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We present an investigation of Hermite polynomials as a basic paradigm for quantum dynamics, and
make a thorough comparison with the well-known Chebyshev method. The motivation of the
present study is to develop a compact and numerically efficient formulation of the spectral filter
problem. In particular, we expand the time evolution operator in a Hermite series and obtain thereby
an exponentially convergent propagation scheme. The basic features of the present formulation vı̀s

a vı̀s Chebyshev scheme are as follows: ~i! Contrary to the Chebyshev scheme Hamiltonian
renormalization is not needed. However, an arbitrary time scaling may be necessary in order to
avoid numerical hazards, and this time scaling also provides a leverage to accelerate the
convergence of the Hermite series. We emphasize the final result is independent of the arbitrary
scaling. ~ii! As with the Chebyshev scheme the method is of high accuracy but not unitary by
definition, and thus any deviation from unitarity may be used as a guideline for accuracy. The
calculation of expansion coefficients in the present scheme is extremely simple. To contrast the
convergence property of present method with that of the Chebyshev one for finite time propagation,
we have introduced a time–energy scaling concept, and this has given rise to a unified picture of the
overall convergence behavior. To test the efficacy of the present method, we have computed the
transmission probability for a one-dimensional symmetric Eckart barrier, as a function of energy,
and shown that the present method, by suitable time–energy scaling, can be very efficient for
numerical simulation. Time–energy scaling analysis also suggests that it may be possible to achieve
a faster convergence with the Hermite based method for finite time propagation, by a proper choice
of scaling parameter. We have further extended the present formulation directed toward the spectral
filter problem. In particular, we have utilized the Gaussian damping function for the purpose. The
Hermite propagation scheme has allowed all the time integrals to be done fully analytically, a
feature not completely shared by the Chebyshev based scheme. As a result, we have obtained a very
compact and numerically efficient scheme for the spectral filters to compute the interior eigenspectra
of a large rank eigensystem. The present formulation also allows us to obtain a closed form
expression to estimate the error of the energies and spectral intensities. As a test, we have utilized
the present spectral filter method to compute the highly excited vibrational states for the
two-dimensional LiCN (J50) system and compared with the exact diagonalization result. © 1999

American Institute of Physics. @S0021-9606~99!00647-9#

I. INTRODUCTION

Quantum dynamics is the underlying theory for under-
standing molecular processes and hence establishing efficient
numerical schemes to solve the quantum equations of motion
that are very crucial for the simulation of various physical
processes. In this context, the gradual evolution of pseu-
dospectral and DVR methods has been very important and
recent years have witnessed a tremendous upsurge of re-
search in this sector of science.1–3 A key ingredient of the
pseudospectral method is an accurate representation of the

time evolution operator (e2iĤt/\, where Ĥ is the Hamil-
tonian operator!, and in this pursuit, several numerical

schemes with varying degrees of success have been
proposed.3 In this paper we focus our attention on methods
that involve recursive Hamiltonian operations in order to ac-
complish the desired time propagation. In this category, a
formal decomposition of the time evolution operator into
sum of products of a recursive Hamiltonian part and a time
part is generally affected by the choice of a suitable polyno-
mial expansion—the preferred choice is the classical or-
thogonal polynomial set, for this is the most well-studied set
in mathematical physics.4 An obvious advantage of polyno-
mial based approximation of the evolution operator is that it
is global in nature and hence the quantum propagation can be
carried out for an arbitrary time step, provided a sufficient
number of terms are included in the series—a philosophy
consistent with the infinite limiting process in the theory ofa!Electronic mail: aviz@lanczos.cm.utexas.edu
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approximation.5 In this context, the introduction of the
Chebyshev polynomial expansion of the evolution operator
by Tal-Ezer and Kosloff6 has been an important contribution.
Later, a Legendre polynomial based scheme was also sug-
gested for the purpose.7 The development of a global time
propagation scheme based on Chebyshev polynomials ~Leg-
endre polynomials provides an almost identical analytical
frame! is considered generally satisfactory for finite time
propagation, and in this situation there does not seem any
pressing need to develop an alternative procedure. However,
in the event of infinite time propagation ~this is equivalent to
carrying out the time propagation fully analytically up to
infinity—an exercise frequently encountered in the time do-
main theory of spectral filters8!, several alternate propagation
schemes need to be developed to suit the analytical problems
at hand. From the finite time propagation perspective, also,
the Chebyshev method provides only ‘‘fixed’’ convergence
characteristics of the approximating series and this conver-
gence is determined by the spectral range represented in the
input Hamiltonian. It is therefore worth exploring alternate
polynomial based schemes with the convergence objective in
mind and to devise a propagation method that is still recur-
sive but with an accelerated convergence feature, so that we
can minimize the total numerical effort.

In this paper we present our investigation of the Hermite
polynomials as a basis for quantum time evolution. The use
of Hermite polynomials for time propagation has been ex-
plored earlier by other authors. In particular, Kouri and Hoff-
man et al. have expressed the so-called distributed approxi-

mating functions ~DAF! in terms of Hermite functions, and
derived thereby a continuous DAF class free particle propa-
gator, which has been explored for real time quantum dy-
namics in a series of papers.9 Much closer to the present
study, Hu has very recently presented the use of a Hermite
polynomial based propagation system ~which is referred to
as a ‘‘Laguerre scheme’’!, and performed test calculations on
one-dimensional harmonic and morse oscillator potentials.10

Hu has amply discussed the error in the norm during finite

time propagation, while ignoring the importance of phase
error that is crucial for correct dynamics. The present elabo-
ration is focused more on the practical issues, and pedagogi-
cally perhaps much more complete. Hermite polynomials
have also been used to obtain semiclassical equations of
motion.11

The motivation of the present investigation of Hermite
polynomials has been to develop a compact and numerically
efficient formulation of the spectral filter problem. Recent
years have witnessed a tremendous upsurge of interest in the
time domain theory of spectral filters, with the prime objec-
tive of devising efficient computational methods to extract an
arbitrary window of eigenspectrum of a system involving a
large rank Hamiltonian, for which a direct matrix diagonal-
ization procedure may be extremely prohibitive.8 The advent
of the time domain theory of spectral filter is due to an im-
portant realization that—‘‘an arbitrary initial state c(x) ~as-
sumed not to be orthogonal to any eigenstate of the system!,
after evolving under the spell of the Hamiltonian for a rela-
tively short time projects into the space spanned by the en-
ergies close to e, and various such propagated wave packets

at different energies within a window, could well serve as a
basis for the conventional matrix diagonalization, resulting
thereby the spectrum belonging to the chosen window.’’ This
appealing viewpoint, through the innovation of Neuhauser,12

