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In this work we analyze the viscous fingering instability induced by an autocatalytic chemical

reaction in a liquid flowing horizontally through a porous medium. We have analyzed the behavior

of the system for isothermal as well as adiabatic conditions. The kinetics of the reaction is chosen

so that the rate depends on the concentration of only a single species. Since the reaction is

autocatalytic the system admits a traveling wave solution. For endothermic reactions the

concentration wave and temperature wave are mirror images, whereas for an exothermic reaction

they are similar or parallel. The viscosity of the fluid is assumed to depend strongly on the

concentration of the product and temperature of the medium. The dependence of viscosity on

concentration �decrease with concentration� can destabilize the traveling wave resulting in the

formation of viscous fingers. We have performed a linear stability analysis to determine the stability

of the base traveling wave solution. The stability predictions have been confirmed by nonlinear

simulations of the governing equations based on a finite difference scheme. We observe that

including the temperature dependency of viscosity stabilizes the flow for an endothermic reaction,

i.e., regions which exhibited viscous fingering now demonstrate stable displacement. For

exothermic systems, however, the system exhibits less stable behavior under adiabatic conditions,

i.e., it is destabilized by both concentration and temperature dependencies of viscosity. © 2007

American Institute of Physics. �DOI: 10.1063/1.2799999�

I. INTRODUCTION

Fluid displacement processes in porous media have been

investigated extensively as they have wide applications in

various chemical and petroleum industries, chromatographic

separation, fixed bed regeneration, etc. Here one fluid dis-

places another fluid which is already occupying the porous

medium. The two fluids may be miscible or immiscible. The

differences in the density and/or viscosity of the fluids deter-

mine the flow behavior in the porous bed. The shape of the

interface between the fluids is determined by these proper-

ties. The displacement of one fluid by another as a plug may

get disturbed even in a homogeneous porous medium if a

low viscous fluid displaces a high viscous fluid. Hence, the

dynamics of such flow systems with a special emphasis on

stability of flows as determined by the interface must be

understood. Chemohydrodynamic interactions arise when

chemical reactions are also present in these systems. Here

there is a chemical reaction which can affect the flow espe-

cially if the fluid properties such as viscosity depend on the

concentration of the various species.

We now give insight into the physical basis of this insta-

bility. Consider the process in which a low viscous fluid

invades and displaces a porous medium filled with a high

viscous fluid. Consider a disturbance to the interface between

the two fluids which is initially flat. This can get amplified

giving rise to fingers developing along the interface. This

phenomenon is called viscous fingering. The system is sche-

matically shown in Fig. 1. When the interface is flat, the

effective viscosity across the medium does not vary with y.

Consider the interface deformed as shown in Fig. 1 so that in

the middle it is deflected to the right. In such a situation the

effective viscosity in the middle is lower as the low viscosity

fluid on the left occupies a larger length. As the total pressure

drop is a constant across the medium, the flow is higher in

the middle and the instability gets amplified. It can be estab-

lished using similar arguments that, when a more viscous

fluid displaces a less viscous fluid, the interface shape re-

mains flat, i.e., the disturbances of the interface shape

decay.
1,2

This problem has been extensively investigated in

the literature. One of the early investigations was carried by

Hill
3

who studied the problem in the context of sugar sweet-

ening off �extraction� process. His work was a purely experi-

mental study. Peaceman and Rachford
4

carried out a numeri-

cal simulation of the miscible displacement of two fluids.

They used a finite difference method for discretizing the par-

tial differential equations governing the fluid flow. They then

a�
Electronic mail: spush@iitm.ac.in FIG. 1. Schematic of the system under study.
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used a leapfrog approach for solving the equations numeri-

cally. The grids chosen were, however, very coarse. The nu-

merical algorithm involved obtaining the solution directly in

terms of pressure and velocity instead of using a stream func-

tion and vorticity formulation. The work was further ex-

tended by Christie and Bond
5 �incorporating diffusion, grid

refinement, etc.� where they calculate the linear stability and

compares with their nonlinear predictions. The experimental

match was also obtained with a previously published article.

Tan and Homsy
6

studied the stability of miscible fluid flow.

They analyzed the situation where a low viscous fluid dis-

places a high viscosity fluid. The viscosity of the fluid was

determined by the concentration of a nonreactive species.

They used a quasi-steady-state approximation �QSSA� as the

concentration profile in the base state was time dependent.

The results based on QSSA were compared with those based

on simulations for several initial conditions to study the ef-

fect of the approximation. In a later study, Tan and Homsy
7

analyzed the nonlinear behavior of viscous fingering in a

porous media. The numerical algorithm was based on a Fou-

rier spectral method. They studied the behavior of the system

using two dimensionless groups Peclet number �Pe� and mo-

bility ratio M �ratio of viscosity of the two fluids�. However,

there were no chemical reactions in the system studied.

There was a good agreement of the predictions of this work

with that of the previous work
6

particularly in the initial

stages of the disturbance development. However, at later

time instants, they observed some new phenomena generated

by the nonlinear interactions in the system which were not

captured by the linear stability theory. Homsy
1

discusses and

compares the similarities and differences of the instability in

the case of miscible and immiscible displacements. De Wit

and Homsy
8,9

analyzed the coupling between viscous finger-

ing and chemical reactions in horizontal flows. They used a

kinetic expression which admits two stable steady states and

an unstable one. They discussed directly the results of the

nonlinear simulations describing the behavior of the system.

In particular, the linear stability analysis of this system was

not carried out. This kinetics shows droplet formation of the

invading fluid in the nonlinear simulation. This phenomenon

was also observed in the vertical configuration when the flow

was driven by a density gradient.
10

This was explained on the

basis of the presence of two stable steady states. De Wit
11

used similar kinetics and analyzed the stability of a chemo-

hydrodynamic system in a vertical configuration �induced by

density differences with a constant viscosity� using the trav-

eling front as a base state. Isothermal traveling waves have

been determined analytically, and the expressions for these

waves is given in the book by Murray.
12

The stability of the

traveling wave of chemical concentration in a reactive flow

obtained from a linear analysis results in dispersion curves

which are time independent.
11

Linear stability analysis of

these systems has been carried out along the lines of Yang et

al.
13

The temperature effects on a vertically aligned system

with a constant viscosity and variable density were studied

by Kalliadasis et al.
14

for an exothermic reaction. They con-

sidered the case when the effects of concentration and tem-

perature on density oppose each other. An extension of this

work incorporating the effect of heat losses was carried out

by D’Hernoncourt et al.,
15

where they found that in the pres-

ence of heat losses the traveling wave is converted to pulses.

