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ABSTRACT - An improved continuous cycling method is proposed for PID controllers for unstable 

systems with two unstable poles and time delay. The method involves the determination of the controller 

settings by solving the magnitude and the phase angle criteria for the system with a proportional 

controller. Subsequently, incorporating the Proportional-Derivative-Integral (PID) controller transfer 

function, with unity proportional gain and pre-determined values of reset time and derivative time in the 

first step, with the system model and again solving the amplitude and the phase angle criteria, we get the 

updated gain of the controller. The method is applied by simulation on (i) a second order system with 

time delay and two unstable poles and (ii) a non-linear model of a CSTR with complex conjugate 

unstable poles and time delay. The controller settings significantly enhance the performances of both the 

servo and the regulatory problems and give robust performances.  
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I. INTRODUCTION 

The use of Proportional-Integral-Derivative (PID) controllers 

for industrial process control is the most popular technique.   

With the invention of PID controller in 1910 [1] and the Z-N 

tuning rules in 1942 [2] the popularity of the PID controllers 

increased immensely. The widespread use of PID controllers 

owe to its simple structure and the ease of on-line retuning.  

To determine the parameters of the controller, many design 

methods, such as gain margin/phase margin method [3-6], 

pole placement technique [7-8], optimization technique [9-

11], direct synthesis method [12-15], internal model control 

method [16-17], equating coefficient method [18] and robust 

loop shaping [19], have been reported in the last few decades. 

One of the earliest methods of tuning PID controllers is the 

Ziegler-Nichols method [2]. It is a heuristic method of 

determining the ultimate values of the controller. At the 

ultimate value, the system is at the point of marginal 

instability and gives sustained oscillations in the output. The 

ultimate gain and ultimate frequency are used to get the PID 

controller settings. The PID settings proposed by Ziegler –

Nichols results in a large overshoot and an oscillatory 

response. The correlation between the ultimate period, the 

reset time and the derivative time was based on simulation of 

a large number of processes. The key criterion is a quarter 

decay ratio. Many other researchers have modified the ZN 

method to obtain significant performance improvement. 

Dwyer [20] has reviewed the methods. Tyreus-Luyben [21] 

proposed settings for PI and PID controllers, but the method 

results in a long settling time. Smith [22] and Yu [23] 

proposed modification in the tuning formulae based on the 

ultimate values.  

Furthermore, most of the proposed methods, based on 

ultimate values of controllers, are implemented mostly on 

stable processes. Controller design for the unstable process 

with time delay is difficult. Some of the methods are 

modified based on achieving the desired closed loop response 

[24]. Many methods involving use of PID controller in series 

with the lead lag compensator are also proposed. Nikita and 

Chidambaram [25,26] proposed a method to improve the 

performance of a PID controller for First order unstable 

systems and for a second order plus time delay systems with 

one stable and one unstable poles.  

In the present work, this method is extended to unstable time 

delay systems with two unstable poles. The method is simple, 

analytically derived and can be applied mostly to all the 

different classes of processes. Maximum sensitivity, phase 

margin and gain margin criteria are used for the robustness 

analysis of the proposed method. 

 

II. CONTROLLER DESIGN METHOD 

In this paper, the single loop feedback controller structure is 

used as shown in Figure(1), where Gp is the process transfer 

function, Gc is the PID controller transfer function of the 

form given by 𝐺𝐺𝑐𝑐(𝑠𝑠) =  𝐾𝐾𝑐𝑐 +
𝐾𝐾𝐼𝐼
𝑠𝑠 + 𝐾𝐾𝐷𝐷𝑠𝑠  

where,  𝐾𝐾I =
𝑘𝑘𝑐𝑐
𝜏𝜏𝐼𝐼 ,

 𝑎𝑎𝑛𝑛𝑑𝑑 𝐾𝐾𝐷𝐷 = 𝑘𝑘𝑐𝑐 ∗ 𝜏𝜏𝐷𝐷  

 
Figure 1: Feedback controller structure 
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It should be noted that for an unstable system, along with the 

maximum value of controller gain (𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 ), the minimum 

value of controller gain (𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 ) also plays an important role. 

Ziegler and Nichols [2] proposed a tuning rule for the PID 

controllers based on the ultimate values of the system. 

However, the method gives oscillatory responses particularly 

for the control of the unstable systems.  In the present work, a 

method is proposed for updating the value of the controller 

gain once integral and derivative actions are put into effect. 

