
Understanding cross-polarization (CP) NMR experiments through dipolar
truncation
Manoj Kumar Pandey, Zeba Qadri, and Ramesh Ramachandran 

 

Citation: J. Chem. Phys. 138, 114108 (2013); doi: 10.1063/1.4794856 

View online: http://dx.doi.org/10.1063/1.4794856 

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v138/i11 

Published by the American Institute of Physics. 
 

Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 

Information for Authors: http://jcp.aip.org/authors 

Downloaded 21 Mar 2013 to 141.161.91.14. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



THE JOURNAL OF CHEMICAL PHYSICS 138, 114108 (2013)

Understanding cross-polarization (CP) NMR experiments
through dipolar truncation

Manoj Kumar Pandey, Zeba Qadri, and Ramesh Ramachandrana)

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali,
Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India

(Received 5 December 2012; accepted 25 February 2013; published online 19 March 2013)

A theoretical model based on the phenomenon of dipolar truncation is proposed to explain the nu-

ances of polarization transfer from abundant to less-abundant nuclei in cross-polarization (CP) NMR

experiments. Specifically, the transfer of polarization from protons to carbons (in solids) in strongly

coupled systems is described in terms of effective Hamiltonians based on dipolar truncation. Through

suitable model spin systems, the important role of dipolar truncation in the propagation of spin

polarization in CP experiments is outlined. We believe that the analytic theory presented herein

provides a convenient framework for modeling polarization transfer in strongly coupled systems.

© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794856]

I. INTRODUCTION

Understanding the mechanism of polarization transfer

among nuclear spins remains an exciting area of research,1–3

primarily due to its utility in design/interpretation of NMR ex-

periments/experimental data. Although, NMR measurements

are made in bulk, the underlying theory routinely employed to

describe/interpret experiments often comprises of finite num-

ber of spins. In an alternate approach, an analytic model is

presented to explain the mechanism of polarization trans-

fer among spins in a strongly coupled network. To demon-

strate this aspect, the cross-polarization (CP) experiment due

to Hartmann-Hahn4 is employed as a test case in our stud-

ies. In combination with magic angle spinning (MAS),5 the

CP-MAS experiment6, 7 forms a vital building block in the

design of multi-dimensional solid-state NMR experiments

for studying less sensitive/abundant nuclei. With the avail-

ability of higher magnetic field strengths and faster spin-

ning frequencies, sophisticated variants to the original CP

methodology8–11 have emerged in recent past. However, along

with the progress on the experimental front, a development

of analytic theory is essential for designing sophisticated ex-

periments and quantifying experimental results. In particular,

understanding the mechanism of polarization transfer among

nuclear spins in a coupled spin network is essential for de-

veloping mathematical models for quantifying experimental

data.

In general, the analytic description of polarization trans-

fer in strongly coupled systems is hindered owing to the

co-existence of stronger and weaker couplings in the sys-

tem. Often, polarization transfer to weakly coupled spins is

diminished by the influence of other stronger couplings in

the system, a phenomenon commonly referred to as dipo-

lar truncation12 in NMR. Consequently, analytic treatments

based on isolated spin-pair models yield ambiguous results

and are of limited utility in the weak-coupling regime. To

a)Author to whom correspondence should be addressed. Electronic mail:
rramesh@iisermohali.ac.in.

this end, alternate descriptions in the form of thermodynamic

models13 based on the concept of spin temperature3, 14 have

also been invoked in the past to explain the experimental ob-

servations in CP experiments.

As an alternative to existing methods, an analytic model

built on the concept of “dipolar truncation” is proposed to ex-

plain the propagation of spin polarization in CP experiments.

The complexities arising from the spin dimension are care-

fully evaded through the derivation of effective Hamiltonians

based on dipolar truncation. Employing the “truncated effec-

tive Hamiltonians,” the mechanism of polarization transfer in

a wide range of model systems is investigated. The validity of

the proposed analytic approach is verified through a rigorous

comparison with simulations based on exact numerical meth-

ods. In Sec. II, a detailed description of polarization transfer

in CP-MAS experiments through truncated effective Hamil-

tonians is described. Based on the analytic simulations, the

results emerging from the current study are summarized in

Sec. III.

II. RESULTS AND DISCUSSION

In the standard CP experiment of Hartmann and Hahn,

polarization transfer between spins (I and S) is induced when

the amplitudes of the RF fields (υRF,S, υRF,I) employed are

adjusted to the matching condition, υRF,S = υRF,I. By con-

trast, the CP matching conditions in MAS experiments have

a profound dependence on the spinning frequency (υr) of the

sample. Depending on the spinning frequency and the RF am-

plitudes employed, CP-MAS experiments in the solid-state

are primarily classified into (1) first-order and (2) second-

order schemes. To facilitate polarization transfer under MAS,

the amplitude of the RF fields in first-order CP schemes is

adjusted to one of the matching conditions7 given by |υRF,S

± υRF,I| = υr or 2υr. However, the matching conditions in

second-order schemes9–11, 15 remain identical to the original

CP experiment (υRF,S = υRF,I). The details of such schemes
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FIG. 1. Model systems employed for describing the polarization transfer in

CP experiments.

are well documented and will not be elaborated upon in this

article.

Here in this article, we confine our discussion towards

identifying the factors responsible for the propagation of spin

polarization from 1H → 13C in CP experiments. To real-

ize this goal, a pedagogical description comprising of two

(CαHβ), three (CαCβHβ1), four (CαCβHβ1Hβ2; CαCβHβ1Hγ ;

CαHαCβHβ), and five (CαHαCβHβ1Hβ2) spin model systems

is employed (see Figure 1) in our studies. Since the 13C–1H,
1H–1H dipolar coupling constants in the chosen model sys-

tems are prototypes of the coupling constants prevalent in typ-

ical amino acid residues/peptides, we believe that the current

study would improve the accuracy of the structural constraints

derived using solid-state NMR.

