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UnPAKing RUNX3 functions–Both sides of the coin
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ABSTRACT
Post translational modifications of RUNX3 have been shown to play an important role in directing
RUNX3 functions. In this review we highlight the phosphorylation dependent functions of RUNX3 as
regulated by PAK1 and its implications on tumorigenesis.

The family of RUNX transcription factors are known to
have essential roles in the development and cancer,1,2,3

This family possess 3 members in mammals – RUNX1,
RUNX2 and RUNX3 which all share an evolutionarily
conserved RUNT domain at their N-terminal end critical
in binding to their interacting partners. All RUNX pro-
teins forms a heterodimeric complex with a b subunit
called CBF-b (core binding factor b) facilitated by
RUNT domain which binds to the core DNA sequence
50 YGYGGT 30 found in enhancers and promoters of
many genes. They are involved in either activation or
suppression of the transcription of targeted genes.4 Even
though certain degree of redundancy in their functions is
reported despite their strong homology, RUNX proteins
have been accounted to execute distinct tissue or cell
context functions.5 RUNX1 has shown to have essential
functions in haematopoiesis, and in human leukemia, its
gene is involved in chromosomal translocation
frequently.6,7 RUNX2 functions are well implicated in
osteogenesis,8,9 and in cleidocranial dysplasia.10,11

RUNX3 and cancer: Intricacy

In 2002, Yoshiaki Ito and his colleagues reported that
RUNX3 has tumor suppressor properties in gastric carci-
nogenesis and shown to be closely associated with TGF-
b signaling pathway.12,13 It was also identified that
RUNX3 plays a crucial role in T-cell differentiation,14,15

and neurogenesis of dorsal ganglia.16,17 Analysis from
the human gastric tumors have shown significant reduc-
tion in RUNX3 levels which correlated with cancer pro-
gression in gastric tumors. Studies from the RUNX3

knockout mice revealed that RUNX3 loss causes gastric
hyperplasia. Reduction or complete loss of RUNX3 in
gastric cancers was attributed to either hemizygous dele-
tion or hyper methylation of RUNX3 promoter region.10

Interestingly, the locus of the RUNX3 gene (1p36) is
present in a region which is among the frequently
affected regions of most cancers suggesting its role in
these cancers.18,19,20 Tumor suppressor activity of
RUNX3 in gastric cancers was strengthened with the
observation of decreased tumorigenicity in human gas-
tric cell lines when RUNX3 was re-introduced.21

Transcriptional repression of RUNX3 resulting from its
promoter hyper methylation have been reported in path-
ogenesis of colorectal cancers.22,23 RUNX3 is essential in
arresting cell proliferation and plays a crucial role in apo-
ptosis functions induced by TGF-b signaling pathway in
esophageal adenocarcinoma cells.24

RUNX3 is shown to have tumor suppressor role in
hepatocellular carcinoma. It has been reported that its
gene is involved in frequent allelic inactivation.25

RUNX3 is shown to have pivotal role in patient survival
and prognosis in lung adenocarcinoma. Patients with
higher RUNX3 expression have shown significant
increase in the survival rate.26 It is also shown that
RUNX3 is a critical tumor suppressor in lung can-
cers.27,28 Underexpression of RUNX3 reported in breast
cancer cell lines and breast cancer tissues is caused by
the hyper methylation of its promoter. RUNX3 has
shown tumor suppressor behavior in studies conducted
on breast cancer cell lines.29 Frequent inactivation of
RUNX3 by promoter hyper methylation and protein
mislocalization is reported in oral squamous cell
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carcinoma.30 RUNX3 plays an essential role in the path-
ogenesis of melanoma and it also serves as an important
prognostic marker.31

Regulation of RUNX3 functions

It is well established that down regulation or inactivation
of RUNX3 or its functions contribute to the cancer
development in solid tumors.32 The causes behind
RUNX3 functional inactivation could be genetic,12,33,34

epigenetic,12,35,36 or cellular modifications post its syn-
thesis.2,29,37 In many breast cancer cell lines, hemizygous
deletion of RUNX3 is observed contributing to the com-
plete loss of the RUNX3 protein.38 Hyper methylation is
often observed in the promoter region of RUNX3 gene
in many breast cancer cell lines and breast cancer tissues
correlating to its expression levels.29,38 The recent find-
ings suggest that mislocalization of RUNX3 protein from
nucleus to the cytoplasm also contributes to the loss of
tumor suppressor functions and in some instances, gain
of functions. Mislocalization of RUNX3 is reported in
gastric cancer,37,39 breast cancer,40 ovarian cancer,41 and
pancreatic cancer.42 Although the mechanisms by which
RUNX3 loss is not clear in genetic and epigenetic modes,
it appears that the key mechanism for the cytoplasmic
sequestration of RUNX3 is its post-translational
modification, by phosphorylation. It has been established
that phosphorylation of serine, threonine, or tyrosine
residues of RUNX3 controls its cellular functions. Along
with mislocalization, phosphorylation of RUNX3 also
changes its stability and its interaction with other
proteins. But, the mechanisms that are driving the phos-
phorylation dependent changes in its sub-cellular locali-
zation along with its functions still need to be explored.