The amplitude ratio (Ar) and cross over frequency (ωc) for a 

system are obtained by solving the amplitude and the phase 

angle criteria. To make the overall loop gain equal to unity at 

phase lag equals to 180 deg, the controller gain is set equal to 

1/Ar. At this value, the closed loop system will become 

marginally stable and will give sustained oscillations with 

frequency equal to 𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥 . To eliminate the offset we must 

include the integral mode to the controller. To speed up the 

response of the system, a derivative mode is added to the 

controller.  

It is observed that on addition of the integral and derivative 

modes, the value of controller gain changes and its new value 

is to be calculated. For stable systems, Douglas [26] proposed 

a trial and error procedure to determine the values of 

controller settings based on the Bode plots. He proposed that 

the best results are obtained when the phase lag of 

approximately 10 deg (by the integral mode) and phase lead 

of approximately 45 deg (by the derivative mode) are added 

at the original cross over frequency. For this, the integral and 

derivative times are considered respectively as: 5/ωc and 

1/ωc.  Around these values, the parameters are tuned to get a 

satisfactory performance. However, the examples considered 

are stable processes.  

A. Time integral performance 

To compare the performance of the system based on 

proposed method over the other methods present in the 

literature, Integral of the Square Error (ISE), Integral of the 

Time weighted Absolute Error (ITAE) and Integral of the 

Absolute error (IAE) values are considered for both the cases 

of unit step change in the input and unit step change in the 

disturbance. The criteria are defined as   

𝐼𝐼𝑆𝑆𝐸𝐸 =   𝜖𝜖2 𝑡𝑡 𝑑𝑑𝑡𝑡∞
0

;   𝐼𝐼𝐴𝐴𝐸𝐸 =    𝜖𝜖 𝑡𝑡  𝑑𝑑𝑡𝑡∞
0

 ;  

𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 =   𝑡𝑡 𝜖𝜖 𝑡𝑡  𝑑𝑑𝑡𝑡
∞

0

 

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒, 𝜖𝜖 𝑡𝑡 = 𝑦𝑦𝑟𝑟 𝑡𝑡 −  𝑦𝑦(𝑡𝑡) is the deviation of response 

from desired set point. 

III. SIMULATION STUDIES 

Example 1:  Consider the open loop unstable second order 

plus time delay system with two unstable poles and a 

negative zero  

𝐺𝐺𝑝𝑝 𝑠𝑠 =
𝐾𝐾𝑝𝑝  5𝑠𝑠+1 exp  −𝑠𝑠 
 10𝑠𝑠−1  5𝑠𝑠−1             (1) 

where, 𝐾𝐾𝑝𝑝 = 1 

The amplitude ratio and the phase angle of the system can be 

written as  

𝐴𝐴𝑟𝑟 =
1

 102𝜔𝜔2+1
             (2) 

𝜑𝜑 =  −𝜔𝜔 + 2tan−1 5𝜔𝜔 + tan−1 10𝜔𝜔 − 2𝜋𝜋          (3) 

To determine the ultimate values of the controller, the system 

is made to approach the marginal instability at cross over 

frequency. The phase angle criterion [eq.(3) with 𝜑𝜑 = −𝜋𝜋 ] is 

numerically solved to obtain the minimum value of frequency 

(ω𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 ) and maximum value of frequency (ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 ) 

corresponding to which minimum and maximum amplitude 

ratio of the system are calculated using eq.(2). To make the 

overall gain of the system unity, the ultimate value of 

controller gain (Kc) set equal to inverse of amplitude ratio 

(Ar).  

Solving numerically eq.(3b) with 𝜑𝜑 = −𝜋𝜋, we get,  

ω𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 0.4009            (3a) 

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 1.1335           (3b) 

On substituting the values of  𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛  and 𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥  in eq.(2), we 

get  

 𝐴𝐴𝑟𝑟  𝑚𝑚𝑖𝑖𝑛𝑛 = 0.2420           (4a) 
 𝐴𝐴𝑟𝑟  𝑚𝑚𝑎𝑎𝑥𝑥 = 0.0878                       (4b) 

As stated above, 𝐾𝐾𝑐𝑐 =
1

𝐴𝐴𝑟𝑟
, the minimum and maximum values 

of controller gain can be  determined as 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛  =  4.1322          (5a) 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 11.3792          (5b) 

For unstable systems, the minimum value of controller gain 

plays an important role. It is seen that if the minimum value 

of controller gain is ignored while designing the PID 

controller, many systems cannot be stabilized. The ultimate 

period of oscillation is calculated based on the frequency 

[eq.(3b)]. The reset time and derivative time are determined 

using the Ziegler Nichols tuning rule. 