The viscous fingering instabilities due to the combined effect

of temperature and concentration in a radial Hele-Shaw cell

has been studied for horizontal flows by Pritchard.
16

He ana-

lyzed a nonreactive flow situation and carried out a linear

stability analysis of the system. There was no observation of

stabilization of an unstable thermal front by the composi-

tional front. Experimental work has been carried out using a

single fluid exploiting the temperature gradients to generate

viscosity differences.
17,18

The results of their experiments

have been verified with numerical simulations. The thermal

front is usually more diffusive than the concentration front.

These authors, hence, found that a high viscosity contrast

and a high inlet velocity are required for the interface to

deform. Concentration gradients were absent as they had

used glycerine of uniform composition in their work.

Most of the work in the literature to date in this context

has focused on analyzing the behavior of systems when vis-

cosity is only a function of concentration for horizontal

flows. In this work we assume that the viscosity strongly

depends on concentration as well as temperature prevailing

in the flow domain. The linear stability analysis is carried out

using the approach proposed in De Wit.
11

We obtain critical

conditions about which the stability of the traveling wave

changes. We study adiabatic systems sustaining exothermic

as well as endothermic reactions to determine conditions

when the concentration and temperature dependency of vis-

cosity influence the stability in tandem or counteract. The

reaction kinetics is assumed to be of the form followed by

iodate-arsenous acid �IAA� reaction. A one variable model

representing the evolution of iodide concentration was found

to be sufficient to describe the reaction.
19

In the vertical con-

figuration, where density is a function of concentration, there

have been several earlier studies in both the numerical as

well as the experimental analysis specifically relating to the

fingering dynamics of IAA reaction.
20,21

In these early stud-

ies in the literature, the combined effect of concentration and

temperature dependence of viscosity �horizontal� has not

been investigated in reacting systems. So here we carry out

an analysis of an adiabatic system sustaining chemical reac-

tions with significant heat effects and analyze the onset of

viscous fingering through linear stability analysis and nonlin-

ear simulations. Linear stability predictions are verified using

nonlinear simulations by varying the dimensionless param-

eters Da, Rc, RT, Pe, and Le. Rc is the dimensionless param-

eter which measures viscosity or mobility dependence as a

function of concentration and RT defines the temperature de-

pendent component of viscosity.

The paper is organized as follows. In Sec. II we formu-

late the model equations in nondimensional form incorporat-

ing the viscosity dependency on both concentration and tem-

perature. In Sec. III, we discuss the evolution of the traveling

front and the base state for various situations. In Sec. IV the

emphasis is on the linear stability of the traveling front

where viscosity is a function of concentration and/or tem-

perature. In Sec. V we discuss the nonlinear behavior of the
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system. Different flow patterns are analyzed and the effect of

various parameters is studied to validate the predictions of

the linear stability analysis.

II. MODEL

We consider a homogeneous 2D porous medium of

length L�along x� and width H�along y� with a constant per-

meability K �Fig. 1�. An incompressible liquid containing a

solute is injected from the left with a uniform velocity U

along the x direction. The solute initiates an autocatalytic

reaction, and the rate of product formation is described by a

rate expression which is representative of the IAA reaction.
15

The evolution of the system is governed by the laws of con-

servation of mass, momentum, and energy. We first discuss

the equations which govern the flow under adiabatic condi-

tions. The superscript * is used to indicate variables with

dimensions.

A. Adiabatic case

The equation of continuity is given by

�* · u
* = 0. �1�

The pressure distribution in the porous medium is obtained

from Darcy’s law,

�*P* = −
�

K
u

*. �2�

The evolution of the product species concentration is given

by

�c*

�t*
+ u

* · �*c* = D�*2c* + f�c*� . �3�

The evolution of temperature T* is governed by

�cp� �T*

�t
+ u

* · �*T*� = ��*2T* + �− �H�f�c*� . �4�

The rate expression for the reaction is given by f�c*�
=−c*�ka+krc

*��c*−c0
*�. Here, ka=k1�H+�2 and k�=k2�H+�2,

where k1 and k2 are rate constants. In these equations, �*

signifies that the independent variables are x* and y*. We

rewrite these equations in a frame of reference which moves

with a velocity U. We have in this frame

xm
* = x* − Ut , �5�

um
* = u* − U . �6�

We do not have any characteristic length or time scales

which arise spontaneously for an infinitely long system. We

define the nondimensional variables using the scales

Pch =
�D

K
,

tch =
D

U2
,

xch =
D

U
, �7�

uch = U ,

cch = c0
*,

Tch = T0� .

Here, T0 and c0
* represent the temperature and the concentra-

tion of the product at the inlet �left face� to the system. Here,

�= ��−�H�c0 /�0cpT0� represents a dimensionless heat of re-

action parameter. The dimensionless temperature T is defined

as �T*−T0� /T0�.

The equations are nondimensionalized in the moving

reference frame using these scales. The corresponding di-

mensionless equations can then be written as

�u

�x
+

�w

�y
= 0, �8�

�P

�x
= − ��u + 1� , �9�

�P

�y
= − �w , �10�

�c

�t
+ u

�c

�x
+ w

�c

�y
=

�2c

�x2
+

�2c

�y2
+ Daf�c� . �11�

The energy equation becomes

�T

�t
+ u

�T

�x
+ w

�T

�y
= Le� �2T

�x2
+

�2T

�y2� + sgn���Daf�c� .

