the basic mode
in which a pair of vortices of opposite sign are shed in an oscillation
cycle. The wake mode is a function of amplitude and reduced speed.
For high amplitude transverse oscillations, the wake mode is C(2S)
as noted at Re = 70 [Fig. 8(a)] and 100 [Fig. 8(b)], both belonging to
LB. Toward the closure of lock-in, where the amplitude is low, i.e.,
the response is of the order of 0.2D, the wake mode is 2S irrespective
of the response branch. This is supported by Figs. 8(c)–8(f) corre-
sponding to ELB, TB, DS II (QP), and DS II (P), respectively. Thus,
the wake modes and response branches appear uncorrelated for the
VIV of a thick elliptic cylinder in the lowRe laminar vortex-shedding
regime.

The time-averaged surface pressure, Cp, is illustrated in Fig. 9
for Re = 154, 155, 156, and 157 belonging to LB, ELB, TB, and DS
II (QP), respectively. While multiple transitions occur over this nar-
row range of Re, the Cp plots overlap and reveal symmetry about
the base point. This symmetry is consistent with the anti-symmetric

FIG. 9. Undamped Y -only motion of an elliptic cylinder of AR ≙ 10
9

and m
∗ = 1:

the distribution of mean surface pressure for Re = 154, 155, 156, and 157.

2S wake vortex mode resolved at these Re. It may be noted that the
time-averaged values of lift and Y response for these Re are zero
[Figs. 16(c)–16(f)].

B. Effect of damping on branching for SDOF motion

The role of damping in altering the response branches for
SDOF VIV, if it indeed does so, is tested next. The damped Y-only
motion is investigated for ζ = 0.044. In context of VIV of a thick
elliptic cylinder ofm∗ = 1, Sourav and Sen (2017) demonstrated that
damping eliminates quasi-periodicity. The dependence of oscillation
frequency on Re is depicted via Fig. 10(a) both for undamped and
damped Y-only VIV. In the early state of lock-in, the damped fre-
quency is lower than its undamped counterpart and the trend alters
appreciably toward the end of lock-in. Overall, the damping does not
appear to affect the range of lock-in significantly. The “V” region of
undamped frequency is largely shortened due to damping, and the
appearance of an attenuated “V” toward the upper boundary of LB
is quite clear from the figure. An enlarged view of this “V” region is
shown in the inset of Fig. 10(a). The LB terminates at Re = 152. A
slope change at Re = 153 indicates the beginning of ELB at this Re.
For clarity, the frequency curve for ζ = 0.044 is shown in Fig. 10(b).
The lowest point of the “V” corresponding to Re = 154 marks the
end of ELB as well as the upper boundary of lock-in. The next slope
change at Re = 155 signifies that DS II has begun. DS II is found to
be essentially periodic. It is noteworthy that the ELB→ DS II transi-
tion does not involve a jump but a single change of slope. Thus, the
quasi-periodic TB and DS II (QP) do not form. For the VIV with low
m∗, damping, therefore, does remove the quasi-periodicity and VIV
turns grossly periodic. The terminal point of the ELB is chosen as
a representative point at which we show the Cd–Cl phase diagram.
The figure eight shape of the diagram ensures the periodic nature
of flow and VIV. The response due to damping is smaller in lock-
in and higher in non-lock-in regimes as compared to the undamped
response [Fig. 10(c)].

A summary of the VIV/flow quantities for undamped as well as
damped VIV is provided in Table III. The maximum amplitude due
to damping drops approximately by 8%. Compared to undamped
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FIG. 10. Transverse-only vortex-induced vibrations of a thick elliptic cylinder of AR ≙ 10
9

and m
∗ = 1: effect of damping on (a) frequency and (c) response. For clarity, panel

(b) separately shows the damped frequency shown in (a). The small “V” shaped region in (a) and (b) indicates that LB transits to DS II through ELB.