𝑃𝑃𝑢𝑢 =
2𝜋𝜋

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥
= 5.5431                           (6a) 

𝜏𝜏𝐼𝐼 =
𝑃𝑃𝑢𝑢
2

=  2.7716          (6b) 

𝜏𝜏𝐷𝐷 =
𝑃𝑃𝑢𝑢
8

= 0.6929          (6c) 

The PID controller parameters for the ZN continuous cycling 

method are given in Table (1). Here, Pu = 2π/ωc,max. 

For the proposed method, the values of reset time and 

derivative time are calculated using the formula given by 

𝜏𝜏𝐼𝐼′ =
5

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥
;   𝜏𝜏𝐷𝐷′ =

0.8

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥
            (7) 

The proposed method includes determining the new ultimate 

value of the controller once the integral and derivative mode 

are put into effect. 

For determination of new ultimate values, the controller 

transfer function, with proportional gain equal to 1 and with 

the calculated values of reset time and derivative time, are 

added to the system.  The value of 𝜏𝜏𝐼𝐼′  and  𝜏𝜏𝐷𝐷′  calculated in eq. 

(7) are for the series form PID controller. These values are 

then transformed to parallel form for PID [23] by: 

𝜏𝜏𝐼𝐼𝑝𝑝 =  𝜏𝜏𝐼𝐼′ +  𝜏𝜏𝐷𝐷′                          (8a) 

𝜏𝜏𝐷𝐷𝑝𝑝 =  
𝜏𝜏𝐼𝐼 ′∗ 𝜏𝜏𝐷𝐷 ′
𝜏𝜏𝐼𝐼′+𝜏𝜏𝐷𝐷 ′                            (8b) 
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It should be noted that for an unstable system, along with the 

maximum value of controller gain (𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 ), the minimum 

value of controller gain (𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 ) also plays an important role. 

Ziegler and Nichols [2] proposed a tuning rule for the PID 

controllers based on the ultimate values of the system. 

However, the method gives oscillatory responses particularly 

for the control of the unstable systems.  In the present work, a 

method is proposed for updating the value of the controller 

gain once integral and derivative actions are put into effect. 

The amplitude ratio (Ar) and cross over frequency (ωc) for a 

system are obtained by solving the amplitude and the phase 

angle criteria. To make the overall loop gain equal to unity at 

phase lag equals to 180 deg, the controller gain is set equal to 

1/Ar. At this value, the closed loop system will become 

marginally stable and will give sustained oscillations with 

frequency equal to 𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥 . To eliminate the offset we must 

include the integral mode to the controller. To speed up the 

response of the system, a derivative mode is added to the 

controller.  

It is observed that on addition of the integral and derivative 

modes, the value of controller gain changes and its new value 

is to be calculated. For stable systems, Douglas [26] proposed 

a trial and error procedure to determine the values of 

controller settings based on the Bode plots. He proposed that 

the best results are obtained when the phase lag of 

approximately 10 deg (by the integral mode) and phase lead 

of approximately 45 deg (by the derivative mode) are added 

at the original cross over frequency. For this, the integral and 

derivative times are considered respectively as: 5/ωc and 

1/ωc.  Around these values, the parameters are tuned to get a 

satisfactory performance. However, the examples considered 

are stable processes.  

A. Time integral performance 

To compare the performance of the system based on 

proposed method over the other methods present in the 

literature, Integral of the Square Error (ISE), Integral of the 

Time weighted Absolute Error (ITAE) and Integral of the 

Absolute error (IAE) values are considered for both the cases 

of unit step change in the input and unit step change in the 

disturbance. The criteria are defined as   

𝐼𝐼𝑆𝑆𝐸𝐸 =   𝜖𝜖2 𝑡𝑡 𝑑𝑑𝑡𝑡∞
0

;   𝐼𝐼𝐴𝐴𝐸𝐸 =    𝜖𝜖 𝑡𝑡  𝑑𝑑𝑡𝑡∞
0

 ;  

𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 =   𝑡𝑡 𝜖𝜖 𝑡𝑡  𝑑𝑑𝑡𝑡
∞

0

 

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒, 𝜖𝜖 𝑡𝑡 = 𝑦𝑦𝑟𝑟 𝑡𝑡 −  𝑦𝑦(𝑡𝑡) is the deviation of response 

from desired set point. 

