
Tight Analysis of Shortest Path Convergecast in
Wireless Sensor Networks

John Augustine1 Qi Han2 Philip Loden2 Sachin Lodha3 Sasanka Roy4

1 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,

Email: jea@ics.uci.edu

2 Dept. of Math and Computer Sciences,
Colorado School of Mines, Golden, CO 80401,
Email: qhan@mines.edu, ploden@mines.edu

3 Tata Research Development and Design Centre,
54B, Hadapsar Industrial Estate, Hadapsar, Pune, India 411013,

Email: sachin.lodha@tcs.com

4 Chennai Mathematical Institute,
Chennai, India 603103,

Email: sasanka.ro@gmail.com

Abstract

We consider the convergecast problem in wireless sen-
sor networks where readings generated by each sensor
node are to reach the sink. Since a sensor reading can
usually be encoded in a few bytes, more than one
reading can readily fit into a standard transmission
packet. We assume that any such packet consumes
one unit of energy every time it hops from a node to
a neighbor regardless of the total size of the readings
in it. Our objective is to minimize the total energy
consumed to send all the readings to the sink. Conse-
quently, we ask the question: can we pack the readings
in common routes to minimize the number of hops?
It is quite elementary to see that this problem is NP-
hard when the size of the readings are arbitrary via
reductions from bin packing or set partition.

We study the simple version with readings nor-
malized to 1 byte in length. However, we make no
assumptions on the underlying graph. We show this
to be NP-hard by way of a reduction from Set Cover.
We study a class SPEP of distributed algorithms that
is completely defined by two properties. Firstly, the
packets hop along some shortest path to the sink. Sec-
ondly, given all the readings that enter into a node,
it sends out as many fully packed packets as possible
followed by at most one partial packet — the elemen-
tary packing property. We show that any algorithm in
this class is (2− 3

2k)-approximate where k ≥ 2 is the
size of a data packet in bytes. We additionally show
that this class is optimal when the underlying sensor
network is a tree or grid topology. Our main technical
contribution is a lower bound. We show that no algo-
rithm that either follows the shortest path or packs
in an elementary manner is a (2 − ε)-approximation,
for any fixed ε > 0.

1 Introduction

The convergecast problem has obtained prominence
among sensor networks researchers because it fits well

This work was done when the first and fifth author were af-
filiated with Tata Research Development and Design Centre,
Pune, India. The experiments were conducted when the first
author was visiting the Institute of Mathematical Sciences,
Chennai, India. The second author is supported in part by the
National Science Foundation under grant CNS-0720875.

with the goal of sensor networks, which is to monitor
and collect data about an environment. The focus has
been to either minimize the time, the energy, or the
dual-criteria of both time and energy required to com-
plete the convergecast (Gandham et al. 2007, Hohlt
et al. 2004, Kesselman & Kowalski 2006, Lindsey et al.
2002, Lu et al. 2007, Pan & Tseng 2008, Paradis
& Han 2009, Yu & Prasanna 2005, Upadhyayula &
Gupta 2007, Zhang et al. 2007). Researchers have also
exploited spatial locality in many real-life converge-
cast scenarios by aggregating the data and transmit-
ting the representative values for sub-regions within
the region being sensed (Intanagonwiwat et al. 2000,
Madden et al. 2002, Goel & Estrin 2003, Krishna-
machari et al. 2002).

Convergecast typically works as follows in sensor
networks. The sensor nodes need to send sensed data
to a centralized sink via multiple hops. A sensor read-
ing can usually be encoded in a few bytes, so more
than one reading can fit into a standard transmis-
sion packet, but there is a limit on the total num-
ber of bytes that each packet can carry. Each read-
ing has to stay intact along the way. This is different
from sensor data aggregation where a function is per-
formed over several sensor readings to, typically, gen-
erate one single representative value for each region
being sensed (Goel & Estrin 2003). While data aggre-
gation is agreeable in many situations, under certain
scenarios, applications would rather desire the col-
lected data to be exact. This requirement is common
in scientific data gathering as indicated in (Desh-
pande & Madden 2006, Porta et al. 2009). We have a
cost associated with each hop, which is independent
of the number of readings in it. This is an accept-
able assumption commonly used in the sensor net-
work community, although more realistic radio model
indicates that packet size does matter (Heinzelman
et al. 2000). Consequently, we ask the question: can
we pack the readings in common routes to minimize
the number of hops?

