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Locality plays a key role in the derivation of Hawking radiation. Could relaxing the locality criterion 
modify Hawking radiation? We consider Hawking radiation in a general class of non local quantum field 
theories. This includes theories with a minimal length or UV cut-off. We prove that Hawking radiation is 
unmodified for these theories. Our result establishes the universality of Hawking radiation in a general 
class of non local theories.
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1. Introduction

One of the most striking predictions of quantum field theory in 
curved spacetime is Hawking radiation - the prediction that quan-
tum effects near the event horizons of black holes cause them to 
emit radiation. Since Hawking’s initial derivation [1] the result has 
been derived in many different ways and appears to be a robust re-
sult of quantum field theory. At the same time this result leads to 
the notorious black hole information loss paradox (see [2] for a re-
view) which has remained intractable despite many years of effort.

Locality is one of the key assumptions that leads to this para-
dox. It has been argued that giving up locality can modify Hawk-
ing’s result and resolve the black hole information loss paradox. 
While the possibility of resolving the paradox using non-locality 
has been studied in the context of black hole complementarity 
(originally in [3,4], see [5] for a modern version), surprisingly there 
has been no rigorous attempt at studying Hawking radiation in ex-
plicitly non local theories. In this paper we fill this gap.

Non local field theories have been studied for a long time (an
early review is [6]). These theories have field equations which in-
volve infinitely many derivatives. Modern work on the subject has 
focused on non local theories of graviation and cosmology [7–28]. 
We refer the reader to [29] for a comprehensive review of non lo-
cal field theory in general, to [30] for a review of non local gravity 
and [31] for an interesting discussion of the subject.

In this paper we will consider Hawking radiation in a general 
class of non local field theories. We will consider theories that are 
governed by an equation of the form:
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�g(F (�g))φ = 0 (1)

where F is an analytic function that is everywhere non zero and �g denotes the d’Alembartian in a general spacetime with metric 
gμν . An important sub-class of this class of theories are theories 
with a minimal length or UV cut-off. An example of such a theory 
is

�g

(
e−l2�2n

g

)
φ = 0 (2)

where l is some length scale, typically a UV cut-off or a minimal 
length. Naively, one would expect that the existence of a minimal 
length modifies Hawking radiation. Our aim in this paper is to rig-
orously test this hypothesis.

The class of theories (1) is the most general class of non local 
theories that reduce to free field theory in the IR [32]. Examples 
of propagators which follow (2) arise in field theories in non com-
mutative spacetimes [33–35].

In [36] Unruh effect had been studied in these theories of the 
form (1). By determining the Bogoliubov coefficients, it was shown 
that Unruh effect remained unmodified in these theories. The same 
result was obtained using the method of Unruh-DeWitt detector 
[37] and further confirmed in [38], which also explored Lorentz 
violating theories. These results confirm the universality of Unruh 
effect in the above class of non local theories. In this paper we 
show that Hawking radiation is also unmodified. Our derivation 
follows the same chain of logic as [36].

To prove that Hawking radiation is unmodified for the nonlo-
cal theories described above, we follow the derivation of Hawking 
radiation by Fredenhagen and Haag [39]. This is both the cleanest 
derivation of Hawking radiation (Hawking’s original derivation in-
volved the S-matrix, which does not actually exist in this case. See 
[40] for a discussion.) and the closest in spirit to the derivation 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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of Unruh effect using Unruh-DeWitt detectors (see also [41]). We 
prove in this paper that for non-local theories which follow, the 
Fredenhagen-Haag derivation of Hawking radiation goes through 
completely.

The possibility of quantum gravity modifications to the Freden-
hagen-Haag derivation had been raised in [42] and clarified in [43]
in the context of a higher (but finite) derivative theory. Our work 
is close in spirit to the latter as we ask the same questions, but 
about non local field theories with infinitely many derivatives.

Our result establishes the universality of Hawking radiation in 
the general class of non local field theories of the form (1). Thus 
we show that relaxing the condition of locality does not necessar-
ily resolve the black hole information loss paradox.

We note that the non-locality we consider here is solely in 
the field theory. In quantum gravity, one expects a breakdown of 
locality of space-time itself. It is possible that the black hole in-
formation paradox may be resolved by considering the non-local 
effects induced by fluctuations in space-time. This possibility has 
not been considered in this paper.