VIV, attainment of the peak response also gets delayed. In both
cases, the largest value of St is attained at the onset of LB. The low-
est value of St denotes the closure of lock-in for damped motion
and upper boundary of the resonance branch ELB for undamped
motion. The value of St is larger in the former case. With damped
VIV, the extent of ELB shrinks noticeably.

C. Effect of oscillator cross section on branching
for SDOF motion

The newly identified low amplitude response branches do not
appear for the undamped 2-DOF VIV of a circular cylinder (AR
= 1) of m∗ = 1 [see Fig. 6.2(a) of Prasanth, 2009]. As discussed

in Subsection V D, this behavior is identical to that of the thick
elliptic cylinder of AR ≙ 10

9
. To understand the effects of oscilla-

tor shape on branching, the response of the circular cylinder for
undamped Y-only motion is analyzed. The frequency and response
characteristics are shown in Figs. 11(a) and 11(b), respectively, along
with the results for the AR ≙ 10

9
cylinder. Lowering the AR short-

ens the width of the lock-in regime. It is also found that the third
change of slope marking the initiation of ELB for AR = 1 occurs
at a Reynolds number of 129, a value quite lower compared to
Re = 149 for AR ≙ 10

9
[Fig. 11(a)]. Post the ELB, an abrupt jump

in frequency marks the commencement of DS II that is periodic in
nature. The quasi-periodic branches TB and DS II (QP) do not exist
for the circular cylinder.

TABLE III. Transverse vortex-induced vibrations of an elliptic cylinder of AR ≙ 10
9

and m
∗ = 1: summary of the key characteristic quantities for undamped (ζ = 0) and damped

(ζ = 0.044) vibrations.

Onset of lock-in Closure of lock-in

ζ Ymax/D Re for Ymax/D Stmax Stmin Re St Ymax/D Re St Ymax/D Re range of ELB

0 0.5878 70 0.1887 0.1281 53 0.1743 0.1459 155.1 0.1321 0.2566 149–154.9
0.044 0.5417 75 0.1856 0.1463 55 0.1646 0.1167 154 0.1454 0.2166 153–154
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FIG. 11. Effect of cross section on response branching of elliptic cylinders of m
∗ = 1 executing transverse-only VIV: the relationship of (a) frequency and (b) response with

Re and U
∗ for AR ≙ 10

9
and 1. For AR = 1, the LB→ DS II transition occurs through the ELB and the quasi-periodic branches TB and DS II (QP) do not appear.

D. Branching for undamped X –Y -motion with m
∗

< 10:
Identification of “extended initial branch” or EIB

We first test if lowering the mass ratio below 10 alters the
branching of undamped 2-DOF VIV discussed in Subsection I D.
To this end, the frequency and response of the AR ≙ 10

9
cylinder is

analyzed for mass ratios of 1 and 5. Form∗ = 5, Fig. 12(a) depicts the
frequency characteristics and shows the Re locations marking tran-
sitions. A total of three slope changes or branch transitions at Re =
73, 80, and 138, respectively, are very clear in this figure. The first
transition at Re = 73 implies the onset of lock-in as well as initiation
of IB. The response is made of the four fundamental branches that
appear in the following sequence: DS I, IB, LB, and DS II (labeled in
the figure). The DS II is periodic. A departure from the frequency
patterns ofm∗ = 5 and 10 is seen form∗ = 1 in the region next to the
onset of lock-in [Fig. 12(b)]. In this case, the transition of IB to LB
is continuous as opposed to the discontinuous transition via a jump
for higherm∗ values of 5 and 10. The first change of slope form∗ = 1
is noted at Re = 53. Unlike for higher mass ratios, a dip in frequency
is noted thereafter, followed by the second slope change at Re = 56.
This regime of decaying frequency stretching from Re = 53 to
Re = 55 is the initial branch. Subsequent to this, the frequency con-
tinues to rise smoothly until it attains its peak value at Re = 65. The
region bounded by Re = 57 and 64 represents a new response branch
that substitutes the discontinuous jump found for m∗ = 5 and 10.
Since this branch is an extension of the IB that meets the LB, we
define this branch as “extended initial branch” (EIB). The change of
slope for the third time at Re = 65 signifies the commencement of
LB. A final slope change occurs at Re = 169 and indicates LB → DS
II transition. The last two slope changes at Re = 65 and 169 imply
that the LB ranges from Re = 65 to 168 and DS II from Re = 169 to
180. Therefore, form∗ = 5 and 10, the response consists of all four of
the basic branches, i.e., DS I, IB, LB, and DS II, which are captured
for low Re VIV of a circular/thick elliptic cylinder. For m∗ = 1, one
additional branch, i.e., EIB, contributes to the branching. A zoomed-
in view of Fig. 12(c) illustrates the details of frequency curve in the
vicinity of IB and EIB. The identification of all the response branches
for m∗ = 1 appears difficult, if not impossible, from the Xrms–Re