�12�

In the above two equations f�c�=−c�c−1��c+d�. The param-

eter “d” arising in the kinetic expression can be defined as

d=ka /krc0. Here, Le=DT /Dc is the ratio of thermal diffusiv-

ity to mass diffusivity, and sgn���=1 for exothermic reac-

tions and sgn���=−1 for endothermic reactions. �H=D /U2 is

the hydrodynamic time scale, where the reaction time scale

is �c=1 /k�c0
2. Damkohler number represents the ratio of hy-

drodynamic to chemical time scales and can be represented

as Da=�H /�c=Dkrc0
2
/U2. Pe determines the ratio of rate of

convective transport to the rate of diffusive transport and is

represented mathematically as Pe=UL /D. Pe represents the

dimensionless width of the domain.

We assume the viscosity of the fluid to vary with con-

centration and temperature as

� = �oe�−Rcc+RTT�. �13�

This results in

204701-3 Horizontal flow through a porous medium J. Chem. Phys. 127, 204701 �2007�
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1

�

d�

dc
= − Rc,

�14�
1

�

d�

dT
= RT.

From Eq. �14� we observe that an instability due to compo-

sition arises when Rc�0, and an instability due to tempera-

ture would arise when RT�0 for an exothermic reaction and

RT�0 for an endothermic reaction as will be seen later. We

consider only liquid phase systems and restrict ourselves to

RT�0. Equations �8�–�12� are converted in terms of stream

function and vorticity �	-
� by defining u=�	 /�y and

w=−�	 /�x. We evaluate the curl of the momentum equation

and obtain

�2	 = − 
 , �15�


 = − Rc� �	

�x

�c

�x
+

�	

�y

�c

�y
+

�c

�y
� + RT� �	

�x

�T

�x
+

�	

�y

�T

�y
+

�T

�y
� ,

�16�

�c

�t
+

�	

�y

�c

�x
−

�	

�x

�c

�y
= �2c + Daf�c� , �17�

�T

�t
+

�	

�y

�T

�x
−

�	

�x

�T

�y
= Le�2T + sgn���Daf�c� . �18�

We use periodic boundary conditions for concentration

and temperature along the y direction ��y=0, y=Pe� the di-

rection transverse to the flow�. This is tantamount to seeking

a solution which extends periodically in the transverse direc-

tion. This enables us to eliminate end effects along that di-

rection. Along the x �axial� direction, we impose Dirichlet

boundary condition where we use c=1 at the left boundary

�x=0� and c=0 at the right boundary �x=APe� �Fig. 1�. Here,

the products are fed on the left boundary to initiate the au-

tocatalytic reaction in the porous medium containing the re-

actant and the front moves from left to right. The boundary

conditions of dimensionless temperature are T�x=0�=1 and

T�x=APe�=0 for an exothermic reaction. For endothermic

reactions, the temperature boundary conditions get inverted

along the x direction and we use T�x=0�=0 and T�x=APe�
=1. No boundary conditions are required for the vorticity as

it is defined by an algebraic expression. 	=0 is applied at the

boundaries along the x direction �x=0 and x=APe� as there is

no net flow across the surfaces in a moving reference frame.

Along the transverse direction, we incorporate periodic

boundary conditions. These can be represented mathemati-

cally as 	�y=0�=	�y=Pe� and 	d	 /dy	y=0= 	d	 /dy	y=Pe.
22,23

Since the reaction is autocatalytic, the interface keeps mov-

ing from left to right at a velocity determined by the reaction

kinetics. This is the velocity with respect to a moving refer-

ence frame. It represents a constant velocity with respect to

U, with which the reaction front moves in the system.

B. Isothermal

For this case the system temperature is a constant and

the temperature dependency on viscosity can be neglected.

Now, the viscosity variation is of the form �=�0e−Rcc. It is

equivalent to setting RT as zero in Eq. �13�. Hence, the set of

equations to be solved becomes Eqs. �8�–�11�. The energy

balance governed by Eq. �12� to determine the temperature is

eliminated. These equations are converted to the stream

function-vorticity forms as described earlier. We obtain the

set of equations �Eqs. �15�–�17�� which describes the system

behavior now.

III. TRAVELING FRONTS

The system of equations described by Eqs. �8�–�12� ad-

mits a base state solution in the form of a traveling wave.

This arises as the system admits two spatially uniform steady

states. “c=1” is the stable chemical steady state of the cubic

kinetics corresponding to the products of the reaction, and

“c=0” is the unstable state corresponding to the reactants.
15

This is generated by the nonlinear interactions between ki-

netics and diffusion. The traveling wave is the trajectory con-

necting the two steady states. This state corresponds to the

situation where there is no convection �u=0�. For the travel-

ing front, we seek a solution where the variables depend only

on a single variable z given by z=x−vt. Here, v is the trav-

eling wave velocity and is given by v= �
Da /2��1+2d�.11

The wave generated is one dimensional �i.e., it travels in the

x-direction�. In the moving reference frame for an isothermal

system, the traveling front is a chemical concentration wave,

which arises due to the propagation of the reaction front.

There is no bulk motion or convection in the moving refer-

ence frame. As the velocity component of the convective-

diffusion equation is zero, the equations governing the evo-

lution of the traveling front become

− v

dcss

dz
=

d2css

dz2
+ Daf�css� , �19�

− v

dTss

dz
= Le

d2Tss

dz2
+ sgn���Daf�css� . �20�

In an infinite domain �Eq. �19�� the base state traveling wave

solution for an isothermal system is

c�x,t� =
1

1 + e−�
Da/2��x−vt�
. �21�

For the exothermic reaction situation when Le=1, we have

T�x , t�=c�x , t�. Here the traveling front can be calculated

analytically for both variables as the analytical solution for

Eq. �19� already exists. The same solution applies to Eq. �20�
for a situation where the thermal diffusivity is the same as

concentration diffusivity for Le=1. For other conditions

where Le�1, the base state solution has to be obtained nu-

merically and on a finite domain. For this, the two second

order equations �Eqs. �19� and �20�� are converted to four

first order equations. The two point boundary value problem

is solved numerically using a fourth order Runge-Kutta

scheme employing a shooting method. The domain is chosen
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to extend from z=−z1 to z=z1. The numerical method con-

verges for sufficiently large z1. The independence of the so-

lution to the choice of z1 was established. The boundary

conditions which the traveling wave satisfies for the two re-

actions are as given below.