has come to be known as filter diagonalization ~FD! methods
in different guises. This is now a well-documented sector of
research, and we note that various formulations of the origi-
nal doctrine as promulgated by Neuhauser,12 aside from the
implementation strategy, fundamentally differentiate only in
the choice of damping function. Of the damping functions,
the Gaussian type has been frequently utilized, as this facili-
tates the evaluation of one of the double integrals analyti-
cally. A more elaborate choice of damping functions has also
been made.13,14 In this paper, we develop a compact and
numerically efficient formulation of the spectral filter prob-
lem, using Hermite polynomials, which is based on the ana-
lytical settings originally proposed by Wall and Neuhauser,15

who utilized Chebyshev polynomials along with the Gauss-
ian damping function. Chebyshev polynomials as a basis for
global time propagation has been very successful for general
quantum dynamical problems. In the context of spectral fil-
tering utilizing Gaussian damping, the major drawback of
Chebyshev polynomials is that the crucial integral involving
the time parameter cannot be done fully analytically and, as
a result, the ensuing numerical scheme is computationally
less efficient. In the present work, we follow the Gaussian
damping based time domain theory of spectral filters,15 with
a difference that we utilize the Hermite method of time evo-
lution in the numerical implementation. As a result, we have
been able to carry out all the time integrals fully analytically
and obtained thereby a very compact numerical scheme.
With the present approach, we also outline a very clear pic-
ture of the mechanism of Gaussian filtering in actual numeri-
cal terms.

The organization of this paper is as follows. In Sec. II,
we derive the fundamental Hermite propagation equation and
continue the analysis from both a finite and infinite time
propagation perspective, by invoking the time–energy scal-

ing concept. We elaborate the time domain theory of spectral
filters from Hermite polynomial perspective and derive dif-
ferent quantities of interests in Sec. III. We discuss the de-
tails of the model system studied here in Sec. IV, and in Sec.
V we present the computational results. We conclude the
presentation in Sec. VI.

II. THE HERMITE PROPAGATOR

We consider the time-dependent Schrödinger equation
~TDSE!,

i\
]c~x ,t !

]t
5Ĥc~x ,t !, ~1!

which is subject to an initial condition. For a stationary
Hamiltonian, the formal solution is

c~x ,t !5e ~2i/h !Ĥtc~x ,0!, ~2!

where e (2i/\)Ĥt is the time evolution operator in the Schrö-

dinger representation. We now wish to expand e (2i/\)Ĥt in
the Hermite polynomials, Hm(Ĥ), as follows:
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e ~2i/\ !Ĥt
5(

m
am~ t !Hm~Ĥ !. ~3!

Here t and Ĥ are assumed to be properly scaled ~say, using
unit factors! to render them dimensionless. This point will be
clarified later. We further note there is no restriction in the
range of the Hamiltonian. Following standard algebra, the
expansion coefficients in Eq. ~3! can be computed to obtain

am~ t !5

~2i !m

m!
t̃me2 t̃ 2

, ~4!

where t̃ is defined as t/2\ . Hence, the working equation for
the solution of the TDSE is

c~x ,t !5e2 t̃ 2

(
m

~2i !m

m!
t̃ mHm~Ĥ !c~x ,0!. ~5!

Finally, the Hermite polynomial recurrence relation provides
a recursive algorithm for the evolution operator. As to the
convergence of the series ~5!, it is easy to verify by the
simple ratio test that the series eventually converges because
of the factorial factor in the denominator. The exponential
convergence of Eq. ~5! has also been noted by Hu.10 As with
the Chebyshev based scheme,6 the present propagation
method is not unitary by definition @cf. Eq. ~3!#, and thus any
deviation from unitarity may be used as a guideline for ac-
curacy.

There are two distinct situations wherein we seek to es-
tablish the efficacy of a given time propagation scheme in
quantum mechanics. First, what we call finite time propaga-
tion, is concerned with the efficiency of the method to propa-
gate the wave function for a given finite duration. Within the
realm of polynomial based approximations, the question is
how fast the ensuing series converges. In another situation,
which we refer to as infinite time propagation, one carries out
the entire time propagation analytically up to infinity ~typical
examples being the eigenvalue determination by time-
dependent spectral filter methods! and here, aside from the
usual convergence issue, one is also concerned with the ana-
lytical behavior of the approximating polynomial series that
may affect the final numerical scheme. From the perspective
of these issues, we will discuss the efficiency of the present
scheme and also make a comparison with the similar Cheby-
shev based scheme.

A. Finite time propagation

In this situation, the propagation is carried out by recur-
sively applying the elementary propagator for each time step.
In this case, we here wish to discuss the convergence prop-
erty of Eq. ~5! for a given finite time step and also compare
the dynamics with a Chebyshev based scheme. In the analy-
sis of the convergence behavior, one is not unduly concerned
for what eventually happens to the series, which, in most
cases, converges. Rather, one is more interested in the nature
of the error term of a finitely truncated series and the means
to accelerate the convergence.

First we note that Eq. ~5! states an approximation of an
operator-valued function in terms of truncated Hermite se-
ries. From the theory of approximation we know an arbitrary
function, subject to a few conditions ~e.g., absolute integra-
bility! can be expanded in any of the orthogonal
polynomials;16 however, the choice is often dictated by the
error term associated with a finitely truncated series. In the
realm of orthogonal polynomials the error behavior is essen-
tially controlled by the nature of an associated weight func-
tion, and the reason for the Chebyshev based approximation
scheme being popular, is that the error is uniformly distrib-
uted throughout the polynomial range.16 This does not nec-
essarily mean that all other orthogonal polynomials are not at
all suitable for the approximation purposes. Here we argue
that the hallmark for fast convergence of the polynomial se-
ries is our realization of time–energy scaling—one affecting
the another for being the conjugate variables. This concept of
scaling gives rise to an enhanced understanding of the
mechanism of convergence. In order to elaborate this con-
cept, we analyze the time evolved wave function expressed
in the Chebyshev series, Tm , which is given as6

c~x ,t !5(
m

~22dm0!~2i !me22il̄ t̃

3Jm~2 t̃ Dl !TmS Ĥ2l̄

Dl
Dc~x ,0!, ~6!

where Dl and l̄ are the scaling parameters to readjust the
range of the Hamiltonian. Within the Chebyshev framework,
the time–energy scaling concept is interwoven with the re-
quirement of fixing the range of the Hamiltonian, as dictated
by the property of Chebyshev polynomial, and here the time
scaling @Dl, in the argument of the Bessel function, Jm , in
Eq. ~6!# obviously determines the convergence characteris-
tics by the property of the Bessel function. Here we have
accomplished the scaling from the Hamiltonian side, and
thereby we have obtained a ‘‘constant’’ scaling factor ~Dl!
for the time variable. We therefore refer to this as ‘‘fixed
range’’ time scaling. As a result, we obtain a natural ~but
fixed! convergence behavior of Eq. ~6! through the fixed ar-
gument of the Bessel function, and by way of scaling there is
no freedom to further accelerate the convergence of the
Chebyshev series.