variation presented in Fig. 12(d). The existence of EIB as well as the
locations of transitions in between the IB and LB cannot be deter-
mined from the Xrms profile. However, the quasi-periodic segment
of the LB is identified as the horn in Xrms stretching over Re = 166–
168. TheCd–Cl [Fig. 12(e-i)] andCl–Y [Fig. 12(e-ii)] phase diagrams
ascertain the quasi-periodic nature of flow and VIV at Re = 168
marking the termination of lock-in. An out of phase relationship
between Cl and Y is also evident from the Cl–Y phase diagram. The
associated power spectra of Cl [Fig. 12(e-iii)] and Y [Fig. 12(e-iv)]
reveal quasi-periodicity with almost identical value of the domi-
nant frequency. The response for m∗ = 1, 5, and 10 is compared in
Fig. 12(f). The absence of a horn (indicating a rise) in response ofm∗

= 5 toward the upper extremity of synchronization implies that its
lower branch does not contain the quasi-periodic component, while
those for m∗ = 1 and 10 do. Besides widening of the range of syn-
chronization with decreasing m∗ (Stappenbelt et al., 2007 and Shen
and Sun, 2019), a rise in the magnitude of the maximum transverse
response is also noted. In addition, the lock-in sets in earlier, and
consequently, the peak value of Ymax is attained at lower Re. The
extent of response jump marking the IB→ LB transition drops with
decreasingm∗ and is not realized form∗ = 1. The transition from IB
to EIB is not discernible from the response.

To understand the formation of EIB solely for m∗ = 1, the
oscillation frequency is analyzed for m∗ = 1, 5, and 10 (Fig. 13).
For a fixed cross-sectional area of the oscillator, a reduction in the
value of m∗ signifies a decrease in the value of oscillator mass; the
oscillator thus turns lighter. When subject to a given fluid loading,
the lighter cylinder, as compared to the heavier ones, is expected
to be more prone to vortex-excited motion. This explains the early
(at lower Re or U∗) settling of lock-in as well as higher Y for m∗

= 1 [Fig. 12(f)]. By considering the value of the stationary vortex-
shedding frequency of a bluff body to roughly equal 0.2 over a wide
range of Re, Williamson and Roshko (1988) suggested that the fun-
damental synchronization occurs atU∗ ≈ 5.Withm∗ = 1, the lock-in
commences at Re = 53 or U∗ ≙ 53

16.91
≙ 3.13 < 5. The corresponding

value of the reduced natural frequency or FN is 16.91
53
≙ 0.3191, a value

well above 0.2. Thus, the oscillation frequency for m∗ = 1 can never
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FIG. 12. Undamped 2-DOF VIV of an AR ≙ 10
9

elliptic cylinder over Re = 50–180: (a) variation of StY and StCl
with Re for m

∗ = 5; (b) variation of StY and StCl
with Re for

m
∗ = 1; (c) close-up of (b) showing the details of IB and EIB; (d) the X rms–Re relationship; (e) at Re = 168, (i) Cd–Cl phase diagram, (ii) Cl–Y phase diagram, (iii) power

spectrum of Cl , and (iv) power spectrum of Y ; and (f) comparison of Y response for m
∗ = 1, 5, and 10.