More formally, we are given a connected graph
G = (V ∪ {sink}, E) that is both undirected and
unweighted. An edge e = (u, v) ∈ E implies that u
can communicate with v and vice versa. Each vertex
v has a single reading of integral number of bytes
s(v) that has to be reported to the appropriately
denoted vertex sink. These readings must travel to
the sink in packets that have a capacity of k bytes.

Since the readings have to fit in the packets, ∀v ∈ V ,
s(v) ≤ k. A packet consumes 1 unit of energy ev-
ery time it hops from a vertex to a neighbor regard-
less of the total size of the readings in it. Our ob-
jective is to minimize the total energy consumed to
send all the readings to the sink. We primarily seek
distributed routing algorithms in which the individ-
ual nodes are unaware of the entire graph; they are
only aware of their immediate neighbors. We call this
the Convergecast Problem or the CCP. Since con-
vergecast is often repeated several times (like hourly
temperature collection), our focus is on minimizing
the total energy in this repeated operation. Therefore,
we allow a one-time preprocessing phase. This can be
used for constructing distributed data structures like
shortest path trees.

The CCP combines aspects of both bin-packing and
routing. In Theorem 2.1, we show that it is NP-hard
even when the underlying graphs are restricted to a
line or a tree of depth greater than 1. These are simple
reductions from set partition. So, we limit our study
to a simplification in which the size of each reading is
exactly 1 byte. We call this the Unit Convergecast
Problem or the UCCP. In practice, many wireless sen-
sor applications such as room temperature monitor-
ing for energy conservation only need to deploy sim-
ple sensors with one single sensing attribute. These
sensors then report small constant-sized readings as
directed. In our formulation, we normalize it to one
byte. More importantly, UCCP helps us gain insight
into the problem when the effect of bin-packing is
minimal because up to k single-byte-sized readings
can be trivially placed into a packet. Interestingly, we
show that even UCCP is NP-hard.

We study a class of algorithms for UCCP called
Shortest Path Elementary Packing (SPEP) algorithms.
The members of this class are all valid algorithm for
UCCP that have the following properties.
Shortest Path Property: An algorithm for CCP or
UCCP is said to follow the shortest path property if ev-
ery packet hop always moves the packet along some
shortest path to the sink. We refer to algorithms that
have this property as shortest path algorithms. Be-
cause we are concerned with the convergecast prob-
lem, this property, when present, will make the so-
lution more intuitive. This is essentially geographic
routing with greedy forwarding often used in wireless
sensor networks (Akkaya & Younis 2005). Note also
that even distributed networks, with a little prepro-
cessing, can easily establish a shortest path tree as
long as the graph is connected.
Elementary Packing Property: An algorithm for
UCCP is said to have the elementary packing prop-
erty if each vertex communicates at most one partial
packet and all the other packets, if any, are full. Such
algorithms are called elementary algorithms. An ele-
mentary algorithm ensures that each node repackages
the readings in the most straightforward manner. It
also ensures that communication overhead in the en-
tire network is minimized. This is because minimal
number of packets will be used, leading to minimal
total number of bytes in all the packets is minimal,
since each packet has a constant-size packet header.

In Section 2, we prove that CCP is NP-hard even
when the underlying graph is very simple. We then
shift our attention to UCCP and prove that it is also
NP-hard. In Section 3, we prove that all algorithms in
SPEP are (2− 3

2k)-approximate algorithm for UCCP(for
k ≥ 2). In Section 4, we prove a somewhat coun-
terintuitive result. We show that any algorithm that
either follows the shortest path property or the ele-
mentary packing property cannot guarantee a (2−ε)-
approximation for UCCP. In Section 5, we explore the
performance of SPT when the underlying graph is ei-

ther a tree or a grid and show that it is optimal in
the former case and asymptotically optimal in the lat-
ter case. To complement our theoretical analysis, we
analyzed SPT experimentally. We discuss our experi-
mental results in Section 6. Finally, we provide some
concluding remarks.

