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Abstract 

The present paper is about analyzing and quantifying parametric uncertainties in a nonlinear aeroelastic system. The response 
surface of a subcritical system has discontinuities which makes it difficult to analyze using spectral approaches. A quadrature 
based spectral parametric uncertainty tool called nonintrusive spectral projection (NISP) can capture discontinuities in the 
response surface only by infinite number of points. As the number of random variable increases, the order of expansion has to 
increase drastically in order to capture the response accurately. Hence an alternate approach using integrated interpolation 
scheme which was earlier applied for a thermoacoustic problem is being applied to a classical flutter problem.  It is found to be 
accurate and computationally cheaper than traditional Monte Carlo simulations (MCS) in capturing the response surface. This 
paper intends to apply the interpolation scheme to the nonlinear aeroelastic model and compares it with quadrature based 
polynomial chaos expansion (PCE) approach and MCS.   
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1. Introduction 

An Aeroelastic phenomenon occurs when there is an interaction between aerodynamic, elastic and inertial forces. 
Such kind of fluid structure interaction can lead to instability and vibration problems. A very good example of 
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dynamic aeroelasticity would be flutter. Flutter is determined from conditions which give either a divergent or 
limited amplitude response[1]. For a simplified linear system there exists a critical reduced velocity or flutter point at 
which the system becomes unstable and undergoes divergent oscillations, leading to failure of the structure[2] . In a 
real case situation, flutter problems can be solved by taking nonlinearity into consideration. Breitbach [3] has 
investigated various kinds of nonlinearities that can affect an aircraft structure, which are distributed and 
concentrated nonlinearities. The flutter point of the system change when uncertainty is introduced and hence play an 
important role in designing aircraft wings and control surfaces. Generally, uncertainties are divided into two 
categories; aleatory and epistemic[4,5]. Aleatory uncertainty represents the inherent randomness in the system 
parameter and is irreducible whereas epistemic uncertainty describes subjectivity, ignorance or lack of information 
in any phase of the modeling process. It is reducible because it can be decreased with an increased knowledge or by 
collecting more data. Uncertainties in an aeroelastic system include system modeling, measurement inaccuracies, 
structural properties and operating environment. Among these uncertainties, randomness in structural properties and 
operating environment come under aleatory category. The present study focuses on interaction of nonlinearities of 
aeroelastic systems with parametric uncertainties. 

 
The effect of freeplay, hysteresis and cubic nonlinearities on flutter was initially investigated by Woolston et al., 

[6] using analog computing and wind tunnel experiments. Structural nonlinearities typically arise from freeplay at 
the interconnections between different components, worn hinges, loose linkages etc. Limit Cycle Oscillations (LCO) 
and chaotic motions were reported in experiments with freeplay in pitch using low speed wind tunnel [7,8]. 
According to Tang and Dowell, for nonlinear systems the flutter instability behavior not only depends on structural 
and aerodynamic parameters but also on initial conditions [7]. 

 
 Cubic nonlinearities in 2 degree-of-freedom (2DOF) aerofoil change the behavior of the system at flutter point. 

For a hard spring, the nonlinear flutter boundary is independent of initial conditions. Instead of divergent flutter, a 
limit cycle oscillation occurs for velocities greater than the flutter speed. For a soft spring, it was found that the 
initial condition can trigger oscillations below the linear flutter speed. Lee et al. [9–11] has illustrated the 
destabilizing effect of a soft spring which shows that flutter can be induced at a velocity below the linear flutter 
velocity  . 

 
Uncertainty quantification method is selected based on the information available about the uncertain parameters. 

This information can be acquired through data-bases, experiments, expert knowledge etc. If the probability 
distribution of the uncertain parameter is known, then the response of the system can be determined by using the 
theory of probability and random process[12]. This idea is implemented in methods such as Monte Carlo simulation, 
spectral methods, response surface method etc. The polynomial chaos expansion is a spectral method in which the 
input is represented by employing orthogonal polynomial as the basis in a random space [13,14]. A classical 
Galerkin-PCE approach which is intrusive in nature modifies the governing equations to a coupled form in terms of 
chaos coefficients. This increases the complexity of the system and becomes computationally expensive. To reduce 
the intricacy several uncoupled variants of polynomial chaos expansion such as probabilistic collocation method by 
Loeven et al.[15] is used, where the problem is collocated at Gauss quadrature points in the probability space. The 
deterministic runs were then performed at these collocation points which resulted in an exponentially fast 
convergence [16,17]. For multiple random variables, the collocation grids are constructed using tensor product of the 
one-dimensional grid. This increases the number of collocation points and as an alternative, sparse grid collocation 
approach was implemented [18–20].  