To begin with, numerical simulations (based on

SPINEVOLUTION16) depicting polarization transfer from
1H → 13Cα in first-order CP experiments are presented in

Figure 2. Since, bio-molecular applications of solid-state

NMR entail faster spinning frequencies (for better resolu-

tion), the amplitudes of the RF fields in the simulations were

adjusted to |υRF,S − υRF,I| = υr, i.e. (υr = 60 kHz, υRF,I

= 20 kHz, υRF,S = 40 kHz) and phase shifted by 180◦. To ex-

plain the nuances of polarization transfer in first-order based
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FIG. 2. CP Simulations depicting the polarization transfer to Cα in the

model systems presented in Figure 1. The RF amplitudes correspond to υRF,S

= 40 kHz, υRF,I = 20 kHz and the phases shifted by 180◦. All the sim-

ulations were performed at υr = 60 kHz. The solid lines correspond to

analytic simulations, while dots represent numerical simulations based on

SPINEVOLUTION.16

CP experiments, we begin our discussion with the profiles de-

picted in panels (b) and (c) (Figure 2). As depicted, polariza-

tion transfer to 13Cα in the three-spin system CαCβHβ1 (see

panel (b)) is diminished significantly in contrast to the iso-

lated spin pair system (panel (a)). This decrease in the CP

efficiency is often attributed to the presence of the stronger

Cβ–Hβ1dipolar coupling and is commonly referred to as dipo-

lar truncation12 in solid-state NMR. Interestingly, inclusion of

an additional proton to the beta carbon (Cβ) (four spin model,

Figure 1(c)) improves the overall transfer efficiency to Cα (see

Figure 2(c)).

This result seems counter-intuitive, in view of the fact

that the three-spin model CαCβHβ1 (Figure 1(b)) comprises

of fewer stronger couplings (Cβ-Hβ1) in comparison to the

four-spin model CαCβHβ1Hβ2 (stronger couplings in the form

of Cβ–Hβ1 and Cβ–Hβ2). Hence, an analytic theory is essen-

tial for understanding the mode of polarization transfer from

multiple spin sites (say 1H) to the desired target spin (say 13C)

in strongly coupled systems. In Secs. II A–II C, a brief in-

troduction to the theoretical methods employed for studying

CP-MAS experiments is illustrated.

A. Theory

1. Spin Hamiltonian under MAS

To elucidate the mechanism of polarization transfer in

CP-MAS experiments, a model system (INSM) comprising of

N-carbons (I = 13C) and M-protons (S = 1H) is employed in

our studies. Under sample rotation, the nuclear spin Hamilto-

nian is time-dependent,17 and is conveniently expressed in the

rotating frame by

H (t) =
∑

λ=I,S

Hλ(t) + HIS(t) + HRF . (1)

The chemical shift and the dipolar interactions associated

with the spins (I and S) are represented through Hλ. For ex-

ample, the Hamiltonian for a system comprising of N-spins is

represented by

HI (t) =
N

∑

i=1

2
∑

m=−2

ω
(m)
Ii

eimωr tIiz +
N

∑

i,j=1,
i �=j

2
∑

m=−2,
m�=0

ω
(m)
IiIj

eimωr t

×
[

2IizIjz − 1
2
(I+

i I−
j + I−

i I+
j )

]

. (2)

Due to the restricted mobility, the spin interactions in the

solid-state are anisotropic and are expressed in terms of sec-

ond rank tensors. The spatial anisotropy associated with the

chemical shift and dipolar interactions are depicted through

“m” (m = −2 to 2) and are represented by ω
(m)
λ , ω

(m)
λ1λ2

, re-

spectively. For the sake of convenience, the isotropic part of

the chemical shift interaction (represented by ω
(0)
λ ) is included

along with the anisotropic interaction in our description. The

interaction Hamiltonian HIS depicts the coupling between the

spins and is represented by

HIS(t) =
N

∑

i=1

M
∑

j=1

2
∑

m=−2,
m�=0

ω
(m)
IiSj

eimωr t2IizSjz. (3)
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In the rotating frame, the oscillating radio-frequency (RF)

field is time-independent and is represented by

HRF = ωRF,I

N
∑

i=1

Iix + ωRF,S

M
∑

j=1

Sjx . (4)

To simplify the description of the spin dynamics, the Hamil-

tonian in the rotating frame (Eq. (1)) is transformed using a

set of unitary transformations defined below,

H̃ (t) = U2U1 H (t) U−1
1 U−1

2 . (5)

The initial transformation operator U1 = exp(i π
2

∑N
i=1 Iiy)

exp(i π
2

∑M
j=1 Sjy) transforms the Hamiltonian into a tilted

rotating frame, wherein the RF part of the Hamiltonian

is quantized along the z-axis. To deduce the optimum CP

conditions, the Hamiltonian in the tilted rotating frame is

further transformed into the RF interaction frame through

the transformation operator U2 = exp(iωRF,I t
∑N

i=1 Iiz)

exp(iωRF,S t
∑M

j=1 Sjz).

To facilitate analytic description, the Hamiltonian in

the RF interaction frame is further split into single-spin

and two-spin interactions and is re-expressed in terms of

spherical tensor operators. The single-spin Hamiltonian de-

picts both the isotropic and anisotropic chemical shift inter-

actions and is expressed in terms of single-quantum (SQ)

operators,

H̃Single(t) = −
1

√
2
.(
√

2)N+M−2

2
∑

m=−2

N
∑

i=1

ω
(m)
Ii

[

iT (1)1(Ii) exp (i [mωr + ωRF ] t) −

iT (1)−1(Ii) exp (i [mωr − ωRF ] t)

]

. (6)

In a similar vein, the two-spin interactions comprising of homonuclear and heteronuclear dipolar interactions are expressed in

terms of zero-quantum (ZQ) and double-quantum (DQ) operators,

H̃
(DQ)
Hetero(t) = −

1

2
(
√

2)N+M−2

N
∑

i=1

M
∑

j=1

2
∑

m=−2,
m�=0

ω
(m)
IiSj

[

T (2)2(IiSj ) exp
(

i
[

mωr +
(

ωRF,I + ωRF,S

)]

t
)

+

T (2)−2(IiSj ) exp
(

i
[

mωr −
(

ωRF,I + ωRF,S

)])

]

, (7a)

H̃
(ZQ)
Hetero(t) = (

√
2)N+M−2

N
∑

i=1

M
∑

j=1

2
∑

m=−2,
m�=0

1

2
ω

(m)
IiSj

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
1√
3
T (0)0(IiSj ) + 1√

2
T (1)0(IiSj ) + 1√

6
T (2)0(IiSj )

]

∗

exp
(

i
[

mωr +
(

ωRF,I − ωRF,S

)]

t
)

+
[

1√
3
T (0)0(IiSj ) − 1√

2
T (1)0(IiSj ) + 1√

6
T (2)0(IiSj )

]

∗

exp(i[mωr − (ωRF,I − ωRF,S)]t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7b)