2 Preliminary Hardness Results

It is quite straightforward to see that both CCP and
UCCP are NP-hard. CCP is NP-hard even for some
of the simplest trees via a reduction from SET-
PARTITION to CCP. This result is formalized in The-
orem 2.1. Although the proof is rather straightfor-
ward, we include it for the sake of completeness.

Theorem 2.1 CCP is NP-hard even if the underlying
graph G is a straight line or a tree of depth at least 2.

Proof 2.2 Recall that in SET-PARTITION, we are
given a set U = {x1, x2, · · · , xn} of integers. The
question we ask is whether U can be partitioned into
two subsets such that the sums of the elements in ei-
ther subsets are equal. SET-PARTITION is known to
be NP-complete (Garey & Johnson 1979).

We can reduce an instance of SET-PARTITION
to CCP in two very simple ways as shown in Fig-
ure 1, which illustrates the case when the instance
of SET-PARTITION has 8 elements. We assume,
without loss of generality, that the elements of SET-
PARTITION are integral values between 1 and k and
add up to 2k. To reduce from SET-PARTITION to
CCP, we form an instance of CCP in which each ele-
ment of U forms a reading in CCP and is assigned to
a node in CCP.

Figure 1: The two figures illustrate the reductions
from SET-PARTITION to CCP.

In the case of the tree of depth 2, we include a
“neck” vertex which is assigned a reading of size k.
The other nodes with readings assigned to them from
SET-PARTITION are of degree 1 and are connected
to the neck. The neck is connected to the sink. The
number of hops from the neck into the sink vertex will
depend on whether the SET-PARTITION instance
can be partitioned into two subsets.

Similarly, in the case of the line, the nodes form
a linear chain with one end connected to the sink.
Starting from the node farthest away from the sink,
the readings travel toward the sink. At some point,
there will be enough readings to require exactly 2 pack-
ets for any reasonable algorithm. Note that the sink
has exactly one neighbour. Once all the readings reach
that neighbour, we will need either 2 or 3 packets to
hop into the sink depending on whether we can par-
tition the set U or not. �

We now turn our attention to UCCP. We show
that even UCCP is NP-hard by reducing the set cover
problem to it. In the classic Set Cover Problem, we
are given a ground set U = {x1, x2, . . . , xn} and a
family of subsets S = {S1, S2, . . . , Sm}, Si ⊆ U for

i = 1, 2, . . . ,m . C ⊆ S is a cover if the union of ele-
ments in C is U . In the decision version of the prob-
lem, we are given a positive integer Ksc < |S| and
asked whether there is a subset of S with cardinality
Ksc that covers U . It is well-known that Set Cover
Problem is NP-complete (Garey & Johnson 1979).

Figure 2: Reducing the Set Cover problem to the
UCCP. The enforcers are depicted as a triangular pic-
torial gadget; the actual construction of the enforcers
is shown in the box.

Given an instance of the set cover problem, we
construct a sensor network T consisting of vertices ar-
ranged in three levels as follows (refer Figure 2). Level
1 consists of only the sink node. Level 2 nodes cor-
respond to the sets Si ∈ S for i = 1, 2, . . . ,m . There
is an edge from each Si to sink. We slightly abuse
notation and use Si to also refer to the corresponding
vertex. Level 3 consists of nodes that correspond to
{x1, x2, . . . , xn} which are the elements of set U . Like
level 2 nodes, we use xj to refer to a level 3 vertex.
Each node xj is connected by an edge to Si iff the
element xj ∈ Si in the Set Cover instance.

We set the size of a packet to k = maxi |Si| bytes.
We also add another k − 1 leaf nodes, which we call
enforcers, to each Si. In Figure 2, the enforcers are
depicted by a triangular pictorial gadget. Our objec-
tive is to solve the convergecast problem for this setup
of sensor networks. i,e. each non-sink node (including
the nodes in levels 2 and 3 and all the enforcers) have
a reading of 1 byte and we must pass each reading to
the sink using minimum number of packet hops.