• Exothermic reaction,

z = − z1, css = 1, Tss = 1,

�22�
z = z1, css = 0, Tss = 0.

• Endothermic reaction,

z = − z1, css = 1, Tss = 0,

�23�
z = z1, css = 0, Tss = 1.

For an isothermal system, the temperature variation is

zero and we do not solve for the temperature profile. Only

the concentration equation needs to be solved with the cor-

responding boundary conditions for the traveling wave.

The domain size required for convergence varies with Le

and Da. This is because an increase in Da leads to sharper

fronts and so the total domain size for convergence gets re-

duced significantly. For each parameter set, the domain inde-

pendency of the numerically obtained traveling wave is veri-

fied before the linear stability calculations are carried out.

For an isothermal system only the concentration front is gen-

erated. The variation of both concentration and temperature

is from 1 to 0 for an exothermic reaction as we move from

left to right �Fig. 2�a��. In the case of an exothermic reaction,

the concentration and temperature wave coincide with each

other for Le=1. In the figure we also depict the analytical

solution obtained when the domain is infinitely long. It can

be seen that our numerical solution for concentration for a

finite domain agrees closely with the analytical solution for

an infinite domain. For Le�1, the heat diffusion is faster

than concentration diffusion and the thermal wave front ex-

hibits a more diffusive behavior �less sharp front�. The nature

of temperature wave for Le=5 is also shown in Fig. 2�a�.
The concentration wave remains the same for all Le. This is

because the Le affects only the equation governing the tem-

perature. The thermal front is a smoothly varying curve for a

very high Le showing the dominance of thermal diffusion.

The variation of the concentration is from 1 to 0 but that of

temperature is from 0 to 1 as we move from left to right for

an endothermic reaction. Figure 2�b� depicts the shape of the

concentration and thermal front for the traveling wave for an

endothermic reaction with Le=1. The concentration and tem-

perature waves are mirror images to each other. There would

be a significant difference in these fronts for a Le other than

1. This reflective symmetry is destroyed when Le attains a

value other than unity.

IV. LINEAR STABILITY

A. Nonisothermal system

An instability in the traveling wave results in the phe-

nomenon of viscous fingering. This section describes the al-

gorithm used to determine the conditions at which the inter-

face becomes unstable. To determine the stability of the

traveling wave solution a perturbation is given to the vari-

ables and we study how this evolves with time. The base

state is the traveling wave, which is described as

uss = 0, wss = 0, c = css�z�, P = Pss�z�, T = Tss�z� .

The perturbation variables or deviations from the traveling

wave solution are defined as

FIG. 2. Traveling wave fronts for �a� exothermic and �b� endothermic reac-

tion for Da=0.001, d=0.1, and varying Le.

204701-5 Horizontal flow through a porous medium J. Chem. Phys. 127, 204701 �2007�
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c̃ = c − css�z� ,

P̃ = P − Pss�z� ,

T̃ = T − Tss�z� , �24�

w̃ = w − wss,

ũ = u − uss.

The terms with � represent the perturbations from the base

state. The governing equations of the base state can be rep-

resented as

�uss

�z
+

�wss

�y
= 0, �25�

�Pss

�z
= − �ss�uss + 1� , �26�

�Pss

�y
= − �sswss, �27�

− v

�css

�z
+ uss

�css

�z
+ wss

�css

�y
=

�2css

�z2
+

�2css

�y2
+ Daf�css� ,

�28�

− v

�Tss

�z
+ uss

�Tss

�z
+ wss

�Tss

�y
= Le� �2Tss

�z2
+

�2Tss

�y2 �
+ sgn���Daf�css� . �29�

The viscosity of the base state �ss depends on “z,” since it

varies with concentration and temperature which are func-

tions of “z.” Linearizing Eqs. �8�–�12� around the above

steady state, we have

�ũ

�z
+

�w̃

�y
= 0, �30�

�P̃

�z
= − �ssũ − � ��

�c
�

ss

c̃ − � ��

�T
�

ss

T̃ , �31�

�P̃

�y
= − �ssw̃ , �32�

�c̃

�t
− v

�c̃

�z
+ ũ

�css

�z
=

�2c̃

�z2
+

�2c̃

�y2
+ Da� �f

�c
�

ss

c̃ , �33�

�T̃

�t
− v

�T̃

�z
+ ũ

�Tss

�z

= Le� �2T̃

�z2
+

�2T̃

�y2� + sgn���Da� �f

�c
�

ss

c̃ . �34�

We seek the solution for the deviation variables in the form

of

c̃ = c̄e�teiky ,

ũ = ūe�teiky ,

w̃ = w̄e�teiky , �35�

P̃ = P̄e�teiky ,

T̃ = T̄e�teiky .

Here, � is the growth constant and k represents the wave

number. � determines how fast the perturbation evolves with

time, whereas k represents the spatial frequency along the

transverse �y� direction at the instant the finger formation is

initiated. Equations �36�–�38� are solved simultaneously

along with the base state solution. We eliminate w̄ and P̄

from Eqs. �30�–�34� and obtain the equations describing ū, c̄,

and T̄. This results in the set of the following three equations

with three unknowns:

d2ū

�z2
+ �− Rc

dcss

dz
+ RT

dTss

dz
�dū

dz
− k2ū + k2Rcc̄ − k2RTT̄ = 0,

�36�

d2c̄

dz2
− k2c̄ + v

dc̄

dz
− ū

dcss

dz
+ Da

�f

�c
c̄ = �c̄ , �37�

Le�d2T̄

dz2
− k2T̄� + v

dT̄

dz
− ū

dTss

dz
+ sgn���Da

�f

�c
c̄ = �T̄ . �38�

The above set of equations �Eqs. �36�–�38�� is discretized

using a second order finite difference scheme and solved.