 
The nonlinear aeroelastic system considered here exhibits subcritical bifurcation with a discontinuous behavior in 

the response surface. Similar kind of a system was solved by B-Spline interpolation technique by Millman et al.[21], 
but it smoothened out the discontinuities by drawing piecewise linear B-splines giving erroneous response. Hence an 
integrated interpolation scheme which uses a combination of linear and proximal interpolations is employed [22]. It 
is based on equi-probable nodes, which uses the idea of equal probability of the nodes giving least error. This 
scheme is non intrusive and can be applied to any number of random dimensions.  
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2. Methodology 

The nonlinear aeroelastic system used for the simulation is shown in Fig. 1: 
 

Fig. 1. The schematic of an aerofoil with pitch (α) and plunge (h) degrees-of-freedom 
  
The governing equations for a nonlinear aeroelastic system used for the simulation are [9]: 
 

+ xαα"  (1) 

 
xα
rα

+α"       (2) 

 
where  ξ   is the non-dimensional plunge displacement of the elastic axis,  is the ratio of cubic spring 

constant to linear spring constant in pitch. The response i.e., α (radians) gives supercritical Hopf bifurcation when 
 positive whereas for softening nonlinearity the response gives subcritical bifurcation. rα is the radius of gyration 

about the elastic axis, and  are the viscous damping co-efficients in plunge and pitch respectively. The elastic 
axis is located at a distance ahb from the mid-chord and the centre of mass is located at a distance xαb from the 
elastic axis. In the above equation  is the nondimensional velocity or reduced velocity.   
where and  are the uncoupled plunging and pitching modes natural frequencies. The denotes differentiation 
with respect to nondimensional time  defined as .   and  are the lift and pitching moment 
coefficients whose expression is given by Fung [23]; they contain indicial integral forms in terms of Wagner’s 
functions and are transformed into a set of eight ODEs in time domain. The parameters and the non-
dimensionalization used here are as shown in Lee et al. [9]. 

 
While dealing with subcritical systems, the response tends to diverge beyond bifurcation point for any initial 

conditions except , hence to regain the stability and understand the system better, a fifth order nonlinearity is 
applied in pitching mode for the present study. 

3. Simulation methods 

Here a 2DOF subcritical aeroelastic system is simulated using Monte Carlo method, polynomial chaos method 
and integrated interpolation scheme. The deterministic non-dimensional linear flutter velocity for the system was 
found to be 6.2865. When nonlinearity was induced in the system using a soft cubic spring in pitch, the response 
became unstable beyond the same reduced velocity as the linear flutter velocity. This behavior was also reported by 
Lee et al. [9], thus validating the present deterministic code. The bifurcation behavior of the response is shown in 
figure 2 for varying nondimensional velocity U* as the bifurcation parameter. The value of fifth order spring 
coefficient was chosen such that the response does not go beyond stall angle and simulation was fixed at -3 to 
ensure subcritical behavior. It includes all the possible values of initial conditions and is found that for certain initial 
conditions the system gives damped response and for others it gives limit cycle oscillations. As the velocity is 
increased, the response went from damped to LCO at U* equal to 6.2865 which was same as linear bifurcation 
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velocity. When the system was forced to bring down the response from LCO to stable solution by decreasing the 
velocity, the bifurcation point moved to 6.16. This kind of hysteresis is observed in the simulation and was found in 
experiments conducted by Bunton and Denagri [24]. In the figure, A-B is the stable branch in which any initial 
condition will give damped behavior; C-D depends on initial condition and goes to limit cycle oscillations (LCO). 
The branch B-C (hypothetical branch) marks the unstable LCO of the subcritical Hopf bifurcation behavior. 
Therefore the subcritical region lies in between these two points (B-C) which can give two stable solutions 
depending on the initial condition. 