We now analyze the convergence behavior of the Her-
mite series @Eq. ~5!# from the time–energy scaling perspec-
tive. First of all, we point out that there is no pressing need to
embark upon any scaling for the Hermite based scheme,
though it turns out to be a useful exercise. As there is no
restriction in the range of Hermite functions, we are not con-
strained to affect the time scaling through the Hamiltonian
renormalization, contrary to the situation with the Chebyshev
based scheme. Instead, it turns out to be convenient to follow
a more flexible line, and allow ourselves for a ‘‘flexible
range’’ time scaling. By ‘‘flexible range’’ we simply mean to
multiply the time variable with an arbitrary scale factor and
accordingly readjust the Hamiltonian. This essentially
amounts to an arbitrary shift in the energy axis, with abso-
lutely no observable consequence. This means that the flex-
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ible range time scaling in the Hermite context does not con-
strain the spectrum of the system in any way, which is
contrary to the situation of fixed range time scaling in the
Chebyshev method. In a practical situation, however, poten-
tial energy cutoff ~if any! will be the common denominator
affecting identically the behavior of both Hermite and
Chebyshev based schemes. As will become clear later, the
time scaling in the Hermite context is not a parameter affect-
ing the system. It is just a convenient device to avoid nu-
merical hazards ~if any! and at the same time it possibly
provides leverage to accelerate the convergence of the Her-
mite series. We note the truncated Hermite series has also
been utilized in the area of signal and image processing, and
it is well recognized that the rate of convergence of the series
can be enhanced by choosing a good center and a good scale
factor for the Hermite functions.17 That an arbitrary scale
factor may play an important role for the fast convergence of
the Hermite series is not difficult to discern if we carefully
examine Eq. ~5!. We first recognize that the coefficients am

in Eq. ~5! can be absorbed into the recurrence scheme for the
Hermite polynomials to obtain the following expression:

c~x ,t !5(
m

Sm , ~7!

where Sm can be computed by the three-term recurrence re-
lation:

Sm5

2 t̃

m
~ t̃ Sm222iĤSm21!, ~8!

with S05exp(2 t̃2)c(x,0) and S1522i t̃ ĤS0 . The conver-
gence of the Hermite series manifests here itself by the pres-
ence of factor m in the denominator of Eq. ~8!. As the factor
exp(2 t̃2) in the expression for S0 ~which is the ramification
of the weight factor associated with the Hermite polynomi-
als! approaches zero rather quickly when u t̃ u is substantially
larger than unity, the present scheme is ideally suited to ap-
proximate functions that either have a finite support or are
very concentrated ~in time or space!. Lanczos has also
argued16—if the weight factor is such that it is large in the
immediate neighborhood of zero ~center! and then drops to a
small value, a finite sum of the corresponding orthogonal
polynomials will approximate the given function with great
accuracy around the origin, but the accuracy in the rest of the
interval will be less. This behavior is expected to manifest
here also and therefore a time scaling of Eq. ~5! may be
necessitated to ensure fast convergence of the series by ad-
justing the exp(2 t̃2) term. There could be different proce-
dures for time scaling, and the ‘‘Chebyshev style’’ scaling
~that is, to force the range of the Hamiltonian to fall between
21 and 11! leads to the following expression:

c~x ,t !5(
m

~2i !m

m!
e22il̄ t̃~ t̃ Dl !m

3e2~ t̃ Dl !2
HmS Ĥ2l̄

Dl
Dc~x ,0!. ~9!

Here Dl and l̄ are defined as in the Chebyshev based
scheme. On the other hand, if we follow the ‘‘flexible range’’
time scaling, we obtain the following expression:

c~x ,t !5(
m

~2i !m

m!
~l t̃ !me2~l t̃ !2

HmS Ĥ

l
Dc~x ,0!, ~10!

where l is some arbitrary scale factor, and Eq. ~8! becomes

Sm5

2

m
@~l t̃ !2Sm222 t̃ ĤSm21# , ~11!

with S05exp@2(l t̃)2#c(x,0) and S1522i t̃ ĤS0 .
Though time scaling is recommended here for accelerat-

ing the convergence of the Hermite series, it is not a manda-
tory step for a successful application of the present method.
However, another reason has to do with the practical issue of
which units one is using in actual numerical computations.
We notice that the time factor appears as the argument of the
Gaussian in the expression for S0 , and it also appears as a
multiplicative factor @see Eq. ~8!#; there is a real danger of
multiplication of a very small number with a large number if
one is using atomic units in the calculation and a judicious
choice of scale factor will help to avoid the numerical prob-
lem ~if any!. We emphasize that there is no natural instability
associated with the present method of time propagation. To
forestall this problem, we prefer to use the so-called ‘‘mo-
lecular unit’’ in the numerical implementation.18

B. Infinite time propagation

An important feature of orthogonal polynomial based
approximation of the evolution operator is a clear separation
of the operator into a recursive Hamiltonian part and a time
part, and the latter usually appears as a mixture of elemen-
tary transcendental functions and some special functions.
This feature allows us to carry out the integrals involving the
time parameter analytically, which, in practice, amounts es-
sentially to infinite time propagation. The convergence of the
resulting series then follows the arguments of an infinite lim-
iting processes of applied analysis ~characterized by recur-
sive Hamiltonian operation on a wave function!, and could
be used as such for different purposes. As a general example,
we consider the following equation:

f~x ,e l!5

1

2p
E dt e ie ltc~x ,t !g~ t !, ~12!

where c(x ,t) is the time-evolved wave function and g(t) is
the damping function that may be required to make the inte-
gral converge faster. In general, the range of the integral goes
from 0 to `; however, in the presence of time reversal sym-
metry the integral would be evaluated from 2` to 1`. From
the eigenvalue perspective, Eq. ~12! is the Fourier
transformation19 of the wave function from the time domain
to the energy domain. In the parlance of filter

diagonalization,15 f(x ,e l) in Eq. ~12! is a function ~not nec-
essarily an eigenfunction! ‘‘filtered’’ at a given energy e l

from the time-evolved wave function, c(x ,t). Here we ex-
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amine the cases when g(t) is either unity or a Gaussian
damping function, and carry out the integration from 2` to
1`. These two choices for the damping function are very
popular in spectral filter problems.14,15,20

~i! g(t) is unity: This situation is usually referred to as
the delta filter or box filter.14,20 Within the Chebyshev based
scheme, the integral ~12! can be evaluated to obtain

f~x ,e l!5

2

Dl
~12e l̄!

21/2 (
m50

`

~22dm0!Tm~e l̄!