They are written in the generalized matrix form as Ax

=�Bx,

�A��
ū

c̄

T̄

 = ��0 0 0

0 1 0

0 0 1

�

ū

c̄

T̄

 . �39�

The elements of the matrix A are

A11 = � d2

dz2
+ �− Rc

dcss

dz
+ RT

dTss

dz
� d

dz
− k2� ,

A12 = k2Rc, A13 = − k2RT,

A21 = −
dcss

dz
,

�40�

A22 = � d2

dz2
− k2 + v

d

dz
+ Da

�f

�c
�, A23 = 0,

A31 = −
dTss

dz
, A32 = + sgn���Da

�f

�c
,
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A33 = �Le� d2

dz2
− k2� + v

d

dz
� .

The values of css, Tss, dcss /dz, and dTss /dz are required in

the above matrix coefficients. Consequently, these values of

the traveling wave solution are obtained at the discrete points

and are used for determining the stability. The maximum

eigenvalue corresponding to each wave number is plotted for

a fixed set of dimensionless parameters and this yields the

dispersion curve. This curve is used to determine the stability

of the flow as will be explained later.

The system here admits a traveling wave solution be-

cause of the choice of specific autocatalytic reaction kinetics

which admits two possible steady states. The dispersion

curve now is invariant with time due to the existence of the

traveling wave between the two steady states. This is the

primary difference from the situation prevailing in a horizon-

tal flow without reaction which has been analyzed by Tan

and Homsy.
6

For the case without the reaction the growth

rate as well as the base state concentration and temperature

profiles are functions of time and can be approximated by an

error function as shown by Tan and Homsy.
6

A QSSA is

necessary to analyze the situation of the nonreactive flow.

B. Isothermal case

For the isothermal situation the temperature is a con-

stant. We use RT=0 in Eq. �36� and do not include Eq. �38� in

the stability calculations. The matrix equations determining

the stability reduces to

�A��ū

c̄
� = ��0 0

0 1
��ū

c̄
� . �41�

The linear stability analysis helps us to determine the

conditions when there is a qualitative change in the velocity

field from that prevailing in the traveling wave solution. In

the traveling wave, there is concentration and temperature

varying along “z” alone with no bulk convective flow. The

other state the system can exhibit is one where the velocity

field varies spatially and temporally. This results in a concen-

tration field which varies spatially in two dimensions. The

characteristic feature of this is there is no sharp interface

which separates the two fluids and the concentration and ve-

locity also vary in the direction normal to the flow. The re-

sults of the linear stability calculations help us determine

when this transition in behavior occurs. These are depicted in

the form of dispersion curves. These are the curves which

show the dependency of the maximum growth constant on

wave number. When the dispersion curve is such that the

maximum � is negative for all wave numbers, we conclude

that the system is stable and no fingers are formed. If the

growth exhibits a positive maximum for a particular range of

wave numbers, the system is unstable and the system exhib-

its a spatial periodicity with this wave number at the onset of

instability.

We first discuss the dispersion curves for the isothermal

system. Here, the temperature is constant and only Rc deter-

mines the system stability. Figure 3�a� shows the dispersion

curves for three different values of Rc. It is seen that, as the

mobility ratio increases from a negative to a positive value,

the dispersion curve moves upwards. The growth rate is posi-

tive for a band of wave numbers as soon as Rc�0. Under

these conditions �Rc�0� the low viscous fluid invades a high

viscous fluid leading to the fingered interface. The traveling

front which is independent of the transverse direction gets

deformed and it exhibits a periodicity in that direction. This

periodicity is determined by the critical wave number at

which the growth rate is maximum. The dispersion curves

confirm that the system instability is pronounced at large

positive mobility ratios. A positive mobility ratio corre-

FIG. 3. Dispersion curve showing the variation of growth constant with

wave number. �a� Effect of Rc for an isothermal reaction for Da=0.01 and

d=0.1. �b� Effect of Da for an isothermal reaction for Rc=3, d=0.1.
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sponds to a less viscous fluid displacing a high viscous fluid.

Consider a disturbance that deforms an interface and gener-

ates a finger. The effective viscosity is lower where a finger

is present. Hence, there is a larger tendency for the fingers to

move ahead of the average front. This leads to faster moving

fingers and, hence, they become longer and they persist. If

the mobility ratios are negative, the traveling front is always

found to be stable. This is due to the fact that here a higher

viscosity fluid invades a lower viscosity fluid and, thus, a

favorable situation prevails for the fluid to move as a plug.

The critical wave number where the growth rate is a maxi-

mum is seen to shift towards a larger value as we increase

Rc. So the number of fingers also increases with an increase

in mobility ratio. Figure 3�b� shows the effect of Da on the

finger formation for Rc=3 and d=0.1. The increase in Da

results in the system becoming more unstable as can be seen

by the dispersion curve moving upwards. Reactive fingers

are thus more unstable than their nonreactive counterparts. A

lower Da implies a smaller effect of reaction and a more

dominant effect of diffusion. The chemical front becomes

sharper as reaction terms dominate the flow at high Da,

whereas at low Da the diffusion terms dominate the flow.

Consequently, the viscosity and the concentration gradients

are steeper for the higher Da values and this makes the sys-

tem more prone to instability. An increase in Da results in a

shift of the critical wave number towards the right. Thus, the

number of fingers is increased or the wavelength of the fin-

ger is reduced as Da increases. We have also studied the

effect of the kinetic parameter d on the stability of flow for

Rc=3 and Da=0.01. This parameter cannot be changed eas-

ily once the reaction is fixed because it is the ratio of kinetic

rate constants and the initial concentration. As d increases,

the stability of the flow is increased and the number of fin-

gers we see is reduced as the maximum of the growth curve

shifts towards the lower wave number. The system becomes

more unstable when Da increases and d decreases. These

results are in qualitative agreement with the trends depicted

by the density fingering situation for the same chemical ki-

netics as observed by De Wit.
11

We conclude that there is

significant similarity between viscous fingering and density

fingering even though the physical mechanism which gener-

ates the instability is different in the two cases.