reach the FN value of 0.3191. The value of StY at the onset of lock-in,
in general, represents the maximum value of St or its close approxi-
mation over the entire stretch of lock-in (this is evident from Fig. 13
form∗ = 1, 5, and 10). An early onset of lock-in, thus, renders the StY
to fall short of corresponding FN over a significant extent of lock-
in. Hence, lock-in for m∗ = 1 turns out to be non-classical or soft.
Immediately next to the onset of synchronization, StY decays with
Re, i.e., StY , alike FN , follows an

1
Re

relationship. Since the lock-in is

soft, the value of maximum StY form∗ = 1 is low. As Re is increased

progressively, the value of U∗ approaches 5 corresponding to the
fundamental synchronization and the inverse StY–Re relationship
alters, i.e., the value of StY increases. The maximum StY signifies the
beginning of LB. Two local peaks, therefore, characterize the oscil-
lation frequency of the AR ≙ 10

9
cylinder: the first one signifying

the onset of lock-in and the second one signifying the commence-
ment of LB. Between the onset of lock-in (or first peak of StY ) and
the maximum oscillation frequency close to U∗ = 5 (or second peak
of StY ), the oscillation frequency for all m∗ initially drops followed
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FIG. 13. Undamped transverse-only VIV of an elliptic cylinder of AR ≙ 10
9

: the

effect of m
∗ on the oscillation frequency. The reduced natural frequency FN

≙ 16.91
Re

is also plotted.

by a rise. This signals an intermediate change of slope and possi-
ble existence of a branch connecting the IB and LB. For m∗ = 1, the
occurrence of lock-in appears less correlated with FN , and hence, StY
need not catch up FN for lock-in. Because of this, the StY–Re curve
is relatively flat over a substantial extent of lock-in. This insensitiv-
ity of oscillation frequency to FN for m∗ = 1 permits the oscillator
sufficient range of Re (or U∗) to attain the StY value corresponding

FIG. 15. Undamped VIV of an elliptic cylinder of AR ≙ 10
9

: comparison of the

phase between lift and transverse response for SDOF and 2-DOF motions. The
transition of response branches are not reflected in the ϕ–Re curves.

to the second peak, and hence, the transition from the IB to LB is
smooth or continuous. The continuous segment of StY corresponds
to the EIB. As them∗ (and hence oscillator mass) increases, the VIV
is excited at higher Re or U∗. Thus, the range of DS I or the range of
Re over which the vortex-shedding (or oscillation) frequency of the
vibrating cylinder is close to the vortex-shedding frequency of the
stationary cylinder increases. With higher extent of DS I, the lock-in

TABLE IV. Undamped vortex-induced vibrations of an elliptic cylinder of AR ≙ 10
9

and m
∗ = 1: summary of the key

characteristic quantities for Y -only (first row) and X–Y (second row) motions of the cylinder.

Onset of lock-in Closure of lock-in

Motion Ymax/D Re for Ymax/D Stmax Stmin Re St Ymax/D Re St Ymax/D

Y-only 0.5878 70 0.1887 0.1281 53 0.1743 0.1459 155.1 0.1321 0.2566
X–Y 0.6703 80 0.1818 0.1188 53 0.1741 0.1415 168 0.1190 0.2995

FIG. 14. Undamped VIV of a rigid elliptic cylinder of AR ≙ 10
9

and m
∗ = 1 over Re = 50–180: comparison of (a) oscillation frequency and (b) response for SDOF and 2-DOF

motions.
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FIG. 16. Undamped Y -only (left column)
and X–Y (right column) motion of an
elliptic cylinder of AR ≙ 10

9
and m

∗ = 1:

time traces of lift and response at Re

= [(a) and (h)] 53, [(b) and (i)] 63, [(c) and
(j)] 154, [(d) and (k)] 155, [(e) and (l)] 156,
[(f) and (m)] 157, and [(g) and (n)] 168.

commences at delayed (higher) reduced speed. Thus, the first peak of
StY occurs at U∗ relatively close to 5 and Re or U∗ interval between
the frequency peaks decays. Next to the initial drop, the StY tries to
catch up the FN , and this occurs abruptly owing to gradually short-
ening interval of Re between the StY peaks. Thus, a discontinuous
jump between the IB and LB precludes the formation of EIB for m∗

= 5 and 10.