3Tm~H̄ !c~x ,0!, ~13!

where ē l and H̄ are the normalized energy and Hamiltonian,
respectively, and Dl is the scaling parameter. On the other
hand, Eq. ~12! within the Hermite based scheme takes the
form

f~x ,e l!5 (
m50

`
e2e l

2/2Hm~e l!

A2mApm!

e2e l
2/2Hm~Ĥ !

A2mApm!
c~x ,0!.

~14!

We note that Eqs. ~13! and ~14! are essentially the statement
of the resolution of identity in a complete set of states. Here,
the analytical properties of Eqs. ~13! and ~14!, in practical
applications, take precedence over the convergence issue,
though there is no doubt that both series will eventually con-
verge. In the problem of filter diagonalization, Eq. ~13! is
somewhat easier to further manipulate because of the special
property of the product of two Chebychev functions, and this
has been very nicely exploited for practical purposes.14

~ii! g(t) is a Gaussian function, e2t2/4T2
: This is usually

referred to as the Gaussian filter.15 Within the Chebyshev
based scheme, Eq. ~12! cannot be integrated fully analyti-
cally because of the presence of the Bessel function in Eq.
~6!. In the filter diagonalization applications, one has to re-
sort to numerical integration at some stage.15 In addition, the
physical picture associated with Gaussian damping also re-
mains fully masked in the equation, and we do not under-
stand the mechanism of Gaussian filtering in actual numeri-
cal terms. On the contrary, the Hermite based propagation
scheme permits the evaluation of Eq. ~12! fully analytically
to obtain a closed form expression,

f~x ,e l!5 (
m50

`

hm11
e2~e lh !2/2Hm~e lh !

A2mApm!

3

e2~e lh !2/2Hm~Ĥ !

A2mApm!
c~x ,0!. ~15!

where h5T/A11T2, is always less than unity. Thus, the
physical effect of Gaussian damping in the Hermite case
translates into a continuous geometrical trimming of the se-
ries through the h parameter, and this provides an enhanced
convergence of the integral ~12! at the cost of the Gaussian
width as an extra parameter to be adjusted. This geometrical

trimming of the series is very much reminiscent of the Abel

summation technique, which has frequently been employed
in studies of divergent series.21 According to this interpreta-
tion, the parameter h defines the radius of the sphere within
which the series is absolutely convergent ~in fact, the series
is absolutely and unconditionally convergent anywhere
within the sphere of unit radius!. In the limit of an infinite
width Gaussian, h tends to unity, and this essentially has the
effect of removing the impact of Gaussian damping, which is
anyway an arbitrarily free parameter. This is very convenient
if we would like to switch on damping only after some time
has elapsed—a proposition put forth in a recent
application22—in which case, both Eqs. ~14! and ~15! would
be involved in the filtering process. Thus, we see that the
Hermite polynomials have the edge over the corresponding
Chebyshev polynomials in approximating the evolution op-
erator for the applications of Gaussian damping based filter
diagonalization.

We conclude this section by highlighting the important
observation—while the issue of convergence takes a promi-
nent stage for orthogonal polynomial based finite time quan-
tum propagation, the analytical properties of the approximat-
ing series may be important for an improved numerical
implementation, in the event of infinite time propagation.

III. SPECTRAL FILTERS

In the following we will develop the Hermite polynomial
based spectral filter procedure along the analytical settings
originally put forth by Wall and Neuhauser.15 As the filter
procedure has been elaborated in detail earlier, we present
here only a brief outline and discuss the theory only from the
Hermite polynomial perspective.

A. Basic principles and construction of Hamiltonian
matrix

We consider the time-independent Schrödinger equation
~TISE! as a formal statement of the eigenvalue problem,
ĤC(x ,E l)5E lC(x ,E l). If we express the eigenfunction,
C(x ,E l) in a nonorthogonal basis,

C~x ,E l!5 (
m51

L

B lmf~x ,em!, ~16!

we obtain the eigenvalue problem in the matrix form as
HB5SBe . Here e is a diagonal matrix containing the eigen-
values, and the Hamiltonian and overlap matrices are de-
fined, respectively, as follows:

Sm ,m8
5E

2`

`

dx f*~x ,em!f~x ,em8 !, ~17!

Hm ,m8
5E

2`

`

dx f*~x ,em!Ĥf~x ,em8 !. ~18!

Here the notation em refers to an arbitrary energy and it has
meaning in the context of time–energy Fourier analysis, as
will be clear later. At this point, any set of basis functions
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could serve the purpose, and if we are interested in the ei-
genvalues from the highly excited region of a large rank
Hamiltonian, the procedure is going to be extremely expen-
sive.

Within the FD premise the basis f(x ,em) is extracted
from the time evolving wave function by utilizing the Fou-
rier integral theorem,

f~x ,em!5

1

A2p
E

2`

`

dt e iemtc~x ,t !e2t2/2T2
, ~19!

where the Gaussian damping term, e2t2/2T2
, has been in-

serted to make the integral converge faster, and $em :m
51,L% constitutes a set of discrete energies within a given
energy window. This is the filter step of the FD method. The
Fourier integral theorem19 asserts that a time evolving func-
tion ~provided it did not start orthogonal to any of the eigen-
states of the Hamiltonian! represents all the energy compo-
nents due to an infinite time baseline @In theoretical terms,
the time parameter does go to infinity. However, in the situ-
ation when em is one of the eigenvalues of the Hamiltonian,
the concept infinity refers to a limiting process and it is the
minimum time that the wave function, c(x ,t), has to be
propagated in order to resolve the eigenfunction correspond-
ing to the eigenvalue em correctly#. We point out that the
range of integration in Eq. ~19! ~i.e., from 2` to `! indicates
the validity of time reversal symmetry, which is fully justi-
fied for the eigenvalue problems in quantum mechanics. In
fact, the imposition of time reversal symmetry in quantum
mechanics essentially amounts to a definite choice of the
‘‘phase factor,’’ which, however, has no consequence from
the measurement perspective.23 The crux of the FD method
lies in an important observation from Eq. ~19!. The integrand
in Eq. ~19! is highly oscillatory ~this is the reason a damping
function, in the form of Gaussian has been inserted!, and
therefore reflects the possibility of strong cancellation for a
moderately large value of t. As time goes on, we expect
smaller contributions from the energy components away
from em . This phenomenon is known as the loss of phase

coherence, the result of which leads to the crucial conviction
that—‘‘after a relatively short time the filtered function,
f(x ,em) will span the space of quantum states with energies

close to em ,’’ and several such filtered functions at a discrete
set of energies within a given window could well serve as a
set to obtain the eigenvalues within the window, by conven-
tional matrix diagonalization.12 In this sense, the time propa-
gation step in the FD method acts as a preconditioner of the
basis for eventual disentanglement of eigenstates by the di-
agonalization process. The filtered functions f(x ,em) are not
expected to be orthogonal and, in practical applications, we
need to make sure that the set is overcomplete, that is, the
size of the matrix ~L! we diagonalize is larger than the num-
ber of eigenvalues within the given window.