H̃
DQ
Homo(t) = −

3

4
.(
√

2)N+M−2

N
∑

i,j=1
i<j

2
∑

m=−2,
m�=0

ω
(m)
IiIj

[

T (2)2(IiIj ) exp
(

i
[

mωr + 2.ωRF,I

]

t
)

+

T (2)−2(IiIj ) exp
(

i
[

mωr − 2.ωRF,I

]

t
)

]

, (8a)

H̃
ZQ
Homo(t) =

√

3

8
.(
√

2)N+M−2

N
∑

i,j=1
i<j

2
∑

m=−2,
m�=0

ω
(m)
IiIj

T (2)0(IiIj ) exp (imωr t) . (8b)

Since the Hamiltonian under MAS is time-dependent and pe-

riodic, analytic descriptions of MAS NMR experiments are

often based on the framework provided by either average

Hamiltonian theory1, 18 or Floquet theory.19 Here in this arti-

cle, the multipole-multimode (MMFT20) formulation of Flo-

quet theory19 is employed for describing CP experiments. Al-

though, effective Floquet Hamiltonians21 based on this ap-

proach have been derived and are well documented in the

literature,20, 22–26 the important stages in the calculations are

summarized below for the sake of continuity.

2. MMFT

In the MMFT approach, the time-dependent Hamilto-

nian (see Eqs. (6)–(8)) is transformed into a time-independent

Hamiltonian (commonly referred to as Floquet Hamiltonian)

via Fourier series expansion. Consequently, the nuclear spin

states (|IM〉) are dressed with the Fourier indices associated

with the various modulations in the system, i.e., |IM, m,

m1, m2〉. The periodic modulation imposed by sample rota-

tion is depicted through the Fourier index “m,” while the in-

dices m1, m2 depict the modulations due to the oscillating
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RF fields on spins I and S, respectively. To reduce the com-

plexity in the infinite dimensional Floquet vector space, ef-

fective Floquet Hamiltonians based on the method of contact

transformation27 are derived. To facilitate the implementation

of the contact transformation procedure, the Floquet Hamilto-

nian is re-expressed as a sum comprising of a zero-order (H0)

and a perturbing Hamiltonian (H1),

HF = H0 + H1. (9)

In general, the zero-order Hamiltonian in the Floquet-

Hilbert space28 is expressed through operators that

are diagonal both in the spin and Fourier space

(i.e., 〈IM,m,m1,m2|I (m)
F |IM,m′,m′

1,m
′
2〉 = m δm′,mδm′

1,m1

δm′
2,m2

),

H0 = ωrI
(m)
F + ωRF,I I

(m1)
F1

+ ωRF,SI
(m2)
F2

. (10)

The perturbing Floquet Hamiltonian H1 is defined in terms of

Floquet operators that are off diagonal in the Fourier space,

H1 = H
(I )
F + H

(S)
F + H

(IS)
F , (11)

H
(I )
F =

∑

m,m1

N
∑

i=1

1
∑

q=−1

G(1)q
m,m1

(Ii) iT (1)q
m,m1

(Ii)

+
N

∑

i,j=1,
i<j

∑

m,m1

2
∑

k=0

k
∑

q=−k

[

G(k)q
m,m1

(IiIj )T (k)q
m,m1

(IiIj )
]

,

(12a)

H
(S)
F =

∑

m,m2

M
∑

i=1

1
∑

q=−1

G(1)q
m,m1

(Si) iT (1)q
m,m2

(Si)

+
M

∑

i,j=1,
i<j

∑

m,m2

2
∑

k=0

k
∑

q=−k

[

G(k)q
m,m2

(SiSj )T (k)q
m,m2

(SiSj )
]

,

(12b)

H
(IS)
F =

∑

m,m1,m2

N
∑

i=1

M
∑

j=1

2
∑

k=0

k
∑

q=−k

×
[

G(k)q
m,m1,m2

(IiSj )T (k)q
m,m1,m2

(IiSj )
]

. (12c)

The “G” coefficients in Eq. (12) could be deduced from

the coefficients described in Eqs. (6)–(8) inclusive of the

numerical constants (i.e., G(1)±1
m,m1

(Ii) = ∓ 1√
2
.(
√

2)N+M−2ω
(m)
Ii

,

G
(k)q
m,m1

(IiIj ) = − 3
4
.(
√

2)N+M−2ω
(m)
IiIj

, etc.) and are similar to

our earlier description.26

The second stage in the calculation involves the folding

of the off-diagonal contributions due to H1. In contrast to the

standard perturbation theory, the perturbation corrections in

the contact transformation method are derived through uni-

tary transformations and are expressed in terms of operators.

The transformed Hamiltonian (referred to as effective Hamil-

tonian) to second-order after a single transformation is repre-

sented by

H
eff

F = exp(iS1)HF exp(−iS1)

= H
(1)
0 + H

(1)
1 + H

(1)
2 ,

H
(1)
0 = H0, (13)

H
(1)
1 = H1 + i[S1,H0],

H
(1)
2 =

i

2
[S1,H1].

In the above equation, the transformation function S1 is ex-

pressed in terms of operators whose coefficients are care-

fully chosen to compensate the off-diagonality due to H1, i.e.,

−H1 = i[S1, H0]. The term H (1)
n in Eq. (13) denotes the nth -

order correction to the zero-order Hamiltonian resulting from

a single transformation.

The final stage involves the description of the time-

evolution of the system through the quantum-Liouville equa-

tion given below,

i¯
dρ(t)

dt
=

[

H
eff

F , ρ(t)
]

. (14)

To facilitate analytic description of polarization transfer in CP

experiments, Eq. (14) is reformulated in terms of coupled dif-

ferential equations,29, 30

i¯
d

dt
�(k)

q (λ, t)

= T race[T (k)−q(λ)[H, T (k′)q ′
(λ′)]]

︸ ︷︷ ︸

P (k′ )q′
(λ′)

�
(k′)
q ′ (λ′, t). (15)

A brief description of first-order and second-order CP exper-

iments based on the effective Hamiltonian approach is sum-

marized in Sec. II B.

B. Effective Floquet Hamiltonians for first-order
and second-order CP experiments

When the amplitudes of the RF fields are adjusted to one

of the matching conditions7 (|υRF,S ± υRF,I| = υr or 2υr), a

part of the two-spin Hamiltonian (refer to Eq. (7b)) becomes

time-independent under MAS conditions (commonly referred

to as “recoupled Hamiltonian”). In such cases, the recoupled

Hamiltonian is included as a diagonal contribution22, 26 along

H1 and the transformation function is carefully chosen only to

compensate the off-diagonal contributions in H1. The second-

order corrections (H
(1)
2 ) to the zero-order Hamiltonian are

composed of single-spin, two-spin, and three-spin operators.