Our paper is organized as follows. In the next section, we will 
present a brief sketch of the derivation of Hawking effect given 
by Fredenhagen and Haag. We will highlight the key preconditions 
for the result. In the third section, we will supply proof that the 
derivation goes through for fields which follow (1).

2. The Fredenhagen-Haag derivation

This section briefly reviews the derivation by Fredenhagen and 
Haag. See also [44] and [45] for discussions.

We consider a spherically symmetric collapse. Outside the star 
the metric is Schwarzschild:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 +r2(dθ2 +sin2 θdφ2)

(3)

It is useful to define the coordinate r∗:

r∗ = r + r0 ln
r

r0 − 1
(4)

Here r0 denotes the Schwarzschild radius.

τ = t + r ∗ −r (5)

We consider a scalar field which satisfies

�gφ = 0 (6)

where �g is the covariant D’Alambertian in this spacetime.
Now we consider a detector placed in some spacetime region O

far from the horizon at a very late time. We consider the detector 
to be centered around a point r = R, t = T such that

T � R, R � r0

The detector will be represented by the observable C = Q ∗ Q
where

Q =
∫

φ(x)h(x)
√|g|d4x (7)

Where h(x) is a smooth function with support in O.
Now for each t0 ∈ [a, b] where

a = inf {t : (t, r, θ,φ) ∈ supp h}
b = sup{t : (t, r, θ,φ) ∈ supp h}
Corresponding to a given function h(x) there will be a unique so-
lution to the following Cauchy problem:

�g ft0(x) = 0 (8)

∂t ft0(t0, r, θ,φ) = h(t0, r, θ,φ) (9)

ft0(t0, r, θ,φ) = 0 (10)

This allows us to write

φ(h) =
∫

dt0

∫
�t=t0

dσμφ(x)∂μ ft0(x) − ft0(x)∂μφ(x) (11)

Which simplifies to

φ(h) =
∫
�

dσμφ(x)∂μ f (x) − f (x)∂μφ(x) (12)

where

f (x) =
∫

dt0 ft0(x) (13)

As φ and f both satisfy the Klein Gordon equation, right hand 
side of (12) is independent of �. Therefore we may choose � to 
be the surface τ = 0. We then have

〈C〉 =〈φ(h1)φ(h2)〉
=

∫
dσμ1dσμ2〈φ(x1)φ(x2)〉←→∂μ1

←→
∂μ2 f (x1) f (x2) (14)

This equation relates the response rate as measured by the de-
tector to the Wightman function in regions where f (x) and its 
derivative have support. The only property of the field φ(x) that 
we have used in arriving at (14) is that the field satisfies (6).

The next step is to find where the solutions of (8) with Cauchy 
data (9), (10) have support. For τ ≥ 0 the support will lie out-
side the horizon and one needs to solve the wave equation in the 
Schwarzschild metric to calculate it. If the detector is considered to 
be at time T → ∞, on the surface τ = 0 f will have support con-
centrated near r∗ → ±∞ [46]. That is, the function f will split 
into two parts - one part f− with support arbitrarily near the 
horizon and the other f+ supported arbitrarily near spatial infin-
ity. The right hand side of (14) will then have contributions from 
f−, f+ and a cross term. If we assume that the two point function 
is bounded at infinite spacelike separation, then it can be shown 
that the contribution of the cross term to (14) vanishes. The con-
tribution of the f+ term is independent of the existence of the 
Black Hole and can be ignored.

Thus we have the expression for the response function of the 
detector:

〈C〉 =〈φ(h1)φ(h2)〉
=

∫
dσμ1dσμ2〈φ(x1)φ(x2)〉←→∂μ1

←→
∂μ2 f−(x1) f−(x2) (15)

which involves the two point function in an arbitrarily short dis-
tance neighborhood of τ = 0, r = r0

It is then straightforward to show that 〈C〉 will vanish unless

lim
λ→0

λ2 ∂

∂xμ
1

∂

∂xμ
2

〈φ(λx1)φ(λx2)〉 �= 0 (16)

Which will hold only if the Wightman function 〈φ(λx1)φ(λx2)〉 has 
a short distance singularity.