The above discussion essentially completes the basic
ideas involved in the FD. Here, Eqs. ~16!–~19! form the
basic structure of the FD method, and the obvious question
that remains is as how efficiently can we cast the working
equations for the matrix elements @Eqs. ~17! and ~18!#. Along

this goal, we have followed the algebra originally elaborated
for the purpose by Wall and Neuhauser.15 In Eq. ~19!, c(x ,t)
is the time evolved wave function as given in Eq. ~2!. To this
end, we could use any short time propagator to generate
c(x ,t) at different times in an interval and carry out the
integral ~19! numerically. However, the numerical integra-
tion procedure is fraught with difficulties as one has to take
cognizance of the sampling theorem24 ~even though the sam-
pling issue will manifest in the present FD context only in-
directly!, apart from the length one has to carry out the time
propagation. As Eq. ~19! involves an integration over time, it
would be very convenient to utilize a propagation method
that splits the evolution operator into a Hamiltonian part and
a time part, so that one can attempt to carry out the time
integral analytically. In this context, orthogonal polynomial
based recursive propagation method is an ideal choice ~e.g.,
Chebyshev propagation!. As it has been noted by Wall and
Neuhauser,15 the time integration with the Chebyshev
method could not be accomplished fully analytically, render-
ing the resulting computational recipe somewhat less effi-
cient and transparent. It is at this stage that the Hermite poly-
nomial based propagation method holds an edge over the
Chebyshev method.

In what follows, we present a derivation for the overlap
and Hamiltonian matrices. With Eq. ~19!, the expression for
overlap and Hamiltonian matrices takes the form as follows:

Sm ,m8
5E

2`

` E
2`

`

dt dt8 e2~ t2
1t8

2!/2Te i~emt1em8t8!

3E
2`

`

dx c*~x ,t !c~x ,t !, ~20!

Hm ,m8
5E

2`

` E
2`

`

dt dt8 e2~ t2
1t8

2!/2Te i~emt1em8t8!

3E
2`

`

dx c*~x ,t !Ĥc~x ,t !. ~21!

The time reversal symmetry allows one to choose C(x ,E l)
and hence f(x ,em) as a real function, and therefore we can
consider c*(x ,t) as the wave function evolved for negative
time, c(x ,2t), along with some arbitrary phase factor that
may conveniently be taken as unity. This consideration es-
sentially follows from the Fourier analysis, which also sug-
gests that the initial wave function, c(x ,0), be real valued.
Thus, the space part of the integral in Eq. ~20! takes the form
of a correlation amplitude, C(t):

E
2`

`

dx c*~x ,t !c~x ,t !5E
2`

`

dx c~x ,2t !c~x ,t !

5E
2`

`

dx c~x ,0!c~x ,t1t8!

5Cs~ t1t8!. ~22!

Here we have utilized the fact that the correlation amplitude
belongs to the class of stationary random function, and is
thus invariant under a change of the origin of times as the
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choice of time origin is entirely arbitrary.25 Along the same
argument we have the space part of the integral ~21! to be
written as follows:

E
2`

`

dx c*~x ,t !Ĥc~x ,t !5E
2`

`

dx c~x ,2t !x~x ,t !

5E
2`

`

dx c~x ,0!x~x ,t1t8!

5Ch~ t1t8!

5E
2`

`

dx c~x ,0!Ĥc~x ,t1t8!.

~23!

On making a change of variables as t5a/21b and t8

5a/22b in Eqs. ~20! and ~21!, and integrating out the b
variable analytically, we obtain

Sm ,m8
5

T

2Ap
e2~em2em8!2T2/4

3E
2`

`

dt e i~em2em8!t/2e2t2/4T2
Cs~ t !, ~24!

Hm ,m8
5

T

2Ap
e2~em2em8!2T2/4

3E
2`

`

dt e i~em2em8!t/2e2t2/4T2
Ch~ t !, ~25!

where Cs(t) and Ch(t) are the integrals involving the space
part, as defined in Eqs. ~22! and ~23!. Now, if we accept the
Hermite polynomials, Hk(Ĥ) as the basis for time propaga-
tion @Eq. ~5!# we can write the correlation amplitude @cf. Eqs.
~22! and ~23!# as

Cs~ t !5 (
k50

`

ak~ t !E
2`

`

dx c~x ,0!Hk~Ĥ!c~x ,0!, ~26!

Ch~ t !5 (
k50

`

ak~ t !E
2`

`

dx c~x ,0!

3@ 1
2 Hk11~Ĥ!1kHk21~Ĥ!#c~x ,0!, ~27!

where we have utilized the property of Hermite polynomials
to arrive at Eq. ~27!. We now substitute Cs(t) and Ch(t)
from Eqs. ~26! and ~27! into Eqs. ~24! and ~25!, respectively,
and evaluate the integral involving time analytically to fi-
nally obtain the following expressions for the overlap and
Hamiltonian matrices:

Sm ,m8
5TApe2~em2em8!2T2/4(

k50

`

hk11
e2t2/2Hk~t !

A2kApk!
Xk ,

~28!

Hm ,m8
5TApe2~em2em8!2T2/4

3 (
k50

`

hk11
e2t2/2Hk~t !

A2kApk!

3FAk11

2
Xk111Ak

2
Xk21G , ~29!

where h5T/A11T2 and t5h(em1em8
)/2. Xk is formally

given as follows:

Xk5E
2`

`

dx c~x ,0!
e2t2/2Hk~Ĥ!

A2kApk!
c~x ,0!. ~30!

Denoting Hk(Ĥ)/A2kApk!c(x ,0) as vector f k , we can use
the following three-term recursion relation as derived from
the property of Hermite polynomials, to compute Xk very
efficiently,

f k5A2

k
Ĥf k212Ak21

k
f k22 . ~31!

Equations ~28! and ~29! are the main results that can be
utilized to solve the generalized eigenvalue problem to ob-
tain the eigenspectrum belonging to the given window.

Few remarks concerning the final expression for overlap
and Hamiltonian matrices are in order. First, the parameter h
is always less than unity and its physical significance has
been pointed out earlier ~vide supra!. As the Hermite func-
tions, Hk(Ĥ) increases without bound, this will eventually
lead to a numerical hazard. To avoid this, we have distrib-
uted the factor that is obtained after time integration sym-
metrically so that in practical calculations we deal only with
the normalized terms as clear from Eqs. ~28!–~30!. Such a
distribution of the time integrated factor is not required in the
Chebyshev based spectral filter algorithm. We now examine
the asymptotic behavior of other terms in Eqs. ~28! and ~29!.
For large values of k, the Hermite function may be approxi-
mated as follows:26

e2t2/2Hk~t !