For a given system, the single-spin operators to second-order

result from cross-terms between (a) single-spin operators (say

CSA × CSA) and (b) two-spin operators associated with the

same pair of spin, while the cross-terms between single-spin

and two-spin operators in (CSA × dipolar interactions) result

in two-spin operators. The cross-terms between different pairs

of dipolar interactions (with at least one-spin being common)

result in three-spin operators. A detailed description of the

second-order contributions is summarized in Table I (refer to

the Appendix), along with a generalization for extensions to

N-coupled spin (I = 1/2) systems.

Employing the results summarized in Table I, the

first-order contribution to the effective Hamiltonian in CP
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experiments is expressed in terms of two-spin operators,

H
(1)
1 = H1,dia =

N
∑

i=1

M
∑

j=1

2
∑

k=0

A(k)0(IiSj )T (k)0(IiSj )

︸ ︷︷ ︸

Two−Spin

. (16)

In a similar vein, the second-order contributions are composed of single spin and three-spin operators as represented below,

H
(1)
2 =

∑

λ=I,S

∑

i

B(1)0(λi).iT
(1)0(λi)

︸ ︷︷ ︸

Single−spin

+
N

∑

i

M
∑

r,j=1
j<r

B
(k)0
1 (IiSjSr )T (k)0(IiSjSr ) +

N
∑

i,j=1
i<j

M
∑

r=1

B
(k)0
1 (IiIjSr )T (k)0(IiIjSr )

︸ ︷︷ ︸

Three−Spin

. (17)

Based on Eq. (13), the effective Hamiltonian describing first-

order CP experiments is represented by

H
eff

F = H
(1)
0 + H

(1)
1 + H

(1)
2 . (18)

Subsequently, employing the effective Hamiltonians in

Eq. (15), the polarization transfer between an isolated

spin pair (IS) (panel (a), Figure 2) is described using a

set of coupled differential equations22, 23, 26 comprising of

single-spin (�
(1)
0 (λ, t), λ = I, S) and two-spin polarizations

(�
(k)
0 (IS, t), k = 0, 1, 2),

i¯
d

dt
�

(1)
0 (I, t) =

2
∑

k=0

P (k)0(IS) �
(k)
0 (IS, t),

i¯
d

dt
�

(1)
0 (S, t) =

2
∑

k=0

P (k)0(IS) �
(k)
0 (IS, t), (19)

i¯
d

dt
�

(k)
0 (IS, t) =

∑

λ=I,S

P (1)0(λ) �
(1)
0 (IS, t)

+
∑

λ=I,S

2
∑

k=0

P (k)0(IS) �
(k)
0 (λ, t).

When the magnitude of the coefficients associated with

the single-spin operators exceeds the magnitude of the co-

efficients associated with two-spin operators (i.e., P(1)0(λ)

> P(k)0(IS)), the above coupled-differential equations reduce

to a much simpler form given below,

i¯
d

dt
�

(1)
0 (I, t) = 0,

i¯
d

dt
�

(1)
0 (S, t) = 0, (20)

i¯
d

dt
�

(k)
0 (IS, t) =

∑

λ=I,S

P (1)0(λ) �
(1)
0 (IS, t).

Consequently, the single-spin polarizations �
(1)
0 (λ, t) remain

invariant and polarization transfer among spins is unobserved

in CP experiments.

While the above differential equations provide an intu-

itive framework for understanding the spin dynamics in an

isolated spin pair, their utility in providing analytic insights is

limited primarily due to the increase in the number of differ-

ential equations in strongly coupled systems. For example, the

effective Hamiltonian of a three-spin system in the Liouville

space comprises of three single-spin, nine two-spin (three

for a pair), and seven three-spin operators. Hence, descrip-

tions based on the effective Hamiltonian approach are less

suited for studying polarization transfer among strongly cou-

pled spin systems. To alleviate this problem, an alternate ap-

proach in the form of “truncated effective Hamiltonians” em-

ploying fewer differential equations is proposed in Sec. II C.

C. Concept of truncated effective Hamiltonians

To describe the mechanism of polarization transfer in

strongly coupled systems, the effective Hamiltonians derived

in Sec. II B are restructured based on the phenomenon of

dipolar truncation. Employing this approach, truncated effec-

tive Hamiltonians are proposed by retaining only the dom-

inant contributions in the effective Hamiltonians. Although,

such an approach reduces the number of coupled differential

equations in the Liouville space, the validity of such approxi-

mations could only be verified through a comparison between

analytic simulations emerging from the truncated Hamiltoni-

ans and the exact numerical simulations comprising of the en-

tire spin system of interest. Employing the model systems de-

picted in Figure 1, truncated effective Hamiltonians are pro-

posed for describing the polarization transfer observed in first-

order and second-order CP experiments.

1. First-order CP experiments

As illustrated through the simulations depicted in

Figure 2(b), the stronger dipolar interaction due to Cβ–

Hβ1 (ωCβHβ1
) truncates the polarization transfer to Cα (i.e.,

ωCβHβ1
> ωCαHβ1

) in the three-spin system CαCβHβ1. Con-

sequently, a truncated effective Hamiltonian in the form

of H
(eff )T

F,T hree comprising of T (k)0(CβHβ1
) and single-spin
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FIG. 3. Simulations depicting the polarization transfer to Cα (red) and Cβ

(black) in the model three-spin system (Figure 1(b)). The analytic simulations

in panel (a1) correspond to the complete effective Hamiltonian, while those

depicted in panel (b1) correspond to the reduced Hamiltonian. Solid lines

depict analytic simulations, while the numerical simulations are indicated by

dots.

operators T (1)0(Cβ), T (1)0(Hβ1
) is proposed for describing the

polarization transfer observed in CαCβHβ1 (Figure 1(b)). Due

to the smaller magnitude of the second-order coefficients

(see Table I), the contributions from the three-spin operators

are neglected and the truncated effective Hamiltonian is ex-

pressed only in terms of single-spin and two-spin operators:

H
(eff )T

F,T hree,Cβ
=

2
∑

k=0

A(k)0(CβHβ1
)T (k)0(CβHβ1

)

+
∑

λ=Cβ ,Hβ1

B(1)0(λ).iT (1)0(λ). (21)

To test the validity of this approach, analytic simulations de-

picting polarization transfer to Cα and Cβ in CαCβHβ1 are

compared in Figure 3 with exact numerical simulations (in-

clusive of all three-spins). For illustrative purposes, the an-

alytic simulations emerging from both effective (panel (a1))

and truncated (panel (b1)) Hamiltonians are compared with

exact numerical simulations. In contrast to the effective

Hamiltonian approach, polarization transfer to Cβ (depicted

in panel (b1)) is simulated within a reduced subspace com-

prising of spins Cβ and Hβ1. Hence, the truncated effective

Hamiltonian approach provides an alternate framework for

describing the dipolar truncation effect observed in CαCβHβ1.