We now discuss the dispersion curves for the adiabatic

system. When the system is operated nonisothermally the

dependence of viscosity on both concentration and tempera-

ture has to be considered. Heat is released or consumed dur-

ing the reaction depending on whether the reaction is exo-

thermic or endothermic, respectively. The viscosity

dependence now is governed by the coefficients Rc and RT.

Since we are interested in liquids flowing through the porous

media and the viscosity of liquids decreases with tempera-

ture, we restrict ourselves to RT�0. We first discuss the ef-

fect of Le on the dispersion curves for nonisothermal reac-

tions. We see contrasting effects for exothermic and

endothermic reactions. In an exothermic reaction, an increase

in Le tends to stabilize the interface, but in the case of an

endothermic reaction, an increase in instability is observed

for an increase in Le. Le greater than 1 implies that the heat

conduction is faster than concentration diffusion. When Le

increases, the temperature gradient that exists in the domain

decreases. For an exothermic reaction, because the tempera-

ture gradient generates instability in the interface, a decrease

in the temperature gradient tends to move the system to a

stable regime. Hence, if the temperature is more uniform, the

amplitude of the instability is reduced. In an endothermic

reaction, the temperature gradient stabilizes the flow. So if

the gradient is less the instability is amplified. Figure 4�a�
shows the effect of Le on the dispersion curve for an exo-

thermic reaction, whereas Fig. 4�b� shows the effect for an

endothermic reaction.

FIG. 4. Dispersion curve showing the variation of growth constant with

wave number. �a� Effect of Le for an exothermic reaction for Rc=0, RT

=−3, Da=0.001, and d=0.1. �b� Effect of Le for an endothermic reaction for

Rc=3, RT=−3, Da=0.001, and d=0.1.
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Figure 5 shows the effect of parameters Rc and RT on the

stability for an exothermic reaction. If viscosity is considered

to be a function of temperature alone �Rc=0�, the process

again consists of a low viscous fluid invading a high viscous

fluid. This generates the viscosity gradient leading to the

fingered interface. Incorporation of the temperature depen-

dency on viscosity here makes the flow more unstable. This

can be attributed to the fact that the products are at a higher

temperature and, hence, a lower viscosity. The products in-

vade the reactants which are at a lower temperature and more

viscous. A stronger temperature dependency of viscosity im-

plies RT is more negative. The dispersion curve for RT=−5

lies above that for RT=−1 which shows this intensification of

the instability �Fig. 5�a��. Figure 5�b� shows the effect of the

parameter Rc on the dispersion curves. Previously, from the

isothermal �RT=0� studies, it has been observed that a nega-

tive value of Rc implies a stable system. However, in the

present situation, we have two competing effects as the sys-

tem is adiabatic. Here neither Rc nor RT is zero. Here we

observe that, although we have a destabilization effect due to

the temperature dependence of viscosity, the flow gets stabi-

lized for a sufficiently negative value of Rc. A negative Rc

implies that a high viscous fluid invades a low viscous fluid,

while a negative RT implies the opposite. Figure 6 shows the

effect of Rc and RT on the dispersion curves for an endother-

mic reaction. Here we find the effect of the parameter RT to

be the opposite to what was observed for an exothermic re-

action. This parameter has a tendency to stabilize the flow.

Figure 6�a� shows the effect of RT whereas Fig. 6�b� shows

the effect of Rc on the dispersion curves for an endothermic

reaction under adiabatic conditions. Heat is consumed during

the reaction and, thus, the reactants are at a higher tempera-

ture now, and so there is a temperature increase in the flow

direction. Under this condition the products are more viscous

and a stable front �high viscous fluid invading a low viscous

fluid� is observed for a fixed Rc for sufficiently negative RT.

The system is on the threshold of stability for RT=−3 and

becomes unstable for sufficiently large positive Rc only �Fig.

6�b��. Similarly, for RT=−3, the system is on the threshold of

instability for Rc=3. As Rc increases the system becomes

unstable since now the destabilizing effect of concentration

dominates over the stabilizing influence of temperature �Fig.

6�b��. An adiabatic liquid-liquid reacting system is hence

more stable if the reaction is endothermic. From Figs. 5 and

6, we observe that if we fix either Rc or RT �for a fixed set of

other parameters� then the value of the other parameter �RT

or Rc� can be estimated at which there is a transition from the

unstable to the stable regime. In Fig. 7 we depict the depen-

dence of the critical Rc on RT for two different Le. For a

given RT, the critical Rc represents the value of Rc across

which the instability is induced. Figure 7�a� depicts the

boundary for an exothermic reaction. The region above the

curve is unstable, whereas the region below the curve is

stable. From the figure, we see that the region of stability

increases as Le increases. We see in Fig. 7�a� that a higher

viscosity gradient �more negative Rc� is required for the flow

to become stable. Similarly, for an endothermic reaction,

Le=5 is more unstable �Fig. 7�b�� and, hence, that curve lies

below the Le=1 curve. Here, both RT and negative Rc have a

stabilizing influence. The curves are plotted for positive Rc

values which is the region where we observe the transition

from stability to instability. Here also, the region lying above

the curve is unstable, whereas the region below the curve is

stable. For the case when Le=1, the stability boundary is

Rc=RT for an exothermic reaction since the T and c profiles

are identical for the base traveling wave solution. Similarly,

Rc=−RT is the stability boundary for an endothermic reac-

tion. Our stability predictions confirm these results. We con-

FIG. 5. Dispersion curve showing the variation of growth constant with

wave number. �a� Effect of RT for an exothermic reaction for Rc=−2, Le

=1, Da=0.001, and d=0.1 �b� Effect of Rc for an exothermic reaction for

RT=−2, Le=1, Da=0.001, and d=0.1.
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clude the section by stating an observation regarding the dis-

persion curve. These curves do not change significantly once

the system is stable.

V. NONLINEAR SIMULATION

To verify the predictions of the linear stability analysis

nonlinear simulations were performed using a finite differ-

ence technique. We now describe the algorithm on which the

numerical simulation of Eqs. �15�–�18� is based. The spatial

discretization of the partial differential Eqs. �15�–�18� is

done using a second order central finite difference. Hence,

the accuracy in space is maintained at O��x2�. The temporal

discretization scheme used is a first order forward difference.