III. SIMULATION STUDIES 

Example 1:  Consider the open loop unstable second order 

plus time delay system with two unstable poles and a 

negative zero  

𝐺𝐺𝑝𝑝 𝑠𝑠 =
𝐾𝐾𝑝𝑝  5𝑠𝑠+1 exp  −𝑠𝑠 
 10𝑠𝑠−1  5𝑠𝑠−1             (1) 

where, 𝐾𝐾𝑝𝑝 = 1 

The amplitude ratio and the phase angle of the system can be 

written as  

𝐴𝐴𝑟𝑟 =
1

 102𝜔𝜔2+1
             (2) 

𝜑𝜑 =  −𝜔𝜔 + 2tan−1 5𝜔𝜔 + tan−1 10𝜔𝜔 − 2𝜋𝜋          (3) 

To determine the ultimate values of the controller, the system 

is made to approach the marginal instability at cross over 

frequency. The phase angle criterion [eq.(3) with 𝜑𝜑 = −𝜋𝜋 ] is 

numerically solved to obtain the minimum value of frequency 

(ω𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 ) and maximum value of frequency (ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 ) 

corresponding to which minimum and maximum amplitude 

ratio of the system are calculated using eq.(2). To make the 

overall gain of the system unity, the ultimate value of 

controller gain (Kc) set equal to inverse of amplitude ratio 

(Ar).  

Solving numerically eq.(3b) with 𝜑𝜑 = −𝜋𝜋, we get,  

ω𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 0.4009            (3a) 

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 1.1335           (3b) 

On substituting the values of  𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛  and 𝜔𝜔𝑚𝑚𝑎𝑎𝑥𝑥  in eq.(2), we 

get  

 𝐴𝐴𝑟𝑟  𝑚𝑚𝑖𝑖𝑛𝑛 = 0.2420           (4a) 
 𝐴𝐴𝑟𝑟  𝑚𝑚𝑎𝑎𝑥𝑥 = 0.0878                       (4b) 

As stated above, 𝐾𝐾𝑐𝑐 =
1

𝐴𝐴𝑟𝑟
, the minimum and maximum values 

of controller gain can be  determined as 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛  =  4.1322          (5a) 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 11.3792          (5b) 

For unstable systems, the minimum value of controller gain 

plays an important role. It is seen that if the minimum value 

of controller gain is ignored while designing the PID 

controller, many systems cannot be stabilized. The ultimate 

period of oscillation is calculated based on the frequency 

[eq.(3b)]. The reset time and derivative time are determined 

using the Ziegler Nichols tuning rule. 

𝑃𝑃𝑢𝑢 =
2𝜋𝜋

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥
= 5.5431                           (6a) 

𝜏𝜏𝐼𝐼 =
𝑃𝑃𝑢𝑢
2

=  2.7716          (6b) 

𝜏𝜏𝐷𝐷 =
𝑃𝑃𝑢𝑢
8

= 0.6929          (6c) 

The PID controller parameters for the ZN continuous cycling 

method are given in Table (1). Here, Pu = 2π/ωc,max. 

For the proposed method, the values of reset time and 

derivative time are calculated using the formula given by 

𝜏𝜏𝐼𝐼′ =
5

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥
;   𝜏𝜏𝐷𝐷′ =

0.8

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥
            (7) 

The proposed method includes determining the new ultimate 

value of the controller once the integral and derivative mode 

are put into effect. 

For determination of new ultimate values, the controller 

transfer function, with proportional gain equal to 1 and with 

the calculated values of reset time and derivative time, are 

added to the system.  The value of 𝜏𝜏𝐼𝐼′  and  𝜏𝜏𝐷𝐷′  calculated in eq. 