E. Comparison of undamped SDOF and 2-DOF VIV
for m∗ = 1

Concerning undamped 2-DOF VIV of the AR ≙ 10
9
cylinder in

the laminar vortex-shedding regime, Figs. 3 and 12 ensure that the
branching behavior is sensitive to m∗ for values of mass ratio down
to unity. Interestingly, for the same cylinder, the classical two branch
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TABLE V. Summary of response branching for various conditions of structural damping, cylinder aspect ratio, and degree-of-
freedom. For each case, the Re ranges from 50 to 180. The

√
symbol indicates the presence of a branch, while × denotes

the absence.

Condition DS I IB EIB LB ELB TB DS II (QP) DS II (P)

Y, AR ≙ 10
9
,m∗ = 1, ζ = 0

√ √
×

√ √ √ √ √

Y, AR ≙ 10
9
,m∗ = 1, ζ = 0.044

√ √
×

√ √
× ×

√

Y, AR = 1,m∗ = 1, ζ = 0
√ √

×
√ √

× ×
√

X–Y, AR ≙ 10
9
,m∗ = 1, ζ = 0

√ √ √ √
× × ×

√

(IB and LB) structure prevails form∗ = 5 and 10, while an additional
branch, i.e., EIB, appears for m∗ = 1. This justifies our choice of m∗

= 1 as the reference mass ratio for exploring the effects of individual
variables, such as degree-of-freedom, structural damping, and cross
section of the oscillator discussed earlier. At high Reynolds numbers,
Jauvtis andWilliamson (2004) experimentally found that SDOF and
2-DOF free vibrations of a circular cylinder differ appreciably for
m∗ ≤ 6. For mass ratios exceeding 6, the differences were less promi-
nent. Following the lead of Jauvtis and Williamson (2004), the char-
acteristics of the VIV with single- and two-degrees-of-freedom are,
therefore, expected to be noticeably different for a low mass ratio.
The differences are quite obvious from Table IV that lists the salient
features for undamped VIV of the m∗ = 1 cylinder with SDOF and
2-DOFmotions. Figure 14(a) compares the frequency and Fig. 14(b)
compares the response for these two cases of VIV. Even though
lock-in in both cases settles at the same Re, inclusion of the in-line
degree-of-freedom enhances its range. The magnitude of the peak
response increases as well. However, the construction of response
with Y-only motion becomes more complex than its X–Y counter-
part. In this case, more number of branches (seven against five) are
occupied within a shorter stretch of synchronization. The inclusion
of in-line motion weakens the soft lock-in behavior, thus extending
the upper limit of synchronization of 2-DOF VIV. In this region, StY
drops with Re (or U∗) similar to the way FN decays with Re. The StY
resides close (with respect to Y-only VIV) to the natural frequency
[Fig. 14(a)], and the LB transits directly to DS II. It may be noted
that the oscillation/vortex-shedding frequency at the onset of lock-
in exceeds its value in DS I and at the closure of lock-in, it falls below
its value in DS II. To catch up with FN , the value of the oscillation
frequency for Y-only motion drops toward the closure of lock-in.
Since the frequency in the DS regimes is practically identical for a
given m∗, a subsequent rise in StY is essential. The terminal fall and
rise of StY for SDOFVIV involve multiple changes of slope and form
additional response branches.

