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Abstract. Frequency domain representation of a short-term heart-rate time
series (HRTS) signal is a popular method for evaluating the cardiovascular con-
trol system. The spectral parameters, viz. percentage power in low frequency band
(%PLF), percentage power in high frequency band (%PHF), power ratio of low
frequency to high frequency (PRLH), peak power ratio of low frequency to high
frequency (PPRLH) and total power (TP) are extrapolated from the averaged power
spectrum of twenty-five healthy subjects, and 16 acute anterior-wall and nine acute
inferior-wall myocardial infarction (MI) patients. It is observed that parasympa-
thetic activity predominates in healthy subjects. From this observation we conclude
that during acute myocardial infarction, the anterior wall MI has stimulated sym-
pathetic activity, while the acute inferior wall MI has stimulated parasympathetic
activity. Results obtained from ARMA-based analysis of heart-rate time series sig-
nals are capable of complementing the clinical examination results.

Keywords. Heart-rate variability; medical signal processing; auto regressive
moving average model.

1. Introduction

The normal rhythm of a heart is prone to sudden stress and impulses acting on the cardio-
vascular system. This non-stationarity in the rhythm is reflected on cardiovascular variables
such as heart-rate and blood pressure, even when environmental parameters are maintained
at a constant level. Variation of sinus rate over a time interval is termed the heart-rate time
series (HRTS) or heart-rate variability (HRV). The two branches of the autonomic nervous
system (ANS), called sympathetic and parasympathetic control systems, influence cardiovas-
cular functions. The non-stationary nature of ANS causes the spectral contents of HRT series
to vary with time in two frequency bands, which are named sympathetic (0·05 to 0·15 Hz)
and parasympathetic (0·18 to 0·4 Hz) bands (Naiduet al 1999). The HRT series is related to
various cardiovascular disorders, which lead to oscillations about the mean heart-rate.

The power spectral analysis of HRT series is a non-invasive method to assess the autonomic
nervous system control of the heart, both in normal and abnormal subjects. The advantage
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of power spectral analysis of the HRT series is the possibility of studying frequency-specific
oscillations. Power spectral analysis involves decomposition of a series of sequential R-point
to R-point intervals into a sum of sinusoidal functions of different amplitudes and frequencies.
The result could be displayed with varying magnitude as a function of frequency, which is
called power spectrum of HRT series. It reflects the amplitude of the heart-rate fluctuations
present at different frequencies. Fast Fourier Transformation (FFT) analysis is used generally
to transform signals into the frequency domain. This method has a few technical limitations
such as, (a) use of deterministic algorithms that are valid only to periodic phenomena, (b)
Necessity of windowing the data, and (c) uncertainty in defining the relative powers of the
various spectral components (Paganiet al1976; Natalucciet al1999).

The Autoregressive Moving Average (ARMA)-based method eliminates these limitations,
as they do not require windowing or filtering of the data (Marple 1987). This paper reports
preliminary data collection from twenty-five normal and twenty-five myocardial infarction
(MI) patients. ARMA-based comparative analysis of the HRT series power spectrum of both
sets of people has been carried out.

2. Materials and methods

Five hundred and twelve (512) samples of HRT series were considered, which are quite
reasonable for computing the power spectrum with good frequency resolution. About 448
epochs of 64 samples, overlapped by one sample (0·5 s), are extracted from the above series.
With an ARMA-based method, HRT series power spectral density was estimated, epoch-by-
epoch. Thenth HRT series value was termed the outputy(n) of an ARMA model (as shown
in figure 1) of order ‘p’, driven by an impulse sequence termedx(n).

In figure 1x(n) is the impulse sequence,y(n) is HRT series,B(z) is the transfer function
of the moving average (MA) method andA(z) is the transfer function of the auto regressive
(AR) method.

y(n) +
p∑

k=1

aky(n − k) =
p∑

k=0

bkx(n − k), n = 0, 1, 2, . . . , N − 1, (1)

whereak represents the AR coefficients of the AR process at thekth stage,bk represents the MA
coefficients of the MA process at thekth stage,N is the length of the sequence andp represents
the model order. We need to find the transfer functionH(z) = Y (z)/X(z), whose impulse
responseh(k) approximatesx(k), such that the sum of squared error ‘e’ is minimum, i.e.

e =
p∑

k=0

[h(k) − x(k)]2, is minimum. (2)