(7) are for the series form PID controller. These values are 

then transformed to parallel form for PID [23] by: 

𝜏𝜏𝐼𝐼𝑝𝑝 =  𝜏𝜏𝐼𝐼′ +  𝜏𝜏𝐷𝐷′                          (8a) 

𝜏𝜏𝐷𝐷𝑝𝑝 =  
𝜏𝜏𝐼𝐼 ′∗ 𝜏𝜏𝐷𝐷 ′
𝜏𝜏𝐼𝐼′+𝜏𝜏𝐷𝐷 ′                            (8b) 
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The updated system is given by  

𝐺𝐺𝑝𝑝 𝑠𝑠 =  1 +
1

𝜏𝜏𝐼𝐼𝑝𝑝 𝑠𝑠
+ 𝜏𝜏𝐷𝐷𝑝𝑝 𝑠𝑠 

𝐾𝐾𝑝𝑝  5𝑠𝑠+1 exp  −𝑠𝑠 
 10𝑠𝑠−1  5𝑠𝑠−1                     (9a) 

where, Kp = 1. For calculating the new ultimate values, the 

amplitude ratio and the phase angle criteria of the new system 

[eq. (9a)] are written as:  

𝐴𝐴𝑟𝑟 =

  𝜏𝜏𝐷𝐷𝑝𝑝ω−
1

𝜏𝜏𝐼𝐼𝑝𝑝 ω
 

2

+1

 102ω2+1
          (9b) 

𝜑𝜑 = tan−1(𝜏𝜏𝐷𝐷𝑝𝑝ω − 1

𝜏𝜏𝐼𝐼pω
) − ω + 2tan−1 5ω + tan−1 10ω −

         2𝜋𝜋            (9c) 

The phase angle criterion is solved numerically to get the 

new value of maximum frequency. At the crossover 

frequency, the phase lag of the system is π and the system 

generates a sustained oscillation.The minimum and maximum 

values of the frequency and the corresponding amplitude 

ratio are obtained as: 

ω𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 0.4882         (10b) 

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 2.2613             (10c) 
 𝐴𝐴𝑟𝑟  𝑚𝑚𝑖𝑖𝑛𝑛 = 0.2017                              (11a) 
 𝐴𝐴𝑟𝑟  𝑚𝑚𝑎𝑎𝑥𝑥 = 0.0720        (11b) 

To make the overall system gain equal to 1,the controller gain 

is calculated (𝐾𝐾𝑐𝑐 =
1

𝐴𝐴𝑟𝑟
) as: 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 13.8717        (12a) 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 4.9569                              (12b) 

The design value of the  proportional gain of the controller is 

calculated as the average of the minimum and the maximum 

values of the controller. The controller parameters calculated 

are given in Table 1 for both the Ziegler Nichols method (eq. 

6) and the proposed method.  

Based on the controller settings (given in Table 1), the 

performance of the process is evaluated for a unit step change 

in the set point. An improved performance is obtained for the 

proposed method as seen in Figure 2(a). The improved 

performance is supported by the time integral performance 

analysis given in Table (2). For servo response, reduction of  

59%, 83% and 59% are obtained in ISE, ITAE and IAE 

values for proposed method, in comparison with the ZN 

method. The performance of the process for a unit step 

change in the load (regulatory response) of the process is also 

shown in Figure 2(b). The transfer function model for the 

load is assumed to be same as that of the process transfer 

function. For the regulatory response, reduction of 50%, 81% 

and 59% in ISE, ITAE and IAE values are realized (Table 2). 

 

 

 

Figure 2(a): Servo response of the system (example 1) 

Legend: Dash – ZN method; Solid: Proposed method 

Table 1:Controller Settings 

Controller 

parameters 

ZN method  Proposed 

method 

EXAMPLE 1 

𝐾𝐾𝑐𝑐 ,𝑑𝑑𝑒𝑒𝑠𝑠  7.7557 9.4143 

𝜏𝜏𝐼𝐼 2.7716 5.1169 

𝜏𝜏𝐷𝐷  0.6929 0.6084 

EXAMPLE 2 

𝐾𝐾𝑐𝑐 ,𝑑𝑑𝑒𝑒𝑠𝑠  -6.5021 -9.0913 

𝜏𝜏𝐼𝐼 0.5237 0.9668 

𝜏𝜏𝐷𝐷  0.1309 0.1150 

*𝜏𝜏𝐼𝐼 = reset time; *𝜏𝜏𝐷𝐷 = derivative time 

*𝐾𝐾𝑐𝑐 ,𝑑𝑑𝑒𝑒𝑠𝑠 =
𝐾𝐾𝑢𝑢 ,𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐾𝐾𝑢𝑢 ,𝑚𝑚𝑎𝑎𝑥𝑥