A2kApk!
[A2

p
~2k2t2!21/4

3cosF ~2k11/2!
t

A2k
2k

p

2 G . ~32!

We thus see that the individual terms in Eqs. ~28! and ~29!
are highly oscillatory for large k, and thus the average value
over many periods would be zero. This observation signifies
the asymptotic nature of the convergence of the Hermite se-
ries in the present context. As the filtered wave functions in
a given window are not expected to form an orthogonal set,
we are essentially led to an overcomplete eigensystem. As a
result, the overlap matrix S is generally near singular. This
fact has also been noted by other authors. To this end, we
have employed the singular value decomposition ~SVD!
technique, which is well discussed in the literature.27
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B. Computation of spectral intensities

The spectral intensity is formally defined in terms of
eigenstates, as given below:

I l5ud lu
2
5UE

2`

`

dx c~x ,0!C~x ,E l!U2

. ~33!

The present formulation permits the computation of spectral
intensities with great ease, as we explain here. Using Eqs.
~16!, ~19!, and ~22!, we can express d l as follows:

d l5 (
m50

M

B lm

1

A2p
E

2`

`

dt e2t2/2T2
e iemtCs~ t !. ~34!

Now we substitute the expression for Cs(t) from Eq. ~26!
and carry out the time integral explicitly to obtain

d l5
A2p (

m50

M

B lm (
k50

`

zk11
e2em

2
b2/2Hk~emb !

A2kApk!
Xk , ~35!

where Xk is defined in Eq. ~30! and z is T/A21T2.

C. Error estimates

Eigenvalues obtained by the present method are not all
true eigenvalues of the system, and therefore it is mandatory
that an independent check is carried out in order to differen-
tiate spurious eigenvalues from the genuine ones. As it has
been noted by Wall and Neuhauser,15 the occurrence of spu-
rious eigenvalues are either an artifact of the singularity of
the overlap matrix, S, or due to ‘‘incomplete coverage’’ of
the frequencies. For this purpose, one can compare the re-
sults as obtained from the adjacent overlapping energy win-
dows. The magnitude of the vector, (Ĥ2Em)C(x ,Em), can
also serve as a parameter to serve the accuracy of computed
results. To be specific, we can compute the error norm DEm

defined as follows:

DEm
2

5UE
2`

`

dx C~x ,Em!~Ĥ2Em!2C~x ,Em!U
5u~B tH2B !mm2Em

2 ~B tSB !mmu. ~36!

Here, the H2 matrix is defined as follows:

~H2!mm8
5E

2`

`

dx C~x ,Em!Ĥ2C~x ,Em8
!. ~37!

As we have explained earlier, Eq. ~37! can be computed to
obtain

~H2!mm8
5TApe2~em2em8!2T2/4

3 (
k50

`

hk11
e2t2/2Hk~t !

A2kApk!

3FA~k11 !~k12 !

2
Xk12

1S k1

1

2
D Xk1

Ak~k21 !

2
Xk22G . ~38!

It has been shown that DEm
2 represents the upper bound on

the true error of the eigenvalues.28 For the purpose of error
estimation, one may also use different variational principles,
as suggested by Beck and Meyer,13 and the extension of the
present formulation would be straightforward.

IV. MODELS

A. One-dimensional tunneling

In order to analyze the finite time propagation behavior,
we have applied the present method to a model one-
dimensional scattering problem for which we have the ana-
lytical results to compare. One such system is transmission
through a symmetric Eckart barrier,

V~x !5

V0

cosh2~ax !
. ~39!

The transmission factor, i.e., the probability for a particle to
pass the barrier has been shown to be29

P~k !5

coshS 2pk

a
D 21

coshS 2pk

a
D 1coshS pA8mV0

a2\2 21 D
, ~40!

where k is the wave number related to the energy, E

5\2k2/2m , V0 and a are the height and width of the barrier,
respectively. The parameters chosen for the test are V0
51 ê , m51 amu, and a52 Å. To solve this tunneling prob-
lem we have followed the standard pseudospectral grid
method.2 In particular, the system is started by initializing
the wave function,

c~x ,t50 !5N exp@2ik0x2a~x2x0!2# , ~41!

where a51/(4s2
2ig), g5(2/k0)(x02x f), N5(A/p)1/4,

and A58s2/(16s4
1g2). The wave packet is centered at x0

in the position space and at k0 in the momentum space, with
an additional feature that it has its minimum width at the
focus point x f , which may be different from the initial start-
ing point, x0 . We focus the wave packet to have minimum
uncertainty just before the potential region, to avoid any in-
terference from the grid boundary due to its fast spreading.
The operation of the Hamiltonian on the wave function is
obtained by the standard grid method wherein the kinetic
energy operator is evaluated by the application of FFT and
the potential energy is diagonal on the grid. We discretized
the one-dimensional grid into 512 points, ranging from 220
to 20 Å. In order to extract the transmission probability as a
function of energy, we numerically evaluate the flux F(k)
across the dividing line placed well after the potential. By
this technique we can compute the transmission probability
as a function of energy by a single wave packet propagation.
The transmission probability P(k) across the barrier is then
obtained as the ratio between the outgoing and the incoming
flux, P(k)5Fout(k)/F in(k). The incoming flux is computed
as

F in~k !5

k

m
uck

2u2, ~42!
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where

ck
2

5

1

A2p
E

2`

`

dx e ikxc~x ,t50 !; ~43!

Eq. ~43! can be evaluated analytically. To obtain the outgo-
ing flux Fout(k) we use the time–energy transform instead of
space–momentum transform, as the latter requires all the
wave functions at a later time on the grid. Thus the outgoing
flux is given as

Fout~k !5

\2k2

m2

k

m
ucE

1u2, ~44!

where

cE
1

5

1

A2p
E

0

`

dt e iEt/\c~x*,t !, ~45!

where x* is the projection point. In the present application,
the outgoing flux has been evaluated by numerical integra-
tion with a time step of 1 fs and the total propagation time
was 0.2 ps.

B. Eigenspectrum of LiCN

We utilize the Hermite formulation of the spectral filter
problem to study the eigenspectrum of a two-dimensional
model of LiCN. In this model, the LiCN Hamiltonian is
given by30

Ĥ52

\2

2mR

]2

]R2
2S \2

2mRR2
1

\2

2mrr0
2D

3

1

sin u

]

]u
sin u

]

]u
1V~R ,u !, ~46!

where the Jacobi coordinates R and u denote, respectively,
the distance between Li and the center of mass of CN moi-
ety, and the angle between R and the CN axis, whereas r0
specifies the frozen CN distance. The reduced mass param-
eters are given as, mR5mLi(mC1mN)/(mLi1mC1mN), and
mr5mCmN /(mC1mN). The potential was taken from Ref.
31, which has the form V(R ,u)5(m

9 Cm(R)Pm(cos u), where
Pm(cos u) is the Legendre polynomial. In order to accom-
plish the Hamiltonian operation on the wave function, we
have utilized a spectral method for the u derivative and a
Fast Fourier Transformation algorithm for the R derivative.
In particular, we take the Legendre polynomial basis for the
u variable to obtain the Hamiltonian in the following form:

Hpp8
5dpp8F2

\2

2mR

]2

]R2
1p~p11 !S \2

2mRR2 1

\2

2mrr0
2D G

1

A~2p11 !~2p811 !