 
Fig. 2. Bifurcation diagram of a 2DOF subcritical system for βα  

 

3.1. Polynomial Chaos Expansion 

As the reference for the present study, Monte Carlo simulations (MCS) are used for both polynomial chaos 
expansion and integrated interpolation scheme. MCS is carried out for two single random variable cases; cubic 
spring constant ( ) and initial condition (α0) and for two random variables ( and α0). These parameters are 
assumed to be independent Gaussian random variables. The accuracy of this method depends on the number of 
samples hence time, computational power and memory required for the iterations are more [25,26]. A non-intrusive 
projection method of polynomial chaos expansion method was useful in getting accurate results in the case of 
supercritical Hopf bifurcation which has continuous change in response. Time required for this simulation was 
drastically less when compared to MCS. Here probabilistic Hermite polynomial is used for approximating Gaussian 
input random variable. According to the order of the polynomial (p), (p+1) collocation points are found through 
Gauss Hermite quadrature rule. Deterministic runs are performed on these points in the governing equations and are 
used to find the polynomial coefficients  through the projection formula. After which, the final response is 
expanded through the series: 

 

 (3) 
 

where  is the probabilistic hermite polynomial and  is the standard normal random variable used for calculating 
the input parameter. The number of terms in the expansion (n) is given by  
 

 (4) 

 
where  is the number of random variables. MCS were carried out for 10,000 samples in order to predict the 

behavior and is used as a reference solution. Fig. 3 shows both MCS and PCE simulations for a subcritical system. 
The response surface by MCS is shown in Fig. 3(a); the sharp changes in the response between the damped solution 
and the LCO can be clearly seen. It has also been captured well in the cumulative distribution function (CDF) plot 
presented in Fig. 3(b). Fig. 3(c) and 3(d) shows response α (radians) and CDF using PCE. The polynomial order 
chosen for the simulation was 25 with 26 collocation points. Fig. 3(c) shows an oscillatory behavior in the limited 
amplitude responses which are not characteristic of the system and does not change much by increasing the 
polynomial order. The collocation points are out of the physical boundary of the system while using Hermite 
quadrature which gives unrealistic solution. The increasing slope in Fig. 3(d) shows varying LCO values which are 
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not feasible in subcritical systems.  In order to capture the discontinuity, large number of chaos expansion terms is 
required which increases the polynomial order to infinity. But still it can be seen that the response is captured only 
partially and fails to predict the discontinuous nature of the system. Hence another alternative approach based on 
interpolation technique was used to capture the discontinuities of the subcritical system more accurately and 
efficiently. 

 

 
Fig 3.(a) maximum amplitude of the response for random initial condition α0 using MCS (b) cumulative distribution function (CDF) of the 
response using MCS (c) maximum amplitude of the response for random initial condition α0 using PCE (d) cumulative distribution function 
(CDF) of the response using PCE 

3.2. Integrated Interpolation Scheme (IIS) 

 Because of the above flaws in PCE an algorithm based on interpolation which uses a combination of linear and 
proximal interpolation is used. In nearest neighbour or proximal interpolation the value at a particular response point 
is the value of the nearest response grid point. This ensures that the output remains as characteristic of the system 
and hence it is specifically used in the discontinuous region. Linear interpolation is applied at all the other regions of 
the subcritical system. A key element of this method is the use of equiprobable nodes, on which deterministic runs 
are performed and then interpolation scheme is applied. As the number of nodes required for IIS scheme is less, it 
drives the simulation faster, thus giving an advantage over Monte Carlo simulation and can be used for multirandom 
variables.  

3.2.1 Equiprobable nodes 

The interpolation nodes used for IIS are equiprobable nodes. To obtain the nodes let’s consider a Gaussian input 
distribution whose interval lies between - to + . But 99% of the data lies between the ranges -4 to +4 of the 
Gaussian probability density function: 

 

 (5) 

 
Hence -4 to 4 interval is selected for the single random variable and for two random variable case ξ1 and ξ2. The 

area of the probability distribution curve of the standard normal variable is then divided into equal number of parts 
and the abscissa corresponding to the interval gives the location of the equiprobable nodes. As the name suggests the 
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equiprobable node confirms that the probability of a given set of random numbers lying in any of the node intervals 
is the same. A random input has equal probability to lie in the interval of discontinuity or any other interval. This 
ensures that the nodes give best approximation of the response.  

For a two dimensional random variable case a mesh grid of the same nodes are taken in each direction. Fig. 4(a) 
and 4(b) shows the mesh grid distribution of MCS and IIS respectively.  