The coefficientsak andbk have to be estimated by minimising ‘e’ (Baselli et al 1987; Kay
1988). The least squares solution to this problem is by direct minimisation of the error
as a function ofak andbk, which requires a set of simultaneous equations. Below is the
representation of (1) as a set of simultaneous equations.
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Figure 1. ARMA model representation.
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y(0) = −a1y(−1) − a2y(−2) − . . . . . . . . . − apy(−p) + b0x(0)

+ b1x(−1) + . . . . . . + bpx(−p)

y(1) = −a1y(0) − a2y(−1) − . . . . . . . . . − apy(1 − p) + b0x(1)

+ b1x(0) + . . . . . . + bpx(1 − p)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y(N − 1) = −a1y(N − 2) − a2y(N − 3) − . . . . . . − apy(N − 1 − p)

+ b0x(N − 1) + b1x(N − 2) + . . . . . . + bpx(N − 1 − p). (3)

Equation (3) can also be expressed in matrix notation as

Y = AX, (4)

whereY is the output matrix(N, 1), A is input–output parameter matrix(N, 2p + 1) andX
is the ARMA parameter (coefficientsak, bk) matrix (2p + 1,1). Its matrix representation is
shown below.


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y(2)
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.

.

.
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y(N − 3) y(N − 4) . . y(N − 2 − p) x(N − 2) x(N − 3) . . x(N − 2 − p)

y(N − 2) y(N − 3) . . y(N − 1 − p) x(N − 1) x(N − 2) . . x(N − 1 − p)







−a1
−a2

.

.
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For solving the matrixY = AX, there are a larger number of equations than of unknown
parameters, which is called an over-determined system. In this case, let us define an error
signal:

e = Y − AX. (5)

Minimizing the squared norm ofe, i.e. findX to minimizeeT e, to obtain the solution. The
matrix denotedeT is transpose of the matrixe,

eT e = (Y − AX)T (Y − AX) = (Y T Y − XT AT Y − Y T AX + XT AT AX). (6)

The termsXT AT Y andY T AX are scalars with equal magnitudes. The vector indicated as
XT is the transpose of the vectorX. To minimise the above equation (6), differentiate both
the sides with respect toXT and equate to zero.

∂
∂XT (eT e) = (−AT Y + AT AX) = 0, hence, it can be written asAT Y = AT AX, From the

above equation, the unknown vectorX (ARMA parameters) can be computed as

X = (AT A)−1AT Y. (7)

The above equation is known as the least squares solution for an over-determined set of linear
equations. The term(AT A)−1AT is named the pseudo inverse operator (Naiduet al).
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The HRT series is assumed to be stationary within each epoch. The order of the model ‘p’
is chosen as ten, which is a reasonable average value to discriminate the main frequency com-
ponents accurately (Pinaet al1992; Natalucciet al1999). Power spectral density estimation,
PSD(f ) was obtained from the relation:

PSD(f ) = t

∣∣∣∣∣
p∑

k=0

bke
−i25f kt

∣∣∣∣∣
2 / ∣∣∣∣∣1 +

p∑
k=0

ake
−i25f kt

∣∣∣∣∣
2

, (8)

where ‘t’ is the inverse of the sampling frequencyfs (2 Hz) (Baselliet al1987; Kay 1988). In
the spectral analysis, the two ranges of frequencies of interest, 0·05–0·15 Hz (low frequency
band) and 0·18–0·4 Hz (high frequency band), correspond to the sympathetic and parasym-
pathetic activities respectively (Naiduet al 1999). The power concentrated in the LF (PLF)
and HF (PHF) bands are estimated by integrating the above power spectrum. The peak power
in the LF (PPLF) and HF (PPHF) bands and the total power(TP = PLF + PHF)are also
estimated. Similarly, the percentage power distribution in LF(%PLF= PLF∗ 100/TP)and
HF (%PHF= PHF∗ 100/TP)bands are computed.

3. Results and discussion

3.1 Simulation

The performance of the above technique was verified using simulated signals. A model was
designed for generation of simulated HRT series signal as shown in figure 2. Two simulated
signals were generated in such a way that sympathetic activity was greater(A > B) in
the first simulation signalsp(n) and parasympathetic activity was greater(A < B) in the
second simulation signal ‘psp(n)’, whereA andB are amplitudes of sinusoidal signals. The
simulated signals are shown in figure 3.