We use a grid size of 256 �along the x direction� by 128

�along the y direction� in most of the simulations. We have

also used a larger grid size of 512�256 to verify the numeri-

cal accuracy and grid independence of the numerical results.

The state variables are calculated at each and every node

�i , j�. The algorithm consists of the following steps.

FIG. 6. Dispersion curve showing the variation of growth constant with

wave number. �a� Effect of RT for an endothermic reaction for Rc=3, Le

=1, Da=0.001, and d=0.1 �b� Effect of Rc for an endothermic reaction for

RT=−3, Le=1, Da=0.001, d=0.1.

FIG. 7. Critical values in Rc-RT plane showing the shift from stability to

instability. �a� Exothermic reaction with Da=0.001 and d=0.1. The region

above the solid curve is unstable for both Le and the region below the dotted

curve is stable for both Le. The region between the two curves is stable for

Le=5 but unstable for Le=1. �b� Endothermic reaction with Da=0.001 and

d=0.1. The region above the dotted curve is unstable for both Le and the

region below the solid curve is stable for both Le. The region between the

two curves is unstable for Le=5 but stable for Le=1.
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• Step 1: The convective-diffusion equation �Eq. �17�� is

integrated first to calculate the concentration at the new

time step c�t+�t�. This is carried out by using a for-

ward in time central in space scheme. The temperature

at the new time step T�t+�t� is also evaluated in a

similar way using Eq. �18�.

• Step 2: We use the values of c�t+�t�, T�t+�t�, and 	�t�
in Eq. �16� to obtain 
�t+�t� using a semi-implicit

method.

• Step 3: 
�t+�t� obtained in the previous step is used

for calculating 	�t+�t� from Eq. �15�. This is iterated

using a Gauss-Seidel method for each of the grid points

until the values converge.

• Step 4: 
�t+�t� is calculated from Eq. �16� using the

updated 	�t+�t�, c�t+�t�, and T�t+�t�.

• Step 5: This is used in Eq. �15� for refining the estimate

of 	�t+�t�. In particular, Eqs. �15� and �16� are solved

together iteratively until we have convergence. This en-

sures us that 	 and 
 have converged for the present

time step.

• Step 6: The estimates of c�t+�t� and T�T+�T� are re-

fined using the updated 	 and 
. This confirms the con-

vergence of c and T within a time step before we move

to the next time step.

In Fig. 8 we depict the effect of Pe on the nonlinear

transient behavior for an isothermal reaction. The figures de-

pict the contour plots for the concentration in the range of

0.1–0.3. The total time for the simulation was 50 s. It can be

seen that there is a significant effect of Pe on the fingering

patterns. For low Pe number �Pe=125� the system is well

into the nonlinear regime. Here, the fingers are wide and the

number of fingers is lower when compared to the higher Pe

�Pe=500�. Peclet number is a measure of the dimensionless

width of the domain. The aspect ratio is maintained the same

for both figures so that length also decreases with a decrease

in Pe. So the total time required for the front to reach the end

of the domain decreases as Pe is lowered as can be seen in

Fig. 8.
7,9

The front has to spread to allow other fingers to

grow before it can split. Pe is an important parameter deter-

mining this characteristic. Thus, fluid is in the highly nonlin-

ear regime for low Pe because the total time required for

reaching the end of the domain is less and, hence, the fingers

are more distinct �spreading and shielding
7�. Figure 9 shows

how the concentration contours of an unstable system

evolves with time. In Fig. 9�a� there are numerous fingers

which are very small in size at a time instant of t=100 s.

Figure 9�b� is at a later time instant and, hence, the fingers

are more pronounced and the number of fingers decreases.

There is a fundamental difference of the time evolution pro-

files in the presence and absence of a reaction. The mean

position of the interface is at the same point for a nonreactive

system, whereas in the reactive system we see that the aver-

age position gets shifted towards the right. As time proceeds

the system starts showing nonlinear behavior. The fingers

become wide and merge at later time instants, and in the final

stages, there are just a few dominant fingers occupying the

whole width of the chamber. Figure 10 shows how the vis-

cosity dependency on concentration affects the fingers ob-

served under isothermal flow conditions. For a positive Rc a

low viscous fluid invades a high viscous fluid. Here we ob-

serve a fingered structure as in Fig. 10�a�. In Fig. 10�b� the

front moves as a stable plug. The perturbation to the inter-

face decays in the second case as Rc�0 and, here, a high

viscous fluid flows into a low viscous fluid. The effect of the

reaction kinetic parameter d has also been studied but is not

shown here as they show the same trends as discussed pre-

viously in the literature
24 �in the vertical configuration�.

Nonlinear simulations were also performed for the

FIG. 8. Nonlinear simulation of an isothermal reaction, the effect of Pe for

A=2, t=200, Rc=3, Da=0.01, and d=0.1: �a� Pe=500 and �b� Pe=125.
FIG. 9. Nonlinear simulation of an isothermal reaction showing the time

evolution profiles for Pe=500, A=2, Da=0.01, and d=0.1: �a� t=100 s and

�b� t=400 s.
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nonisothermal system. The parameter values were chosen so

that they could confirm the predictions of the linear stability

analysis. The parameter RT can only attain negative values

for liquids. It has a destabilizing effect for an exothermic

reaction and a stabilizing effect for an endothermic reaction.