 
Fig. 4. (a) Samples of and α0 for MCS (b) mesh grid of equiprobable nodes of and α0 

4. Results  

4.1 Single random variable case  
 

The simulations are run for random initial pitch angle, for = 0 and  = 0.2. Here proximal interpolation is used at 
the discontinuity and linear interpolation for the rest of the region respectively. The result can be further improved 
by increasing the number of nodes in the discontinuous region rather than increasing the number of equiprobable 
nodes. Thus the number of nodes required for the model was 20 with 10 additional collocation points at the region 
of discontinuity. The simulations were carried out for 6000 seconds to stabilize the response surface. The cumulative 
distribution function (CDF) and probability density function (PDF) of the response α(radians) for the present scheme 
are compared to the reference solution as shown in Fig. 5(a) and 5(b). The probability of the response (PDF) and 
CDF are found using histogram in Matlab. From Fig. 5(c) it can be seen that the system has both damped oscillation 
or zero amplitude and a limit cycle oscillation of 0.18radians or 10.3 . All the simulations were carried out with 
nondimensional velocity of 6.21 which is within the subcritical range. The time required to produce same result with 
integrated interpolated scheme was almost 1/100th of MCS. 

 

 
Fig. 5. (a) CDF of response with 10000 MCS runs and IIS with 20 and 24 node interpolation  (b) PDF of response with 10000 MCS runs and IIS 
(c) Response surface with 10000 MCS runs and IIS  
 
 

Similar to α0, the softening cubic spring constant is assumed to be random and of Gaussian distribution. 
Simulations are carried out with mean value of  as -3 and standard deviation as 0.3 respectively for constant 
initial pitch angle of 11deg to ensure that LCO has developed. All the other parameters are same as the previous 
case. Here 26 equiprobable nodes were required in order to match the reference solution.  From Fig. 6(a) and 6(b) it 
can seen that the maximum amplitude of the response varies with  hence the number of nodes required to capture 
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the response has increased slightly than initial condition (α0) case. Again 10 additional collocation points were 
added for a better approximation of the discontinuous region as shown in Fig. 6(c). Since the deterministic runs are 
performed only at these nodes, the time taken for this simulation was almost same as the previous case. The PDF 
shows two peaks where the first one represent the stable solution and the second peak forms a Gaussian curve, due 
to varying stable periodic response. Good agreement has been achieved between MCS and IIS. 

 
 

Fig. 6.( a) CDF of response with 10000 MCS runs and IIS with 26 and 30 node interpolation  (b) PDF of response with 10000 MCS runs and IIS 
(c) Response surface with MCS and IIS  
 
4.2 Two random variable case  

 
Here the initial pitch angle and cubic spring constant in pitch are considered to be independent Gaussian random 

variables. The mean and standard deviation of the variables are same as the previous cases. 
  

 
 

Fig. 7. ( a) CDF of MCS and IIS (b)PDF of MCS and IIS 

 
Fig. 8. Response surface of (a) 10000 samples of MCS (b) 34 equidistant nodes of IIS 

 
In this case 32 equiprobable nodes are used along α0 and dimension and a mesh grid is formed for the 
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simulation. Additional 20 collocation points were added for a better approximation of the discontinuous region. The 
CDF and PDF in this case are as shown in Fig. 7(a) and 7(b) respectively. From the plot it can be seen that the 
response surface of IIS resemble MCS very closely. In a two random variable case also the LCO values vary 
according to the cubic spring constant. Hence both the plots are similar to cubic spring single random variable case.  
 

A 3D response plot for MCS and IIS for a two random variable case is shown in Fig. 8(a) and 8(b). The 
discontinuity of the system is visible along α0 axis whereas the response changes from stable solution to varying 
LCO in the negative direction of . 

 
5. Conclusion 

Numerical simulations were carried out for a 2DOF aeroelastic subcritical system using various methods of 
uncertainty quantification, among which the integrated interpolation scheme with equiprobable node distribution 
was found to be very efficient in capturing discontinuities exhibited by the system. The advantages of using IIS for 
discontinuous response surface are highlighted in the present work. The PDF and CDF of the response are compared 
with the reference MCS solution and good agreement is found between MCS and IIS when compared to PCE. The 
polynomial chaos expansion a class of spectral method was unable to capture the response accurately and showed 
characteristics which are not feasible in the system. The proposed scheme can be used with any input distribution 
and also for multirandom variable case with least error and less computational time. 
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