For K > 0, we can show that n + mk + K hops
suffice to route each reading to the sink iff there ex-
ists a set cover of size less than or equal to K in the
set cover problem. Each level 3 vertex has to send a
packet to sink through a level 2 vertex. Note that at
least n packets must hop out of the level 3 vertices
for any solution (optimal or suboptimal). Consider
the portion of the graph consisting of a single level 2
node Si, its k − 1 enforcers and sink. Regardless of
the activity outside this portion, any solution requires
k hops because the k−1 enforcers must communicate
to Si and we need a packet from Si to the sink. Since
there are m such level 2 vertices, the number of hops
is at least mk. If at least one reading from level 3 ver-
tex will hop through Si, it will force Si to send one

more packet, which we call a critical hop. If K ≤ Ksc
is the number of critical hops, then we can cover the
ground set by selecting the subsets corresponding to
each of the K chosen subsets. Therefore, the following
theorem follows.

Theorem 2.3 UCCP is NP-hard.

3 The Shortest Path Elementary Packing Al-
gorithms

While the focus of this section is the entire class of al-
gorithms (SPEP) for solving UCCP, we pick a canonical
example from SPEP, the shortest path tree algorithm,
or SPT, to prove our results. Corollary 3.6 extends the
results to all algorithms in SPEP.

The steps in the SPT algorithm are as follows. In
the preprocessing phase, we construct a shortest path
tree T of graph G rooted at sink1. As a consequence,
each node is aware of its parent and children. Subse-
quently, each vertex waits till it has received all pack-
ets from its children in T . Full packets are sent to its
parent as is. All the partial packets are re-packaged
into the maximum number of full packets and at most
one partial packet and all these packets are sent to the
parent.

Let OPT and A be the number of hops taken by
the optimum solution and SPT, respectively, in solving
an instance of the UCCP. We show that A ≤ (2 −
3
2k)OPT, where k ≥ 2.

The maximum number of readings that can be
packed in a packet is k. If a packet contains k read-
ings then we call it a full packet; otherwise, it is a
partial packet. If a full packet hops from a node a to
a neighbouring node b then we will term this as full
hop. A partial hop is defined likewise. We split OPT
into OPTf and OPTp such that they are the num-
ber of full and partial hops, respectively. We define
Af and Ap in like manner. Naturally,

OPT = OPTf + OPTp (3.1)

A = Af +Ap. (3.2)

Let us define the depth d(v) of a node v as the shortest
distance of a node v from sink in T , i.e., the minimum
number of hops required for a reading to reach sink
from v. The following lemma holds for any algorithm
that has the elementary packing property.

Lemma 3.1 For any instance of the UCCP, Ap ≤ 2 ·
OPTp.

Proof 3.2 Consider the packets that flow through a
single vertex v according to any algorithm regardless
of optimality. There is at least one partial hop either
out of v or into v. We can prove this by contradiction.
Suppose there were no partial hops into v, but ` full
hops into v. Then, k ·`+1 readings would have to hop
out of v, which requires at least one partial hop. This
implies that at least n/2 hops are partial even for an
optimal algorithm. Therefore,

OPTp ≥ n/2. (3.3)

According to the SPT algorithm, each vertex waits for
all its children to communicate their packets and re-
organizes the readings such that at most one packet is
not full. Therefore, Ap ≤ n, which, along with Equa-
tion 3.3, completes the proof. �

1We do not delve into the details of this construction as it has
been studied in various contexts in the past. For example, see the
work by Chandy & Misra (1982).

Before we proceed into proving our theorem,
we point out an obvious property (formalized in
Lemma 3.3) of any algorithm that obeys the short-
est path property, the SPT being one such algorithm.
The reading corresponding to each vertex v travels
a distance of exactly d(v), which is the shortest dis-
tance to reach the sink. Therefore, the sum of all the
distances traveled taken over all readings (not pack-
ets) by SPT is less than or equal to that of any other
algorithm. That sum is at least Ap + kAf for SPT;
we pessimistically account only one reading to have
hopped in each partial packet. Similarly, the sum of
the distance moved by readings according to an op-
timal algorithm is at most (k − 1)OPTp + kOPTf ;
we liberally account for k− 1 readings in each partial
hop. Therefore, we can state the property as follows:

Lemma 3.3 For any instance of the SPT, Ap +
kAf ≤ (k − 1)OPTp + kOPTf .