The products are at a higher temperature for an exothermic

reaction, so a fluid with a lower viscosity displaces one with

higher viscosity in an exothermic reaction. The endothermic

reaction leads to a condition where the viscosity of the in-

vading fluid is higher than that of the defending fluid and,

hence, the flow is stable. This situation prevails in the ab-

sence of viscosity being a function of concentration. If the

viscosity becomes a function of both concentration and tem-

perature then both dependencies affect the flow stability. Fig-

ure 11 depicts the contour plots for an exothermic reaction

with RT=−2. In Fig. 11�a� the value of Rc=2 and here both

the concentration and temperature have a destabilizing influ-

ence and we see prominent fingers. When Rc=−3, the stabi-

lizing influence of concentration dependency dominates the

destabilizing influence of temperature dependency and we

observe a stable pattern �Fig. 11�b��. Figure 12 shows the

effect of RT keeping Rc at a constant value. A more negative

RT implies a stronger dependency of viscosity on tempera-

ture. For an exothermic reaction the temperature dependency

of viscosity results in a destabilizing influence. We see that

RT=−5 shows a fingered interface when compared to RT

=−1 �Fig. 12�b��. Here the concentration dependency of vis-

cosity stabilizes the flow since it dominates the temperature

dependency. Similar studies were conducted on endothermic

reactions. Figure 13 shows the effect of the parameter Rc. An

endothermic reaction can exhibit fingers only with a suffi-

ciently high positive Rc �Fig. 13�a��. When Rc is lowered

both Rc and RT stabilize the perturbed interface �Fig. 13�b��.
Figure 14 is similar to Fig. 12 but is for adiabatic endother-

mic reactions. In Fig. 14 we depict contour plots for an en-

dothermic reaction. We see that a more negative value of

RT stabilizes the flow, whereas an RT value which is less

negative results in finger formation. This is in accordance

with the predictions of linear stability analysis �Fig. 6�a��.
For a fixed Rc we observe that increasing the value of RT

�approaching zero� leads to fingerlike structure formation.

In the linear stability analysis, we had observed contra-

dictory effects of Le for exothermic and endothermic reac-

tions. Figures 15 and 16 confirm this contradictory effect.

For an exothermic reaction an increase in Le leads to a de-

crease in the temperature and viscosity gradient and, hence,

this tends to stabilize the flow. Temperature gradient has a

FIG. 10. Nonlinear simulation of an isothermal reaction for studying the

effect of Rc for Pe=500, A=2, t=50, Da=0.01, and d=0.1: �a� Rc=3 and �b�
Rc=−3.

FIG. 11. Nonlinear simulation of an exothermic adiabatic reaction, the effect

of Rc for RT=−2 and the remaining parameters being fixed at Pe=500, A

=2, t=200, Le=1, Da=0.001, and d=0.1: �a� Rc=2 and �b� Rc=−3.

FIG. 12. Nonlinear simulation of an exothermic adiabatic reaction, the ef-

fect of RT for Rc=−2 and the remaining parameters being fixed at Pe=500,

A=2, Le=1, t=200, Da=0.001, and d=0.1: �a� RT=−5 and �b� RT=−1.
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destabilization effect on the interface for an exothermic re-

action, and, thus, a large Le implies a reduced temperature

gradient and, hence, reduction in the instability �Fig. 15�.
Increase in Le on the other hand tends to increase the insta-

bility for an endothermic reaction. This is accompanied by an

increase in the number of fingers. A large value of Le implies

that the heat diffuses much faster than the concentration.

Here, the system tends to move towards the isothermal be-

havior and the stabilizing influence of temperature gradient

is reduced. The stabilization caused by the temperature gra-

dient is absent if the Le is high. Large Le endothermic flows

are more prone to show instability. For an endothermic reac-

tion, the increase in Le leads to a decrease in the viscosity

gradient and, hence, destabilizes the flow �Fig. 16�.

VI. SUMMARY AND CONCLUSIONS

In this work we have theoretically analyzed an autocata-

lytic reaction occurring in a fluid flowing horizontally in a

porous medium. The kinetic expression of the classical IAA

reaction system was chosen for the investigation. We have

analyzed the effect of viscosity varying with both tempera-

FIG. 13. Nonlinear simulation of an endothermic reaction, the effect of Rc

for RT=−3, Pe=500, A=2, t=200, Le=1, Da=0.001, and d=0.1: �a� Rc=5

and �b� Rc=1.

FIG. 14. Nonlinear simulation of an endothermic reaction, the effect of RT

for Rc=3, Pe=500, A=2, t=200, Le=1, Da=0.001, and d=0.1: �a� RT=−4

and �b� RT=−1.

FIG. 15. Nonlinear simulation of an exothermic reaction, the effect of Le for

Rc=0, RT=−3, Pe=500, A=2, t=200, Da=0.001, and d=0.1: �a� Le=1 and

�b� Le=5.

FIG. 16. Nonlinear simulation of an endothermic reaction, the effect of Le

for Rc=3, RT=−4, Pe=500, A=2, t=200, Da=0.001, and d=0.1: �a� Le=1

and �b� Le=5.

204701-13 Horizontal flow through a porous medium J. Chem. Phys. 127, 204701 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.192.114.19 On: Mon, 10 Aug 2015 23:53:52



ture and concentration in such systems. Such effects are sig-

nificant in the area of polymer reaction engineering.

A traveling wave was found as the reference solution

and its stability was determined. The stability predictions

were confirmed using nonlinear simulations. The simulations

were carried out with the complete nonlinear set of equations

to predict the long term dynamics. The simulations were car-

ried out for isothermal as well as adiabatic �exothermic and

endothermic� conditions. The parameter Rc has a destabiliz-

ing effect when Rc�0 since this corresponds to the case

when a low viscous fluid displaces a high viscous fluid. It

was found that RT, the parameter defining the temperature

dependent component of viscosity, has opposing effects on

stability for exothermic and endothermic reactions. We have

analyzed only liquid flows and, hence, restrict ourselves to

RT�0. In particular, for exothermic �endothermic� reactions,

a stronger temperature dependency of viscosity results in de-

stabilization �stabilization� of the flow. The effect of Le was

also opposite for exothermic and endothermic reactions. A

higher Le for endothermic �exothermic� reaction destabilizes

�stabilizes� the flow.

The stability boundary was determined in the two-

dimensional Rc-RT parameter space. This allows us to deter-

mine the operating conditions when we have stable displace-

ment and when there is onset of fingering. The boundaries

calculated have been verified with the analytically expected

values for the case Le=1.

The primary contribution of this work is to understand

that for exothermic reactions the temperature rise can induce

instability in the traveling wave even when the concentration

dependency on viscosity is a stabilizing influence �Rc�0�.
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