To explain the enhanced polarization transfer observed in

CαCβHβ1Hβ2 (see Figure 2(c)), we propose a model, wherein,

polarization transfer to Cβ results from only one of the pro-

tons, say Hβ1 in CαCβHβ1Hβ2. Consequently, the polarization

from Hβ2 is readily transferred to Cα without the destructive

influence of the stronger Cβ–Hβ2 dipolar coupling. Based on

this model, the truncated effective Hamiltonians describing

polarization transfer to Cβ and Cα are derived and represented

by

H
(eff )T

F,Four,Cβ
=

2
∑

k=0

A(k)0(CβHβ1
)T (k)0(CβHβ1

)

+
∑

λ=Cβ ,Hβ1

B(1)0(λ).iT (1)0(λ), (22)

H
(eff )T

F,Four,Cα
=

2
∑

k=0

A(k)0(CαHβ2
)T (k)0(CαHβ2

)

+
∑

λ=Cα,Hβ2

B(1)0(λ).iT (1)0(λ). (23)
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FIG. 4. Simulations depicting polarization transfer to Cα in CαCβHβ1Hβ2

(Figure 1(c)). The analytic simulations comprise of both the complete (a1)

and truncated (b1) effective Hami1tonians (comprising of only CαHβ2). The

analytic simulations presented are compared with the exact numerical simu-

lations (dots) involving all the four spins in CαCβHβ1Hβ2.

In a similar vein, the stronger coupling in the form of

Cβ−Hβ1(ωCβHβ1
) truncates the Cβ–Hγ dipolar coupling in

CαCβHβ1Hγ (Figure 2(d)) and facilitates the propagation of

spin polarization to Cα . Hence, based on the truncated effec-

tive Hamiltonian approach, polarization transfer to Cβ and Cα

in the model four-spin system CαCβHβ1Hγ should result pri-

marily from Hβ1 (Hβ1 → Cβ through T (k)0(CβHβ1
)) and Hγ

(Hγ → Cα through T(k)0(CαHγ )), respectively.

To verify the validity of the proposed models based on

truncated effective Hamiltonians, analytic simulations emerg-

ing from both effective and truncated Hamiltonians were

compared with exact numerical simulations. In Figure 4,

polarization transfer to Cα in CαCβHβ1Hβ2 is calculated

both from the effective (panel (a1)) and truncated effec-

tive Hamiltonians (panel (b1)) and compared with exact nu-

merical methods (indicated by dots). As depicted (in Fig-

ure 4(b1)), the analytic simulations emerging from the trun-

cated effective Hamiltonians (comprising of Cα and Hβ2) are

in good agreement with the four-spin numerical simulations

in CαCβHβ1Hβ2. Hence, the truncation effect imposed by

the stronger Cβ–Hβ1 coupling on Cβ–Hβ2 indirectly influ-

ences (facilitates) the transfer of polarization from Hβ2 to Cα

in CαCβHβ1Hβ2. While the efficiency of transfer from Hβ2

→ Cα in CαCβHβ1Hβ2 is higher in contrast to the three-

spin simulations depicted in Figure 2(b), it is still dimin-

ished in comparison to the simulations depicting polariza-

tion transfer in an isolated spin pair (see Figure 2(a)). This

reduction in efficiency is attributed to the influence of the

passive spin Hβ1 through the Hβ1–Hβ2 dipolar coupling in

CαCβHβ1Hβ2. Although, matching conditions (say ωRF,S =
1
2
ωr ) corresponding to the reintroduction of Hβ1–Hβ2 dipolar

interactions are avoided in CP-MAS experiments, their man-

ifestations through second-order cross-terms are inevitable in

strongly coupled systems. As summarized in Table I, second-

order cross-terms between the 1H–1H dipolar interactions

(HHβ1−Hβ2
× HHβ1−Hβ2

) result in longitudinal single-spin op-

erators T (1)0(Hβ1
) and have been incorporated in the truncated

effective Hamiltonians (Eqs. (17) and (18)) for better agree-

ments with exact numerical simulations. Hence, the truncated

effective Hamiltonian approach provides an adequate frame-

work for the inclusion of both passive and active spins in a

reduced subspace within the Liouville space.

In general, depending on the magnitude of the 1H–13C

dipolar-coupling constants, the influence of passive spins in
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FIG. 5. Simulations highlighting the role of 1H–1H-homonuclear dipolar

interactions on polarization transfer to Cα in (a1) CαCβ Hβ1Hβ2, (b1)

CαHγ CβHβ1, and (c1) CαHαCβHβ1. The analytic simulations based on the

reduced effective Hamiltonian (solid lines in red) are compared with the exact

numerical simulations (dots) involving all the four spins in the chosen model

systems. The analytic simulations depicted in blue represent the absence of
1H–1H dipolar coupling in the reduced Hamiltonian.

CP experiments varies. To illustrate this aspect, polarization

transfer to Cα in CαCβHβ1Hβ2 (Figure 5a1), CαCβHβ1Hγ

(Figure 5b1), and CαHαCβHβ1 (Figure 5c1) is depicted both

in the presence (indicated in red) and absence (indicated in

blue) of the second-order cross-terms resulting from the 1H–
1H dipolar interactions. As depicted in Figure 5, the ana-

lytic simulations from the truncated effective Hamiltonians

(indicated in red) are in good agreement with the numer-

ical simulations (dots) in all the model four-spin systems.