Theorem 3.4 For any instance of UCCP, A ≤ (2 −
3
2k)OPT.

Proof 3.5 Using Equations 3.1 and 3.2, we rewrite
the equation in Lemma 3.3 as

kA ≤ (k − 1)OPT + OPTf + (k − 1)Ap

≤ (k − 1)OPT + OPTf + OPTp +

(k − 1)Ap −Ap/2 (using Lemma 3.1)

= k ·OPT + (k − 3/2)Ap.

Recall that Ap ≤ n. Hence, we can replace Ap with
OPT because OPT is at least n; every vertex has to
send out at least one packet. Further, dividing by k
on both sides, we get A ≤ (2− 3

2k)OPT. �

Theorem 3.4 proves the upper-bound for SPT, but the
underlying lemmas, Lemma 3.1 and Lemma 3.3, are
true for all algorithms in SPEP. Lemma 3.1 hold for
any algorithm that packs its readings in an elemen-
tary manner and Lemma 3.3 is true for any algorithm
that respects the shortest path property. Therefore we
can state:

Corollary 3.6 The approximation ratio of any algo-
rithm in SPEP for UCCP is at most (2 − 3

2k), where
k ≥ 2, and SPT is optimum when k = 1.

Note that in SPT, each node sends its packets to
one of its parents. In practice, we might not want to
burden one parent. This can be alleviated by choosing
a parent randomly. Alternatively, the node can also
choose a parent in a round-robin fashion. Corollary
3.6 ensures that such variants will not incur a higher
hop-count than SPT. This can be of use to systems
designers who are interested in balancing the network
overhead across the network without compromising
the hop-count.

4 Lower Bounds on Approximating UCCP

Given the upper-bound on the approximation ratio
of SPEP in Corollary 3.6, a natural question we ask is
whether the analysis can be tightened. We are, how-
ever, interested in algorithms that use shortest paths
and/or employ elementary packing. In this subsec-
tion, we discuss the inapproximability of UCCP when
either one of those two properties must be respected.

We begin by describing the construction of an in-
stance E{`} of the UCCP, where ` is a positive integer.
This instance is constructed with one bad path (called
the shortest path corridor or SPC) to the sink such

that an optimal algorithm can avoid it to minimize
the number of hops. However, in the construction, we
ensure that an algorithm that does not compromise
on either the shortest path property or the elementary
packing property cannot avoid the SPC and therefore
must hop more.

The instance E{`} will consist of ` gadgets (shown
in Figure 3). The gadgets are indexed by i, 1 ≤ i ≤ `.
Gadget 1 is farthest away from the sink and gadget `
is closest to it. Figure 4 depicts the detailed construc-
tion of a single gadget. Two consecutive gadgets will
be connected as shown in Figure 5. Note that gadget
` connects to the sink (see Figure 3). The position of
the sink and the orientation of the instance depicted
in Figure 3 indicates that the packets move “upward.”

Given the value of `, we define the size of each
packet to be k = `!. We first describe a generic gadget
that is used in constructing each of the ` gadgets. Fig-
ure 4 depicts the construction of a gadget i; the figure
shows the actual construction and a schematic repre-
sentation, which will be used subsequently. A gadget
is defined by parameters i, its gadget index, and k,
the capacity of the packets. It consists of ik paral-
lel paths that are disconnected from each other (ex-
cept for some special edges called off-ramps described
later). Each of these ik paths consists of k/i nodes;
note that k/i is an integer because k = `! and i ≤ `.
Therefore, each gadget has k2 nodes. The two end
nodes in each of the paths is designated either as a
head node or the tail node depending on whether it is
closer to or farther away from the sink, respectively.
Furthermore, one of the ik paths is a special path that
is called a “segment of the shortest path corridor” and
is shown by thick triple lines in the schematic. When
the gadgets are put together to form the entire in-
stance, these segments will join to form a sequence
of segments from the farthest gadget (away from the
sink) all the way to the sink. This sequence of seg-
ments form the shortest path corridor or SPC.