Paradoxical role of RUNX3

Initially, the tumor suppressor function of RUNX3 was
well established. First it was evident from the studies in
gastric cancers;12 later similar role was identified in
breast cancers,29,38 pancreatic cancers,43 colon can-
cers,22,23 lung cancers,26,27,28 prostate cancers44 and so
on. Contrasting to this opinion of RUNX3 function,
there has been some reports that overexpression of
RUNX3 can trigger tumorigenicity.45 First glimpse of
evidence to this paradoxical role of RUNX3 as an onco-
gene is provided by Salto-Tellez and his colleagues. They
reported overexpression of RUNX3 in nucleus from
immunohistochemical analysis in basal cell carcino-
mas.46 Later, Nevadunsky et al in 2009 provided similar
results. Their study reported overexpression of RUNX3
in epithelial ovarian cancer. But interestingly their histo-
chemical analysis revealed that RUNX3 is upregulated in

cytoplasm. Increased viability is reported in ovarian can-
cer cells when RUNX3 is re-introduced, whereas reduced
proliferation when RUNX3 is depleted.47 RUNX3 func-
tion as an oncogene is also reported in head and neck
squamous cell carcinoma where overexpression of
RUNX3 is shown to have enhanced cell proliferation,
thus increasing progression of malignancy.48

Surprisingly, adding to its oncogenic potential, RUNX3
is also involved in chemo-resistance in some cancers. It
has been shown that RUNX3 ectopic expression
supresses adriamycin-induced apoptosis in HNSCC and
imatinib-induced apoptosis in CML.49,50

Conclusively, it is evident that RUNX3 has dualistic
functions of tumor suppressor and oncogene, but it is
cell context dependent. The clinical relevance and the
ambiguity of its switching between contrasting functions
is still an unresolved and interesting question. However,
recently there has been a report that serine 209 phos-
phorylation on RUNX3 by p21 activated kinase 1
switches its functions from a tumor suppressor to an
oncogene in pancreatic ductal adenocarcinoma.42 It has
been shown that phosphorylation on RUNX3 would
change its subcellular localization. But the mechanism
that drives such a switch in its functions from a post-
translational modification is still to be addressed. In
another recent report, it was discovered that RUNX3
function as tumor suppressor and tumor promoter in
pancreatic ductal adenocarcinoma, but the switch in
functions is maintained by regulating the balance
between proliferation and dissemination in response to
gene dosage of DPC4.51

Role of RUNX3 phosphorylation

Post translational modifications play a pivotal role in
variety of cellular processes like signaling, proliferation,
cell division, gene expression etc. and perturbances in
such processes would lead to the cancer. From the time
of its discovery, phosphorylation has been recognized as
a global regulator of many cellular signaling pathways,
and abnormal phosphorylation is implicated in cancer
prognosis. Phosphorylation is involved in the control of
proliferation, transcriptional regulation, oncogenic
kinase signaling and TP53 activity, among other pro-
cesses which are important in the occurrence of cancer.
Phosphorylation on certain proteins are regarded as
pharmacologically targetable and multiple approved
therapies has been developed for cancer treatment.52

Kinases are involved in the amplification of signals
that lead to cell proliferation or apoptosis inhibition by
activating transcription factors (e.g. NF-k-B, AP1, Myc),
inhibiting pro-apoptotic molecules like Bad and Bax, or
they involve in the deregulation of the cell cycle control.
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Consequently, it can be well understandable that kinases
are major players in oncogenesis, which uncovers them
as putative targets for anti-cancer drug design.53 Pak1,
which belongs to the Pak family, was identified as a pro-
tein that interacts with CDC42 and RAC1, which are
members of the Rho GTPase family of proteins.54 These
proteins perform specific and distinct cellular functions
which are different from the functions of Ras and have
been primarily involved in cytoskeletal reorganization
and motility and in the reactive oxygen species (ROS)
production.55,56

The effector functions of GTPase-activated PAKs are
proceeded through their kinase activity and arbitrate the
signaling events downstream that bring about the physi-
ologic effects of GTPase signaling. In addition to small
GTPases, PAK activity could be influenced by other
mechanisms. They include - activating (PDK1) and inac-
tivating (PKA) phosphorylation of PAK.57,58 Redistribu-
tion of activated PAKs to the leading edges of motile
cells stimulate the motility and invasion and thus indi-
cates that PAKs are downstream effectors for multiple
signaling pathways. Hence, the degree of activation and
localization of PAKs are dictated by specific upstream
signals and in turn PAKs activate other kinases and
effectors by phosphorylating them at specific sites or
through protein–protein interaction. This mechanism
clearly shows how PAKs amplify and propagate the
upstream oncogenic signals, barring the negative feed-
back imposed through some known Pak inhibitors.59

The first evidence for the role of Pak1 signaling in
oncogenesis was observed when Ras induced transfor-
mation of Rat-1 fibroblast cells was inhibited by ectopi-
cally expressed p21- binding domain (PBD) of Pak1.60

Later studies with a Pak1 inactive mutant which does
not show kinase activity confirmed that Pak1 kinase
activity was necessary for the Ras-induced transforma-
tion of fibroblast cells.61 Further investigations revealed
that Pak1 was essential for transformation induced by
signaling molecules like Ras, VAV3, CDC42, RAC1 and
RAC3.62,63 Thus, it confirms that Pak1 signaling as a cen-
tral module in transformations induced by various small
GTPases that are stimulated by mitogenic activators.