Due to smaller magnitude of the Cα–Hβ2 dipolar coupling

constant, the second-order cross-terms resulting from 1H–1H

dipolar interactions have a prominent role in the efficiency

of polarization transfer in CαCβHβ1Hβ2 (depicted in blue in

panel (a1)). Hence, polarization transfer to Cα in the model

four-spin systems (depicted through Figures 1(c)–1(e)) could,

in principle, be described within an isolated two-spin frame-

work comprising of Cα–Hβ2, Cα–Hγ , and Cα–Hα dipolar cou-

plings, respectively. The truncated effective Hamiltonians are

represented by

H
(eff )T

F,Four,Cα
=

2
∑

k=0

A(k)0(CαHα)T (k)0(CαHα)

+
∑

λ=Cα ,Hα

B(1)0(λ).iT (1)0(λ), (24)

H
(eff )T

F,Four,Cβ
=

2
∑

k=0

A(k)0(CβHβ1
)T (k)0(CβHβ1

)

+
∑

λ=Cβ ,Hβ1

B(1)0(λ).iT (1)0(λ). (25)

In a similar vein, polarization transfer to Cα in the model five-

spin system CαHαCβHβ1Hβ2 was simulated using truncated

effective Hamiltonians (see Figure 6).

Based on the extensive analytic simulations, a schematic

decomposition of polarization transfer in the chosen model

systems is summarized through Figure 7. Hence, in a strongly

coupled system, dipolar truncation seems to be the driving

force behind the propagation of spin polarization in first-

order based CP experiments. In Sec. II C 2, we explore the

suitability of truncated effective Hamiltonians in understand-

ing the propagation of spin polarization in second-order CP

experiments.
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FIG. 6. Simulations depicting polarization transfer to Cα in the model five-

spin system depicted (CαHαCβHβ1Hβ2) in Figure 1(f). The analytic simu-

lations (solid lines) comprising of both the complete (a1) and reduced (b1)

effective Hami1tonians are compared with five-spin numerical simulations.

2. Second-order CP experiments

To minimize the effects of sample heating (due to RF

fields) and facilitate implementation of CP-MAS experiments

at faster spinning frequencies, schemes based on second-order

recoupling were preferred over first-order CP experiments. In

contrast to first-order based schemes, the three-spin opera-

tors (see Table I) resulting from cross-terms between differ-

ent pairs of dipolar interactions such as (a) heteronuclear X

heteronuclear dipolar interactions (say C1–H1 X C1–H2) and

(b) cross-terms from homonuclear X heteronuclear interac-

tions (such as C1-H1 X H1–H2) facilitate the propagation of

polarization in second-order based schemes.

For example, in PAIN-CP11 type experiments, polariza-

tion transfer from carbon to nitrogen is mediated through

a proton that is coupled to both the spins (i.e., second-

order cross-terms resulting from C–H1 X N–H1), while in

second-order recoupling (SOCP)10 experiments cross-terms

from both (a) and (b) aid in polarization transfer. In Figure 8,

FIG. 7. Schematic decomposition of polarization transfer in the model sys-

tems depicted in Figure 1.
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FIG. 8. Simulations depicting the polarization transfer to Cα in (a1)

CαHβ1Hβ2, (b1) CαCβ Hβ1Hβ2, and (c1) CαHαCβHβ1Hβ2 based on

second-order recoupling (SOCP). The simulations were performed at υr

= 60 kHz and υRF, C = υRF, H = 18 kHz.

analytic simulations (based on effective Hamiltonians) de-

picting polarization transfer to Cα in SOCP experiments in

model three (CαHβ1Hβ2), four (CαCβHβ1Hβ2), and five-spin

(CαHαCβHβ1Hβ2) systems are compared with exact numeri-

cal simulations (represented by dots).

Based on the effective Hamiltonian approach, po-

larization transfer in SOCP experiments is described

through differential equations comprising of single-spin

(e.g., �
(1)
0 (λ, t), λ = I1, I2, S) and three-spin polarizations

(�
(k)
0 (IiIjS, t)),

i¯
d

dt
�

(1)
0 (λ, t) =

∑

P (k)0(IiIjS) �
(k)
0 (IiIjS, t),

i¯
d

dt
�

(k)
0 (IiIjS, t) =

∑

P (k1)0(IiIjS) �
(1)
0 (λ, t) (26)

+
∑

P (1)0(λ) �
(k1)
0 (IiIjS, t).

Since polarization transfer in SOCP experiments is facilitated

through three-spin operators, analytic descriptions based on

the concept of effective Hamiltonians become less insightful

when extended to larger groups of spin systems.

To explore the utility of truncated effective Hamiltonians

in SOCP experiments, we begin our discussion with numer-

ical simulations depicting polarization transfer to Cα in (a1)

CαHβ1Hβ2, (b1) CαHβ1Hγ , and (c1) CαHαHβ1 in Figure 9.

The above three-spin models have been carefully chosen to

illustrate the combined effects of homonuclear and heteronu-

clear dipolar couplings in the propagation of spin polarization

in second-order CP experiments.

Since three-spin operators (resulting from (a) C1–H1 X

C1–H2) (b) C1–H1 X H1–H2) facilitate the propagation of spin
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FIG. 9. Simulations depicting polarization transfer to Cα in model three-

spin systems (a1) CαHβ1Hβ2, (b1) CαHβ1Hγ , and (c1) CαHαHβ1 based

on second-order recoupling (SOCP). The simulations were performed at υr

= 60 kHz and υRF, C = υRF, H = 18 kHz. The analytic simulations depicted

in blue represent the absence of 1H–1H dipolar coupling in the reduced ef-

fective Hamiltonian.
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FIG. 10. Simulations depicting polarization transfer to Cα in model four-

spin systems (a1) CαCβHβ1Hβ2, (b1) CαCβHβ1Hγ , and (c1) CαHαCβHβ1

based on second- order recoupling (SOCP). The simulations were performed

at υr = 60 kHz and υRF, C = υRF, H = 18 kHz. The analytic simulations de-

picted in black are derived from the three-spin model based on reduced effec-

tive Hamiltonian. The simulations depicted in red correspond to the four-spin

model with solid lines depicting the analytic simulations (complete effective

Hamiltonian) and dots denoting four-spin numerical simulations.

polarization in SOCP experiments, the simulations depicting

the polarization transfer to Cα in CαHβ1Hβ2 are bit counter-

intuitive, given that the magnitude of the second-order three-

spin coefficients (refer Table I) in CαHβ1Hβ2 is greater in

comparison to the three-spin models depicted in panels b1 and

c1. To explain this anomalous result, we revisit the differential

equations presented in Eq. (26).