2
 = Proportional Gain  

 

Table 2:Time Integral Performance  

Response Method  ISE ITAE IAE 

Example 1 

Servo  ZN  7.745 171.80 13.14 

Proposed  3.151 27.99 5.29 

Regulatory  ZN  0.118 20.65 1.531 

Proposed  0.058 3.77 0.627 

Example 2 (Non-Linear CSTR) 

Servo ZN  0.187 1.357 0.751 

Proposed  0.284 0.746 0.701 

Regulatory 

(10% 

disturbance 

added) 

ZN  0.004 0.130 0.092 

Proposed  0.002 0.056 0.055 
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Figure 2(b): Regulatory response of the system (Example 1) 

Legend same as Figure 2(a) 

The controller is designed based on the transfer function of 

the process, but there are always some chances of uncertainty 

in the process parameters. It is important that the controller 

parameters are designed in such a way that parameters are 

least affected by the change in the process dynamics.  To 

ensure the robustness of the controller, the maximum 

sensitivity is determined.  

The maximum sensitivity is defined as [27]: 

𝑀𝑀𝑠𝑠 =  max𝜔𝜔 |𝑆𝑆 𝜔𝜔𝑗𝑗 | =  max𝜔𝜔
1

1+𝑃𝑃 𝑗𝑗𝜔𝜔  𝐶𝐶(𝑗𝑗𝜔𝜔 )
        (13)                                               

The shortest distance from the Nyquist curve of the loop 

transfer function to the critical point (-1, 0) is being equal to 

1/Ms. In order to obtain a high robustness, small values of 

Ms are of interest. The maximum sensitivity can be related to 

the phase margin and gain margin as it simultaneously 

ensures both the following constraints [28]: 

𝐴𝐴𝑚𝑚 ≥ 𝑀𝑀𝑠𝑠
𝑀𝑀𝑠𝑠−1

 , and 𝜑𝜑𝑚𝑚 ≥ 2 sin
-1

(1/Ms)        (14) 

The proposed method is compared with ZN method based on 

the maximum sensitivity, phase margin and gain margin as 

given in Table 3. It can be clearly seen in the Table 3 that the 

proposed method is more robust than the ZN method. The 

values for Maximum sensitivity (3.1582), phase margin 

(36.9196) and gain margin (1.4634)  obtained for proposed 

method are better than ZN method indicating that the closed 

loop system is less sensitive to variations in the process 

dynamics. 

Table 3:Maximum Sensitivity, Gain Margin and Phase 

Margin Comparison (Example 1) 

Performance measure ZN method Proposed method 

Maximum sensitivity     5.5782  3.1582 

Phase margin   20.6545        36.9196 

Gain margin     1.2184          1.4634 

 

Example 2: Consider the following locally linearised transfer 

function model of non-linear continuous stirred tank reactor 

(CSTR) derived for measurement of the reactor temperature 

[28].  The system is unstable with 2 complex conjugate 

unstable poles (0.1851 ± 0.8457i) and a stable pole (-

47.6559).   

𝐺𝐺𝑝𝑝 𝑠𝑠 =  − 1.77 0.3186𝑠𝑠+1 exp  −0.15𝑠𝑠 
 0.028𝑠𝑠3+1.324𝑠𝑠2−0.479𝑠𝑠+1         (15) 

The same procedure, for the design of PID controller, is 

followed as in example 1. The amplitude ratio and the phase 

angle criteria equations are formulated as: 

𝐴𝐴𝑟𝑟 =
1.77 (0.3186 2ω2+1

  1.324ω2−1 2+ 0.028ω3+0.479ω 2
        (16) 

𝜑𝜑 =  −0.15ω + tan−1 0.3186ω −𝜋𝜋 − tan−1 0.028ω3+0.479ω
1.324ω2−1

            (17) 

To obtain a sustained oscillation, the system is brought on the 

verge of stability. On analysing the sustained oscillations, 

ultimate value of the proportional gain and ultimate 

frequency can be determined.  