Increased expression and activity of Pak1 was
reported in breast tumors and higher levels of Pak1 pro-
tein expression was identified in higher grade tumors
samples. Pak1 expression is largely upregulated in
human breast tumors matched with breast cancer inva-
siveness and tumor cyclin D1 expression, which is
known to regulated by Pak1.64 Along with overexpres-
sion of Pak1, increased Pak1 kinase activity was also
reported in human cancer cells by the increased activity
of small GTPases such as RAC3, which occurs in breast
tumors.62 Pak-interacting exchange factor (b-PIX), a

known activator of CDC42/RAC and Pak kinase activity,
was also overexpressed in human breast cancer.65 Hence,
to stimulate Pak1-mediated signaling pathways, breast
cancer cells utilize different mechanisms which might
result in increased metastatic potential.59

Various studies pertaining to the role of post-transla-
tional modifications in RUNX3 functions indicate that
divergent signals related to oncogenic pathways may
cause perturbations in RUNX3 functions mainly by cyto-
plasmic mislocalization of RUNX3 upon phosphoryla-
tion. Table 1 summarizes the various kinases involved in
RUNX3 phosphorylation and their functional implica-
tions in RUNX3 activities. Until some point, it was
believed that phosphorylation of RUNX3 is involved
only in RUNX3 functional inactivation, but later reports
revealed its potential in the oncogenesis. Recently, we
found that oncogenic kinase PAK1 phosphorylates
RUNX3 at threonine 209 and have shown to cause
switch in its dualistic functions. It was identified that
T209 is highly conserved among divergent organisms
and might be having a significant role in the functional
regulation of RUNX3. We have identified that phosphor-
ylation by PAK1 causes RUNX3 to change subcellular
localization to cytoplasm. T209 phosphorylated RUNX3
not only failed to induce p21 activation which is critical
for its tumor suppressor activity, it has promoted tumor-
igenesis in pancreatic cancer cell lines and mouse xeno-
graft studies (See Fig. 1 for a model depicting the PAK1
regulated RUNX3 induced transformation). Abundant
presence of T209 phosphorylated RUNX3 in various
cancer tissues compared with their normal counter parts
which is evident from the immunohistochemical studies
also suggests that it might be involved in a signaling
pathway promoting oncogenesis. Although the mecha-
nism is unclear, it is sure that the non-transcriptional
activity of RUNX3 is involved in this paradoxical

Table 1. Summary of Kinases involved in RUNX3 phosphorylation
and functional significance upon modifications in RUNX3
activities.

Kinase
Phosphorylating
residue in RUNX3

Functional
significance Reference

Src Kinase Multiple Tyrosine
Residues

Cytoplasmic
Mislocalization of
RUNX3

39

Pim 1 Kinase Ser/Thr Residues in
RUNT domain

Stabilizes RUNX3 41

Alters Sub-cellular
localization of

RUNX3
p21 Activated

Kinase 1
(PAK1)

Threonine 209 Cytoplasmic
Mislocalization

42

Oncogenic activity of
RUNX3

Aurora Kinase Threonine 14 Critical for DNA
binding functions
of RUNX3

67

Threonine 173
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activity. Previously, it was reported that phosphorylation
of serine, threonine or tyrosine residues on RUNX3 by
different kinases will cause a change in its stability and
activities.66 Pim-1 kinase phosphorylates 4 serine resi-
dues in Runt-domain of RUNX3 and increases half-life
of RUNX3 protein. Besides this phosphorylation by
Pim-1 kinase significantly increased the cytoplasmic
localization of RUNX3 and it has been proposed that
RUNX3 behaves as an oncogene when it is mislocalized
to the cytoplasm.41 In another study, it was found that
overexpression of Src kinase leads to tyrosine phosphor-
ylation of RUNX3 and its mislocalization to cytoplasm
in gastric and breast cancers.39

Analysis from breast cancer cell lines and breast can-
cer tissues revealed that Pin 1 recognizes phosphorylated
motif in RUNX3 and causes its proteasome-dependent
degradation.40 However, earlier report showed that phos-
phorylation of threonine 173 present in Runt domain of
RUNX3 by Aurora kinases is essential for mitotic pro-
gression and cell cycle arrest and thereby, for its tumor
suppressor function.67,68 Even though, it is quite evident
that phosphorylation of Runx3 is associated with its
dualistic functions, the precise mechanisms which confer
these roles still need to be explored.

In conclusion, based on the recent evidences about
RUNX3phosphorylation dependent paradoxical func-
tions, it is imperative that this post-translational modifi-
cation of RUNX3 probably gives a pharmacological
opportunity to intervene and mitigate its functions and

thereby, RUNX3 could be a new player in arena of
targeted therapy of cancers.
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