In accord with the description of first-order based

schemes, the coupled differential equations (see Eq. (26))

reduce to a much simpler form, when the magnitude of

the coefficients associated with single-spin operators exceeds

the magnitude of the three-spin coefficients (i.e., P(1)0(Ii)

> P(k)0(IiIjS)),

i¯
d

dt
�

(1)
0 (λ, t) = 0,

i¯
d

dt
�

(k)
0 (IiIjS, t) =

∑

P (1)0(Ii) �
(k1)
0 (IiIjS, t).

(27)

Consequently, transfer of polarization among spins is in-

hibited in CP experiments. This aspect is exemplified in

Figure 9 through a series of analytic simulations both in the

presence (red) and absence of (depicted in blue) the second-

order cross-terms resulting from the 1H–1H dipolar interac-

tions. As illustrated (see panels 9b1, 9c1) in strongly cou-

pled systems (a condition satisfied in systems comprising of

directly bonded 13C and 1H), the second-order cross-terms

due to 1H–1H dipolar interactions are of lesser consequence.

Hence, in the weak-coupling limit, the stronger homonuclear

coupling (1H–1H) truncates the heteronuclear coupling (13C–
1H) and is primarily responsible for the depolarization ob-

served in both first-order and second-order CP experiments.

The above observations are in accord with our earlier descrip-

tion of polarization transfer from carbon to nitrogen in pres-

ence of protons.26 Hence, the magnitude of the single-spin op-

erators has a profound effect on the efficiency of polarization

transfer in both first-order and second-order schemes.

To further substantiate the utility of the truncated effec-

tive Hamiltonians, polarization transfer to Cα in model four-

spin systems (depicted in Figure 10) was investigated.

To minimize the complexity in the description, truncated

effective Hamiltonians comprising of T(k)0(CβHβ2Hβ1) and
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single-spin operators (i.e., the stronger coupling due to

T(k)0(CβHβ2Hβ1) (resulting from cross-terms between CβHβ1

× Hβ1Hβ2) truncates T(k)0(CαHβ2Hβ1) (resulting from cross-

terms between CαHβ1 × Hβ1Hβ2) were employed to describe

the polarization transfer observed in CαCβHβ1Hβ2. As

depicted in Figure 10, the analytic simulations based on the

truncated effective Hamiltonians (indicated in black) are in

better agreement in CαCβHβ1Hβ2 (panel (a1)) and

CαHαCβHβ1 (panel (c1)). The deviations observed in

CαCβHβ1Hγ (panel (b1)) may be due to stronger correlations

among protons and are of lesser consequence in real systems.

Hence, the polarization transfer to Cα in CαHαCβHβ1 is

modeled by

H
(eff )T

F,Four,Cα
=

2
∑

k=0

A(k)0(CαHβ1
Hα)T (k)0(CαHβ1

Hα)

+
∑

λ=Cα ,Hβ1
,Hα

B(1)0(λ).iT (1)0(λ). (28)

In contrast to first-order based schemes, the 1H–1H dipolar

interactions play an influential role in the propagation of spin

polarization in second-order CP experiments. When the mag-

nitude of the homonuclear coupling (among protons) exceeds

the heteronuclear coupling, truncation (through second-order

cross-terms) is observed both in first-order and second-order

based schemes. On the contrary, as illustrated through models

depicted in Figures 1(c) and 1(d), the dipolar truncation be-

tween heteronuclear spin pairs (13C–1H) facilitates the prop-

agation of spin polarization in first-order based CP schemes.

Hence, dipolar truncation remains the main driving force be-

hind the propagation of polarization among spins in strongly

coupled systems.

III. CONCLUSIONS

In summary, the current study elucidates the important

role of dipolar truncation in the propagation of polarization

from protons to carbons in CP experiments. Based on the

phenomenon of truncation, an alternate framework in the

form of truncated effective Hamiltonians is proposed to

describe the propagation of spin polarization in strongly

coupled systems. In contrast to the effective Hamiltonian ap-

proach, the present model facilitates the analytic description

even in strongly coupled systems. Employing this approach,

polarization transfer in first-order based CP experiments

is described by a pseudo-three-spin model comprising of

the active (13C, 1H) and passive spins. The effects of the
1H–1H dipolar interactions are incorporated through the

longitudinal single-spin operators (protons) within the two-

spin framework. In contrast to first-order based schemes, the
1H–1H-dipolar interactions play a dual role in the propagation

of the spin polarization in second-order schemes. Hence, in

a strongly coupled network, propagation of spin polarization

across the sample is predominantly facilitated through the

weakly coupled protons (1H–1H interaction) in the system.

The current study presents a probable mechanism of prop-

agation of spin polarization in CP experiments and could

well be employed to build theoretical models for quantifying

polarization transfer in strongly coupled spin systems.
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APPENDIX: SUMMARY OF SECOND-ORDER CORRECTIONS

TABLE I. Second-order corrections to the effective Hamiltonian for a model three-spin system I1I2S. The spherical tensor operators have been constructed by

sequential coupling29 of the angular momentum vectors between the spins.24 The constant “N” represents the number of spins and the results presented could

be generalized for N-coupled (spin 1/2) systems. The indices p and q (can be integers/fractions) defined in the operators are due to ωRF,I = pωr, ωRF,S = qωr.

In this article the following values of p and q have been employed: p = 2
3
, q = 1

3
(in first-order schemes) and p = q = 1 (in second-order schemes).

Types of commutators Coefficients Operators

Single-spin operators

(i)
[

T
(1)±1
m±p (I1), T

(1)∓1
−m∓p(I1)

]

︸ ︷︷ ︸

CSA×CSA

G
(1)±1
m±p (I1).G

(1)∓1
−m∓p (I1)

mωr±ωRF,I
∓

(
1√
2

)N−2
i
2
T

(1)0
{1} (I1)

(ii)
[

T
(2)±2
m±2p(I1I2), T

(2)∓2
−m∓2p(I1I2)

]

︸ ︷︷ ︸

DQHomo×DQHomo

G
(2)±2
m±2p

(I1I2).G
(2)∓2
−m∓2p

(I1I2)

mωr±2ωRF,I
±

(
1√
2

)N−2
i
2

[

T
(1)0
{1} (I1) + T

(1)0
{1} (I2)

]

(iii)
[

T
(2)±2
m±p±q (I1S), T

(2)∓2
−m∓p∓q)(I1S)

]

︸ ︷︷ ︸

DQHet×DQHet

G
(2)±2
m±p±q (I1S).G

(2)∓2
−m∓p∓q)