At the cross over frequency;   φ =  −π      (17a) 

Eq.(17) can be written as: 

−0.15ω + tan−1 0.3186ω − tan−1 0.028ω3+0.479ω
1.324ω2−1

= 0

          (17b) 

Eq.(17b) is solved numerically to get the minimum value of 

frequency and maximum value of frequency: 

ω𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 0         (18a) 

ω𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 5.9990         (18b) 

The values are substituted in eq. (16). The values of 

amplitude ratio at minimum and maximum frequencies are 

calculated as:  

 𝐴𝐴𝑟𝑟  𝑚𝑚𝑖𝑖𝑛𝑛 = −1.7699        (19a) 

 𝐴𝐴𝑟𝑟  𝑚𝑚𝑎𝑎𝑥𝑥 = −0.0804        (19b) 

As mentioned above, in order to make the overall system gain 

unity, the minimum and maximum value of controller gain 

are set equal to the inverse of the amplitude ratio. The 

calculated values and the ultimate period of oscillation are 

given as: 𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 =  −0.5650         (20a) 

𝐾𝐾𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 =  −12.4392        (20b) 

𝑃𝑃𝑢𝑢 = 1.0474           (21) 

Based on which the reset time and the derivative time are 

calculated as: 

𝜏𝜏𝐼𝐼 =
𝑃𝑃𝑢𝑢
2

= 0.5237        (22a) 

𝜏𝜏𝐷𝐷 =
𝑃𝑃𝑢𝑢
8

=  0.1309        (22b) 

Using the values obtained in above equations, controller 

based on ZN method is designed.  

For the proposed method, the values of reset time and the 

derivative time are determined using the eq. (7) which are 

then converted into the corresponding parallel form using the 

eqs. (8a) and eqs. (8b). For determining the new ultimate 

value, the PID controller transfer function, with Kc =1 and 

with the calculated 𝜏𝜏𝐼𝐼𝑝𝑝  and 𝜏𝜏𝐷𝐷𝑝𝑝  is added to the system. The 

new system thus formed is given by Eq.(23).  

Gp s =  1 +
1

𝜏𝜏𝐼𝐼𝑝𝑝 𝑠𝑠 + 𝜏𝜏𝐷𝐷𝑝𝑝 𝑠𝑠  -1.77 0.3186s+1 exp -0.15s 
 0.028s3+1.324s2-0.479s+1              (23)  

The equations for the amplitude and the phase angle criteria 

are formulated for the new system [eq.(23)] as 
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Figure 2(b): Regulatory response of the system (Example 1) 

Legend same as Figure 2(a) 
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method are better than ZN method indicating that the closed 
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𝜏𝜏𝐷𝐷 =
𝑃𝑃𝑢𝑢
8
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Using the values obtained in above equations, controller 

based on ZN method is designed.  

For the proposed method, the values of reset time and the 

derivative time are determined using the eq. (7) which are 

then converted into the corresponding parallel form using the 

eqs. (8a) and eqs. (8b). For determining the new ultimate 

value, the PID controller transfer function, with Kc =1 and 

with the calculated 𝜏𝜏𝐼𝐼𝑝𝑝  and 𝜏𝜏𝐷𝐷𝑝𝑝  is added to the system. The 

new system thus formed is given by Eq.(23).  
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𝐴𝐴𝑟𝑟 =

    𝜏𝜏𝐷𝐷ω − 1

𝜏𝜏𝐼𝐼ω
 

2

+ 1  1.77 (0.3186 2ω2+1

  1.324ω2−1 2 + 0.028ω3+0.479ω 2
 

            (24) 

𝜑𝜑 = tan−1(𝜏𝜏𝐷𝐷ω − 1

𝜏𝜏𝐼𝐼ω
) − 0.15ω + tan−1 0.3186ω −𝜋𝜋 −

         tan−1 0.028ω3+0.479ω
1.324ω2−1

          (25) 

At crossover frequency: 𝜑𝜑 = - π, On solving eq.(25),  we get, 

𝜔𝜔𝑐𝑐 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 0.7133         (25a) 

𝜔𝜔𝑐𝑐 ,𝑚𝑚𝑎𝑎𝑥𝑥 = 13.3988        (25b) 

corresponding to which we get 

Ar|min= −6.4097           (26a) 

Ar|max= −0.0555             (26b) 

To make the overall loop gain of the system equal to one, the 

controller gain is set equal to 1/Ar . This leads to the 

determination of the updated minimum and maximum 

controller gain respectively as -0.1560 and -18.0266.  