These simulated signals were obtained from the following functions.

sp(n) = 0·8 + 0·125 sin(25fln/f s) + 0·0625 sin(25fhn/f s) + w(n), (9)

psp(n) = 0·8 + 0·0625 sin(25fln/f s) + 0·125 sin(25fh/f s) + w(n), (10)

where,w(n) is the white noise added to the sinusoids in order to obtain a broad-band signal,
constant 0·8 is added since the usual duration of the cardiac cycle is around 800ms,fl is
stable LF component(fl = 0·1 Hz), fh is stable HF component(fh = 0·3 Hz) and sampling
frequencyfs was selected as 2 Hz(fs = 2 Hz), since the maximum frequency of interest in
HRT series is around 0·5 Hz. Power spectrums were computed for the above two simulated
signals. The overlaid realisation spectrum of heart-rate time series signal is shown in figure 4.

A sin (2 Π fl n / fs) 

B sin (2 Π  fh n / fs)   

simulated HRT
series signal 

+ 0.8

noise W (n) 

+

Figure 2. Design model for generation
of simulated HRT series.
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Figure 3. The simulated signalssp(n) (a) andpsp(n) (b) respectively.

The three-dimensional view of heart-rate time series signal spectrum is shown in figure 5.
The average of realisation of heart-rate time series signal spectrum is shown in figure 6. The
parameters PLF, PPF, TP, PPLF and PPHF are extrapolated from the above spectrum. It is
observed from thesp(n) signal that PLF is greater than PHF and PPLF is greater than PPHF,
and vice versa in the case of thepsp(n) signal.

3.2 Experimental data collection

Lead II surface ECG of twenty-five healthy subjects (15 males, 10 female) aged between 20
and 60 years, sixteen acute anterior wall MI patients (13 males, 3 female) aged between 50
and 70 years and nine acute inferior wall MI patients (7 males, 2 female) aged between 48
and 72 years for a duration of eight minutes were recorded at a sampling rate of 500 Hz with
12-bit resolution using an ADC card. Steps involved in the heart-rate time series analysis are
indicated in figure 7. The output of the ECG acquisition system was given to an analog to
digital conversion (ADC) card, to generate a digital data of 12-bit resolution and stored in the
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Figure 4. Overlaid realisation ofsp(n) (a) andpsp(n) (b) spectrum respectively.
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Figure 5. Three-dimensional view ofsp(n) (a) andpsp(n) (b) spectrums respectively.
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Figure 8. Heart-rate time series of control(a) and MI patient(b).

PC memory simultaneously. R-points were detected from the acquired surface ECG (Naidu
et al2000). The HRT series was generated from the detected R-points (Naiduet al1999) and
subjected to ARMA processing.

The heart-rate time series signals of a normal person (control) and an MI patient are shown
in figure 8 and overlaid realisation of heart-rate time series signal spectrum is shown in figure 9.
Spikes are observed at LF and HF regions. A three-dimensional view of the heart-rate time
series spectrum is shown in figure 10 and the average of realisation of heart-rate time series
signal spectrum is shown in figure 11.

The parameters PRLH, PPRLH, TP, %PLF and %PHF are estimated from the above aver-
aged spectrum. It is observed that more power is concentrated in the LF region in case of MI
patient and vice versa in case of healthy subjects. The statistical results are showed in table 1.
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Figure 9. Overlaid realisation spectrum of control(a) and MI patient(b).
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Figure 10. Three-dimensional view of the spectrum in control(a) and MI patient(b).
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Figure 11. Average realisation of the spectrum in control(a) and MI patient(b).

Table 1. Statistical results.

Subject PRLH PPRLH TP %PLF %PHF

Control(N = 25) 0·859± 0·162 0·859± 0·287 0·073± 0·006 46·06± 5·67 53·94± 5·67
Acute anterior MI 1·536± 0·388 1·715± 0·541 0·072± 0·005 59·69± 6·12 40·31± 6·12

patient(N = 16)
Acute inferior MI 0·737± 0·156 0·78± 0·168 0·069± 0·005 41·98± 5·44 58·02± 5·44

patient(N = 9)
P value <0·005 <0·005 0·62 <0·005 <0·005
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The number of samples in a class is denoted byN . Parameter values in the table indicate
the mean± standard deviation and are calculated at 95% confidence level. Student-t testP
values are found to be less than 0·005.

4. Conclusion

ARMA-based power spectral analysis of a heart-rate time series signal has been done. It can
be concluded that parasympathetic activity is more prominent in controls and also that during
acute myocardial infarction, the anterior wall MI is found to stimulate sympathetic activity,
while the inferior wall MI is shown to stimulate marked parasympathetic activity. It is evident
from the above observations that infarction can be detected using power spectral analysis of
the HRT series. Thus, the results obtained from the above mentioned ARMA-based analysis
of heart-rate time series signal are capable of complementing clinical examination, and thus
leading to better diagnosis.
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