(I1S)

mωr±ωRF,I ±ωRF,S
±

(
1√
2

)N−2
i
2

[

T
(1)0
{0} (I1) + T

(1)0
{0} (S)

]

Three-spin operators

(i)
[

T
(2)±2
m±2p(I1I2), T

(2)∓2
−m∓p∓q (I1S)

]

︸ ︷︷ ︸

DQHomo×DQHet

G
(2)±2
m±2p

(I1I2).G
(2)∓2
−m∓p∓q (I1S)

mωr±2ωRF,I

(
1√
2

)N−3
i
2

⎡

⎢
⎢
⎣

± 1

2
√

5
T

(3)0
{2} (I1I2S) + 1

2
√

2
T

(2)0
{2} (I1I2S) ± 1

2

√

3
10

T
(1)0
{2} (I1I2S)

− 1

2
√

6
T

(2)0
{1} (I1I2S) ∓ 1

2
√

2
T

(1)0
{1} (I1I2S) − 1

2
√

3
T

(0)0
{1} (I1I2S)

⎤

⎥
⎥
⎦
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TABLE I. (Continued.)

Types of commutators Coefficients Operators

(ii)
[

T
(2)±2
m±2p(I1I2), T

(2)∓2
−m∓p∓q (I2S)

]

︸ ︷︷ ︸

DQHomo×DQHet

G
(2)±2
m±2p

(I1I2).G
(2)∓2
−m∓p∓q (I2S)

mωr±2ωRF,I

(
1√
2

)N−3
i
2

⎡

⎢
⎢
⎣

± 1

2
√

5
T

(3)0
{2} (I1I2S) + 1

2
√

2
T

(2)0
{2} (I1I2S) ± 1

2

√

3
10

T
(1)0
{2} (I1I2S)

+ 1

2
√

6
T

(2)0
{1} (I1I2S) ± 1

2
√

2
T

(1)0
{1} (I1I2S) + 1

2
√

3
T

(0)0
{1} (I1I2S)

⎤

⎥
⎥
⎦

(iii)
[

T
(2)±2
m±p±q (I1S), T

(2)∓2
−m∓p∓q (I2S)

]

︸ ︷︷ ︸

DQHet×DQHet

G
(2)±2
m±p±q (I1S).G

(2)∓2
−m∓p∓q)

(I2S)

mωr±ωRF,I ±ωRF,S

(
1√
2

)N−3
i
2

⎡

⎢
⎣

± 1

2
√

5
T

(3)0
{2} (I1I2S) ∓ 1√

30
T

(1)0
{2} (I1I2S) + 1√

6
T

(2)0
{1} (I1I2S)

− 1

2
√

3
T

(0)0
{1} (I1I2S) ± 1√

6
T

(1)0
{0} (I1I2S)

⎤

⎥
⎦

(iv)
[

T (2)0
m (I1I2), T

(2)0
−m∓p±q (I1S)

]

︸ ︷︷ ︸

ZQHomo×ZQHet

[

T (2)0
m (I1I2), T

(2)0
−m∓p±q (I2S)

]

︸ ︷︷ ︸

ZQHomo×ZQHet

G
(2)0
m (I1I2).G

(2)0
−m∓p±q (I1S)

mωr

G
(2)0
m (I1I2).G

(2)0
−m∓p±q (I2S)

mωr

(
1√
2

)N−3
i
2

[

− 1

2
√

2
T

(2)0
{2} (I1I2S) + 1

2
√

6
T

(2)0
{1} (I1I2S) − 1

2
√

3
T

(0)0
{1} (I1I2S)

]

(
1√
2

)N−3
i
2

[

− 1

2
√

2
T

(2)0
{2} (I1I2S) − 1

2
√

6
T

(2)0
{1} (I1I2S) + 1

2
√

3
T

(0)0
{1} (I1I2S)

]

(v)
[

T (2)0
m (I1I2), T

(0)0
−m∓p±q (I1S)

]

︸ ︷︷ ︸

ZQHomo×ZQHet

[

T (2)0
m (I1I2), T

(0)0
−m∓p±q (I2S)

]

︸ ︷︷ ︸

ZQHomo×ZQHet

G
(2)0
m (I1I2).G

(0)0
−m∓p±q (I1S)

mωr

G
(2)0
m (I1I2).G

(0)0
−m∓p±q (I2S)

mωr

(
1√
2

)N−3
i
2

[

− 1
2
T

(2)0
{2} (I1I2S) − 1

2
√

3
T

(2)0
{1} (I1I2S)

]

(
1√
2

)N−3
i
2

[

− 1
2
T

(2)0
{2} (I1I2S) + 1

2
√

3
T

(2)0
{1} (I1I2S)

]

(vi)
[

T
(2)0
m±p∓q (I1S), T

(2)0
−m∓p±q (I2S)

]

︸ ︷︷ ︸

ZQHet×ZQHet

G
(2)0
m±p∓q (I1S).G

(2)0
−m∓p±q (I2S)

mωr

(
1√
2

)N−3
i
2

[

− 1√
6
T

(2)0
{1} (I1I2S) − 1

2
√

3
T

(0)0
{1} (I1I2S)

]

(vii)
[

T
(2)0
m±p∓q (I1S), T

(0)0
−m∓p±q (I2S)

]

︸ ︷︷ ︸

ZQHet×ZQHet

G
(2)0
m±p∓q (I1S).G

(0)0
−m∓p±q (I2S)

mωr

(
1√
2

)N−3
i
2

[
1
2
T

(2)0
{2} (I1I2S) − 1

2
√

3
T

(2)0
{1} (I1I2S)

]

(viii)
[

T
(0)0
m±p∓q (I1S), T

(2)0
−m∓p±q (I2S)

]

︸ ︷︷ ︸

ZQHet×ZQHet

G
(0)0
m±p∓q (I1S).G

(2)0
−m∓p±q (I2S)

mωr

(
1√
2

)N−3
i
2

[

− 1
2
T

(2)0
{2} (I1I2S) − 1

2
√

3
T

(2)0
{1} (I1I2S)

]

(ix)
[

T
(0)0
m±p∓q (I1S), T

(0)0
−m∓p±q (I2S)

]

︸ ︷︷ ︸

ZQHet×ZQHet

G
(0)0
m±p∓q (I1S).G

(0)0
−m∓p±q (I2S)

mωr

(
1√
2

)N−3
i
2

[
1√
3
T

(0)0
{1} (I1I2S)

]
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