2

3^Pp8
~cos u !uV~R ,u !uPp~cos u !& . ~47!

We have also imposed a cutoff, Vcut on the potential, and
evaluate the integral involving potential using a Gauss–
Legendre quadrature method.32 We note that the cutoff in the
potential implicitly determines the number of terms in the
polynomial series to achieve the convergence. We have
taken random numbers for the initial wave function. We list
the numerical parameters used in the present calculation in
Table I.

In order to make a comparison, we have also obtained
the eigenspectrum of LiCN by direct diagonalization of the
full Hamiltonian matrix (409634096). In order to con-
struct the Hamiltonian matrix, we define the R grid using the
functions f (R j)5d(R i2R j)51/p sinc@2p(R i2R j)/DR# ,
(sinc(z)5sin(z)/z). This basis function is zero on all other
grid points except j, where its value is 1. The potential en-
ergy matrix is diagonal on this grid. To obtain the kinetic
energy matrix elements, a discrete Fourier transform is ap-
plied to the expansion function f j , then multiplied by
\2k2/2m and back transformed.

V. RESULTS AND DISCUSSION

Even though we have based a significant part of our
analysis on the eigenvalues perspective, we test the efficacy

TABLE II. A comparison of exact and numerical tunneling probabilities by
Hermite and Chebyshev propagation.

Energya Exact Hermite Chebyshev

0.453 740 0.129 987E209 0.135 679E209 0.135 679E209
0.516 255 0.300 798E208 0.294 798E208 0.294 798E208
0.582 804 0.696 068E207 0.691 266E207 0.691 266E207
0.653 385 0.161 075E205 0.160 949E205 0.160 949E205
0.728 000 0.372 725E204 0.372 865E204 0.372 865E204
0.806 648 0.861 800E203 0.861 713E203 0.861 713E203
0.889 330 0.195 692E201 0.195 694E201 0.195 694E201
0.976 045 0.315 952E100 0.315 957E100 0.315 957E100
1.066 793 0.914 445W100 0.914 454E100 0.914 454E100
1.161 574 0.995 973E100 0.995 980E100 0.995 980E100

aEnergy in ê(1 ê5100 kJ!.

TABLE I. Numerical parameters used in the LiCN calculations.

Parameter Value Description

NR , Nu 64, 64 Number of grid points
Rmin , Rmax 2.2 a.u., 5.7 a.u. Spatial range for R coordinate
umin , umax 0, p Spatial range for u coordinate
r0 2.186 a.u. Frozen C–N bond length
mR , mr 10 071 a.u., 11 779 a.u. Reduced mass for Li–CN, C–N
Vcut 12 000 cm21 Potential energy cutoff
T 0.27 ps Width of the Gaussian filter
L 100 Number of equispaced energies in each window
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of the present method on a one-dimensional scattering prob-
lem for the following reason. In an approximate quantum
propagation method there are two sources of errors—one is
the stability of the norm and the other error creeps into the
phase. While the error in the norm reflects the instability in
the propagation scheme due to ‘‘numerical dissipation,’’ the
error in the phase gives rise to incorrect dynamics of the
system being studied. With the present test problem on tun-
neling, the error in the phase is clearly monitored for the
very simple reason that the computed transmission probabil-
ity will not be accurate because of the phase error, even
though the norm remains conserved throughout the propaga-
tion. In Table II, we compare the exact transmission prob-
abilities as a function of energy with those obtained by the
Hermite propagation method. The excellent agreement of the
computed result with the exact one, as seen in Table II,
clearly indicates that the error in phase is fully controlled.
Throughout the time propagation, the norm of the wave
function was preserved to the 16 decimal accuracy. In order
to make a comparison of the dynamics generated by the
present method, we have also utilized the Chebyshev propa-
gation method and listed the result in Table II. We note the
transmission probabilities as obtained by the Hermite and the
Chebyshev methods are exactly the same. We also present

snapshots of the amplitude of the moving wave function in
Fig. 1. At every instant of time, the Hermite propagated
wave function exactly matches the one obtained using the
Chebyshev method. This clearly indicates that the dynamics
generated by the present method is in complete harmony
with the Chebyshev propagation method.

We now make a comparison of the numerical effort in-
volved in both methods to achieve a fixed accuracy (10212)
in the norm. For the present model system, the Chebyshev
method utilizes a fixed 22-term expansion of the series @Eq.
~6!# for 1 fs time step, which implies a total 22 normalized
Hamiltonian operations on a vector, along with some nu-
merical overhead to compute the Bessel function. On the
other hand, there is no extra numerical overhead, apart from
the Hamiltonian operations, with the present method @cf.
Eqs. ~8! and ~11!#. However, the performance of the present
scheme is dependent on the choice of scale factor. For a fixed
accuracy in the norm (10212), we plot in Fig. 2 the number
of Hermite polynomials required for the convergence as a
function of scale factor. The plot in Fig. 2 is quite revealing
and it clearly demonstrates that by choosing a suitable scale
factor one can achieve an enhanced performance by the
present method. In particular, in the present calculation a 18
terms Hermite expansion gives identical accuracy in contrast
with 22 terms Chebyshev expansion. This suggests that the
Hermite propagation method is comparable to the Chebyshev
based method and by a proper choice of scaling parameter it
may be possible to achieve a faster convergence with the
Hermite based method for finite time propagation. We point
out that the optimization of the scale factor has to be carried
out only once in the beginning of the propagation, and a
ceiling on the number of terms in the expansion ~5! can be
imposed at the beginning of the calculation.

Now we turn to the Hermite polynomial based spectral
filter method to compute the interior eigenspectrum of LiCN.
For this purpose we start with random numbers for the initial
wave function and compute the vector Xk @Eq. ~30!#. In order
to understand the numerical convergence of the overlap and
Hamiltonian matrix elements, we note Eqs. ~28! and ~29!
involve the sum of a product of two terms. The first term is

FIG. 1. Snapshots of the amplitude of the wave function at different times.
The top panel refers to t50, the central panel to t50.084 ps, and the bottom
panel to t50.2 ps. A solid line denotes the potential barrier and the broken
line denotes the wave function.