The phase angle, ϕ, between lift and transverse response for Y
and X–Y motion is compared in Fig. 15. In either case, the branch
transitions are not reflected in the ϕ–Re variation. Form∗ = 1 cylin-
der, the undamped Y-only VIV is quasi-periodic over a short range
of Re. This range (Re = 155–156.9) brackets the TB as well as DS II
(QP). The motion is periodic for the rest of Re. The DS II (QP) seg-
ment of quasi-periodicity belongs to the non-locked-in regime. For
undamped 2-DOF VIV with the samem∗, quasi-periodicity appears
at relatively higher Re, i.e., it exists over a narrow interval of Re
stretching from Re = 166 to 168 where Re = 168 marks the clo-
sure of lock-in. As revealed in Fig. 16, the time traces for periodic

VIV are very similar, irrespective of the degree-of-freedom. This
implies that the identification of the IB→ EIB transition is not pos-
sible from the time traces of forces and response. This fact can be
appreciated by considering Figs. 16(h) and 16(i) for Re = 53 and
63, respectively. Figure 16 is constructed by combining the time
histories ofCl and Y for both DOFs at representative Reynolds num-
bers characteristic to various response branches. For Y-only VIV,
the quasi-periodic Cl and Y signals exhibit beating [Fig. 16(d) at Re
= 155 and Fig. 16(e) at Re = 156]. The power spectra of lift signals
for Re = 155 [Fig. 5(d)] and Re = 156 [Fig. 5(e)] both contain signifi-
cant spectral content. For 2-DOFmotion at Re = 168, the time traces
reveal quasi-periodicity [Fig. 16(n)], but the spectral content in Cl is
relatively low [Fig. 12(e-iii)]. The signals are weakly quasi-periodic
and beating disappears.

F. Summary of branching

The response branches pertaining to various conditions are
summarized in Table V. This summary clearly indicates that the EIB
does not appear with single-degree-of-freedom VIV, while the ELB,
TB, and DS II (QP) are characteristic to low m∗ transverse motion
alone.

VI. CONCLUSIONS

Irrespective of the degree-of-freedom, the response branching
of a circular cylinder of m∗ ≈ 10 at low Re is invariably consti-
tuted of two classical branches, the initial and lower. The degree-
of-freedom assumes importance in modifying the branching when
the mass ratio is reduced to unity. This aspect of VIV highlight-
ing the close connections among response branching, mass ratio,
and degree-of-freedom is unavailable in the literature. In this study,
stabilized space-time finite-element computations are performed in
two-dimensions and the branching behavior of response analyzed
over Re = 50–180. A thick elliptic cylinder of aspect ratio 10

9
, which

is geometrically very similar to a circular cylinder, is considered
as the oscillator. With undamped two-degrees-of-freedom motion
for m∗ = 1, a new response branch linking the initial and lower
branches is identified. This branch is named as the extended ini-
tial branch. The EIB forms out of non-classical resonance char-
acteristic to a low mass ratio for which StY ≪ FN . The branch-
ing turns even more diversified when the m∗ = 1 cylinder is con-
strained to have undamped transverse-only motion. Under this con-
dition, the classical two-branch (initial and lower) response at low Re
undergoes fundamental alterations. An unforeseen frequency vari-
ation close to the upper extremity of synchronization is observed.
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Two successive slope changes and a discontinuous jump in oscil-
lation frequency underlines the existence of three additional con-
stituent branches. These low amplitude branches have been desig-
nated as the extended lower branch, terminal branch, and quasi-
periodic second regime of desynchronization. The wake mode in
each of these branches is 2S. These branches disappear in the pres-
ence of in-line degree-of-freedom. The VIV is essentially periodic,
barring the TB and DS II (QP), where quasi-periodicity dominates
the flow and body motion. Structural damping shortens the peri-
odic ELB and removes the quasi-periodic TB and DS II (QP). For
undamped Y-only motion of a circular cylinder, the ELB is found to
exist, while its TB and DS II (QP) counterparts do not form.
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