This is the key result that we will need. We note that we 
arrived at this result using the following properties of the field 
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theory: (i) The field φ(x) satisfies (6) (ii) The two point function is 
bounded.

If one further assumes that the Wightman function near the 
black hole has leading order singularity structure given by the 
Hadamard form, one arrives at the result that the response rate 
of the detector would be that produced by radiation at tempera-
ture 1

4πr0
.

3. Non local theories and Hawking radiation

The class of non-local theories we consider are given by (1)

�g(F (�g))φ = 0 (17)

where F is an analytic function that is everywhere non-zero and �g is the d’Alembartian in the same spacetime considered in the 
previous section.

What are the solutions to this equation? Here we use a key 
result from the theory of differential equations with infinite deriva-
tives which states that the number of independent solutions of an 
infinite order differential equation is equal to the number of poles 
in its propagator [10]. Now from the fact that F is analytic and 
everywhere non-zero, it follows that for (1) and for �gφ = 0, the 
number of solutions to the two equations are the same.

But solutions to �gφ = 0 already satisfy (1). It follows then that 
the only solutions to (1) are the solutions to �gφ = 0.

We now proceed to canonically quantize the theory. As we have 
obtained the space of solutions, the next step is to define an inner 
product. This is given by the usual Klein Gordon inner product

〈�1|�2〉 = i

∫
�

√
hd3xnμ(�∗

1∂μ�2 − �2∂μ�∗
1)

where as usual � is a space-like hypersurface, h is the induced 
metric on � and nμ is the forward pointing normal on �. It is 
easy to check that for fields which are solutions of (1) this inner 
product is independent of the choice of �.

One can now choose an orthonormal basis in the space of so-
lutions f i and expand the field operator as:

φ =
∑

i

ai f i + a†
i f ∗

i (18)

Then

ai = 〈 f i, φ〉
and

a†
i = −〈 f , g〉

Now, as in the flat case we quantize the theory by demanding 
that:

[ai,a†
j] = δi j

[ai,a j] = 0

Typically, such canonical commutation relations cannot be im-
posed in the case of nonlocal theories, even in flat spacetime (see
for instance [47]). However these complications only arise for field 
equations g(�)φ = 0 when the function g−1 has further singu-
larities than only at zero. In our case g(�) = �F (�) and F being 
analytic everywhere g−1 has no further singularities. Following the 
steps of [47] one can check that the commutation relations remain 
unchanged in the class of theories we have considered. Thus we 
have obtained the canonical quantization of the theories (1).
Now we proceed to retrace the steps of the Fredenhagen-Haag 
derivation for the class of non-local theories we have considered. 
From the fact that the solutions for the field equations as well as 
the inner product are the same, we see that all steps up to (16)
go through. This shows that the Hawking radiation for non local 
theories depends only on the short distance Wightman function 
of the theory. Note that this is not the case for higher but finite 
derivative field theories.

We now need to deduce the Wightman function for the theory 
(1). To do this, we note that the Wightman function satisfies the 
following equation:�g〈φ(λx1)φ(λx2)〉 = 0

Now from the argument above about the solutions to (1) it 
follows immediately that the Wightman functions for the two the-
ories are also identical. Note that this is not true for the time 
ordered correlation functions of the two theories.

Therefore all the steps of the Fredenhaagen-Haag derivation go 
through unmodified.

This proves that Hawking radiation is unmodified in the class 
of non local field theories given by (1).

To conclude, we have shown that Hawking radiation is unmod-
ified in a general class of non local field theories. This extends 
Hawking’s result to a wider class of theories. It shows that non-
locality of the form considered above (equivalently minimal length 
in theories of the type (1)) does not modify Hawking’s result and 
therefore cannot lead to a solution of the black hole information 
loss paradox.

This result can be understood from the point of view of field re-
definition. Under a suitable field redefinition, non-interacting non-
local field theories of the type considered can be mapped to non-
interacting local field theories, for which such a result is expected.

In the future it will be interesting to check if the result goes 
through when interacting non local field theories are considered. 
Whether quantum gravity modifications to locality can resolve the 
paradox also remains an open question.
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