The controller is designed based on the parameters calculated 

for both the cases as shown in Table 1. The performance of 

the controller is evaluated for the Non-Linear CSTR equation 

(Appendix) for a step change in the input (x2 from 3.20 to 

3.52) and for a step change in disturbance (hc from 1.5 to 

1.65). Figure 3(a) and Figure 3(b) illustrate the appreciable 

performance of the proposed method over ZN continuous 

method for the Non-Linear CSTR. The enhanced 

performance is supported by the time integral performance 

analysis given in Table (2). Based on Table (2) reduction of 

approximately 45% and 40% in ITAE and IAE values is 

obtained for the servo problem. The improved performances 

with the reduction of 50%, 57% and 40% in ISE, ITAE and 

IAE values are realized for step change in load disturbance. 

For Non-linear system, the overshoot is more (Figure 3a) so 

there is a need to add set point filter or slightly detune the 

parameter. However, for linearised system (eq. 15) reduction 

of 76% in ISE value and 15%  in overshoot are obtained for a 

step change in input.  

 
Figure 3(a): Servo response of Non-linear CSTR (example 

2); Legends same as Figure 2(a) 

Figure 3(b): Regulatory response of Non Linear CSTR when 

10% disturbance is added; Legends same as Figure 2(a). 

 

IV. CONCLUSION 

An improved continuous cycling method for tuning the PID 

controllers is proposed. The simulation results of unstable 

SOPTD model with two unstable pole and on a non linear 

CSTR model with time delay and complex conjugate 

unstable poles are given. Improved dynamic performances 

along with robustness are obtained with the proposed 

method. Significant improvements are obtained in the time 

integral performance analysis for both the servo and the 

regulatory responses.  
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Appendix: 

The Non-Linear equation of CSTR [29,30] is given by  

𝑑𝑑𝑥𝑥1

𝑑𝑑𝑡𝑡 =  −𝐷𝐷𝑎𝑎𝑥𝑥1 exp  𝑥𝑥2

1+ 𝑥𝑥2
𝐸𝐸𝑎𝑎

 
  +  1 − 𝑥𝑥1        (A1) 

𝑑𝑑𝑥𝑥2

𝑑𝑑𝑡𝑡 =  𝑄𝑄𝐷𝐷𝑎𝑎𝑥𝑥1 exp  𝑥𝑥2

1 +  𝑥𝑥2

𝐸𝐸𝑎𝑎
 
  −   1 + ℎ𝑐𝑐 𝑥𝑥2 +  ℎ𝑐𝑐𝑥𝑥3  

           (A2) 

𝑑𝑑𝑥𝑥3

𝑑𝑑𝑡𝑡 = 10 𝑞𝑞𝑐𝑐 −1 − 𝑥𝑥3 + ℎ𝑐𝑐 𝑥𝑥2 − 𝑥𝑥3   
           (A3) 

𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3 are the dimensionless concentration, reactor 

temperature and cooling jacket temperature. The other 

parameter values are heat transfer coefficient (ℎ𝑐𝑐) =

1.5, Damko hler number  𝐷𝐷𝑎𝑎 = 0.135, 

Heat of reaction  𝑄𝑄 = 11, Coolant flow rate  𝑞𝑞𝑐𝑐 = 3.2 

and Activation Energy  𝐸𝐸𝑎𝑎 = 20.  

Using these parameter values and taking x2 as the controller 

variable and qc as the manipulated variable, the three 

equilibrium points (steady state) are 

  𝑥𝑥1𝑠𝑠  𝑥𝑥2𝑠𝑠  𝑥𝑥3𝑠𝑠 = [0.6861  1.3 − 0.1355]        (A4) 

  𝑥𝑥1𝑠𝑠  𝑥𝑥2𝑠𝑠  𝑥𝑥3𝑠𝑠 = [0.5460  2.0  0.0036]        (A5) 

  𝑥𝑥1𝑠𝑠  𝑥𝑥2𝑠𝑠  𝑥𝑥3𝑠𝑠 = [0.3195  3.2  0.3429]        (A6) 

 

The system is considered to be at steady state condition (A6) 

at t = 0. For the given condition of operating point, the locally 

linearised model is given by eq. (15). 

 

Nomenclature: 

Ar        amplitude ratio 

Kc        controller gain 

KP        process gain 

Pu        period of oscillation 

τ           time constant   

τI, τD     integral and derivative time (parallel form) 

τI',τD'   integral and derivative time (series form) 

ω          frequency 

ωc         cross over frequency 

φ           phase angle  

 

subscript: 

min       minimumvalue 

max      maximum value 
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