FIG. 2. The number of Hermite functions required for a fixed accuracy in
norm (10212) as a function of the scale factor. For each scale factor, the
Hermite propagator was iterated 2000 times with a time step of 1 fs.
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the normalized Hermite function of filter energy argument,
which fluctuates symmetrically around the origin with ever
diminishing amplitude. To get further insight, we have plot-
ted the second term, Xk , in Fig. 3, which clearly shows the
asymptotic nature of the convergence of Eqs. ~28! and ~29!.
We note from Fig. 3 that the quantity Xk falls off sharply
with increasing k, with a minimum at around k54000 and
then it fluctuates with ever diminishing amplitude. This mini-
mum point was found to be sufficient to yield good result.
We have therefore employed 4000 terms in the Hermite ex-
pansion. We have not enforced any time–energy scaling in
the present test. To compute the eigenvalues we select a
window of size 1000 cm21 and discretize it into 100 equis-
paced parts. Next, we shift the window’s starting point in
steps of 250 cm21. For each window, we calculate the over-
lap and Hamiltonian matrices and solve the generalized ei-
genvalue problem. We retain only those eigenvalues in each
window that lies at the internal region covering only half of
the size and compute the average of the predictions from the
adjacent windows. In Table III, we compare the eigenvalues
obtained by the present spectral filter method with those ob-
tained by exact diagonalization. Also included in Table III
are the error estimates using Eq. ~36!. It is clear from Table
III that the computed results are within a few cm21 from the
exact one. Much of the differences are due to inadequate
optimization of the Gaussian damping cutoff parameter and
the eventual convergence of the series. In the present study,
our motivation has been to test the functioning of the method
and therefore we have not tried to optimize the Gaussian
width parameter. We also note the recent study of Beck and
Meyer,13 which shows that the filter diagonalization proce-
dure, in their implementation, does not produce very good
results with a Gaussian damping function, and they have
instead suggested the use of a cosine type damping function,
which could be explored in future studies.

We now make a comparison of the numerical effort in-
volved in the Hermite method with the Chebyshev method
for the spectral filter problem. Within the Chebyshev poly-
nomial framework, the expression for the overlap and Hamil-
tonian matrix elements is given as15

~H !Sm ,m8
5TApe2~em2em8!2T2/4

3 (
k50

`

f kbk@~em1em8
!/2,T# , ~48!

with f k5gk and @Dl/2(gk111gk21)1l̄gk for the
overlap and Hamiltonian matrix elements, respectively,
and gk is ^c(x ,0)uTk(Hnorm)uc(x ,0)&. Here bk(e ,x) is

given as (22dk0)(2x/Ap)(21)k*
212cos u*
12cos u*

du@Tk(u
1cos u*)/A12(u1cos u*)2#exp@2(x Dl)2u2#, with cos u*
5(l̄2e)/Dl and Tk is the Chebyshev polynomial. Now Xk in
Eqs. ~28! and ~29! and f k in Eq. ~48! involve a similar three-
term recursion scheme, with equivalent numerical scaling.
However, bk’s in Eq. ~48! have to be evaluated by numerical
integration and we can immediately see that the correspond-
ing quantity in Eqs. ~28! and ~29! are much easier to evaluateFIG. 3. The behavior of Xk @Eq. ~30!# as a function of recursion.

TABLE III. A comparison of eigenvalues ~cm21! for the two-dimensional
model of LiCN. All eigenvalues are given relaitve to the numerically exact
ground state. The calculated values are the average between the adjacent
windows.

n En~exact! En~calc.! DEn @Eq. ~36!#

36 2530.3 2528.5 0.1267
37 2581.3 2579.4 0.1263
38 2593.2 2590.7 0.1263
39 2609.8 2607.6 0.1263
40 2667.6 2664.1 0.1257
41 2693.2 2692.3 0.1256
42 2742.9 2743.1 0.1252
43 2760.9 2764.3 0.1275
44 2823.7 2820.9 0.1259
45 2852.5 2849.2 0.1253
46 2896.9 2894.4 0.1249
47 2916.7 2917.0 0.1249
48 2917.4
49 2927.9 2928.3 0.1248
50 2952.3 2950.9 0.1243
51 2975.3 2973.5 0.1237
52 2993.8 2996.1 0.1232
83 3751.1 3749.6 0.1158
84 3760.4 3761.0 0.1151
85 3769.4 3772.3 0.1144
86 3818.1 3817.7 0.1128
87 3836.7 3840.3 0.1126
88 3852.8 3851.7 0.1125
89 3872.4 3874.4 0.1123
90 3895.5 3897.1 0.1119
91 3911.3 3908.5 0.1116
92 3919.4 3919.8 0.1114
93 3967.0 3965.2 0.1110
94 3978.3 3976.5 0.1111
95 3985.6 3987.8 0.1113
96 4015.0 4015.1 0.1092
97 4032.4 4032.1 0.1088
98 4061.1 4060.5 0.1087
99 4080.6 4083.3 0.1087

100 4096.6 4094.6 0.1086
101 4114.9 4111.6 0.1082
102 4122.7 4123.0 0.1080
103 4146.0 4145.7 0.1074
104 4177.8 4074.1 0.1071
105 4206.8 4208.2 0.1067
106 4215.7 4213.9 0.1066
107 4224.7 4225.3 0.1064
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by the well-known Hermite recursion scheme. In fact, the
evaluation of bk’s in Eq. ~48! becomes the numerical bottle-
neck if the energy window is large and densely discretized.
This clearly displays the feasibility of the present method
with much less numerical effort in comparison to the Cheby-
shev polynomial formulation.

VI. CONCLUSION

We have demonstrated in this paper the feasibility of the
Hermite polynomial based propagation method to study
quantum dynamical problems, and carried out a detailed
comparison with the well-known Chebyshev based scheme.
In order to understand the convergence behavior of the ap-
proximating series for a finite time propagation, we have
introduced the time–energy scaling concept, and this has
clearly demonstrated that the Hermite propagation method,
by suitable time–energy scaling, offers a competitive nu-
merical tool for the purpose. In the infinite propagation sce-
nario, the present approach can provide a compact and nu-
merically efficient paradigm for certain problems, due to a
more ‘‘friendly’’ analytical behavior of the ensuing series,
compared to the Chebyshev propagation method. In particu-
lar, we have applied the Hermite propagation method to the
time domain theory of spectral filters with Gaussian damping
and thereby obtained a very compact and numerically effi-
cient scheme for the purpose. We have thus presented a new
and complementary propagation method to study quantum
dynamics. In the present study we have not explored the use
of other types of damping functions ~e.g., the cosine type, as
suggested by Beck and Meyer13! and left it for future inves-
tigation. Time–energy scaling could also provide additional
leverage for accelerating the convergence of the series in the
spectral filter context, and this issue will be studied in the
future.
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