In each gadget, the node connected to the tail node
of the segment of the SPC plays a special role; in Fig-
ures 4 and 5, they are depicted as star shaped nodes.
We call them gateway nodes because all packets en-
ter a gadget through its gateway node. Borrowing
from the terminology used in highways in the United
States, the (i − 1)k edges coming into the gateway
node from gadget i − 1 are called on-ramps. There
are ik − 1 edges going from the gateway node to the
tails in the gadget (except for the tail of the segment
of the SPC). These edges are called off-ramps. See Fig-
ure 5 for a depiction of two consecutive gadgets along
with how they are connected; again, the schematic
representation is also provided. To construct the en-
tire instance, the gadgets are placed one on top of
the other such that their individual segments of the
shortest path corridor align and form the full shortest
path corridor that extends from gadget 1 all the way
to gadget ` and then connects to the sink. This con-
struction of the entire instance is depicted in Figure
3.

Lemma 4.1 There is a solution to the convergecast
problem on the instance depicted in Figure 3 that hops
at most k2`+ k`2 times.

Proof 4.2 The solution works as follows. Each gad-
get has k2 nodes. Therefore, gadgets 1 to i have ik2

readings that enter the gateway of gadget i+ 1. Then
the gateway node, instead of sending them up the SPC,
redistributes these packets to each of the (i+1)k lanes
in the gadget at level i+ 1. Therefore, each lane gets
a packet that contains i

i+1k readings that travel up

each lane collecting the k/(i+1) readings in that lane.
Therefore, at the top of each lane in gadget i+ 1, the

Figure 3: The construction of an instance of UCCP used to prove Theorem 4.9 and Theorem 4.11. Note that the
boxes are gadgets shown in Figure 4.

Figure 4: A gadget for constructing the instance E{`} of UCCP. The schematic representation of the actual gadget
is also provided in the bottom right.

number of readings is i
i+1k + k

i+1 = k, hence form-

ing a full packet. These (i+ 1)k full packets hop into
the gateway at gadget (i + 2) and proceed toward the
sink in like manner (i.e., avoiding the SPC and tak-
ing the lanes). Note that at gadget i, the following hop
types occur. Firstly, the gateway node at gadget i feeds
(i−1)k packets (that it received from gadget i−1) via
the off-ramps to the tail nodes in gadget i. This takes
ik − 1 hops; although there are ik paths, there is no
need for a hop from the gateway to the segment of the
SPC. Secondly, the ik packets travel up the lanes cost-
ing k/i hops per lane. This adds up to k2 hops. Note
that this includes the on-ramp hops that will carry the
packets from gadget i into the gateway of gadget i+1.
Therefore, at each level i, we incur a cost of k2+ik−1.
Considering this over all ` levels, the total cost is at

most k2`+
∑`

i=1(ik − 1) ≤ k2`+ k`2. �

Note that the cost incurred by the solution de-

scribed in Lemma 4.1 hinges on the ability of the
gateway nodes to pack in a non-elementary fashion.
Hence it is not elementary in nature. Also, since it
uses the off-ramps, it is not a shortest path solution
either. We shift our concern to solutions that either
use the shortest path or are elementary in nature. The
key intuition here is that such solutions will transmit
all the readings entering the gadget at level i only
through the SPC. While the solution in Lemma 4.1
was able to split the k(i− 1) full packets into ik par-
tial packets and ride up the gadget (in some sense,
for free), the restricted solution will have to pay for
these packet hops up the SPC. We dissect this cost
in Lemma 4.5 and Lemma 4.7. Before that, we state
Lemma 4.3, a simple observation about the instance
E{`}.

Lemma 4.3 The tail nodes (except those of the
SPC segments) have exactly two shortest paths to the
sink. All other nodes (including the tail nodes of

Figure 5: Connecting two gadgets in adjacent gadgets. The box figure on the bottom right is the schematic
representation for the actual construction in the top left.

SPC segments) have exactly one shortest path to the
sink.

Proof 4.4 The tail nodes that are not in the SPC seg-
ments can go through the gadget in two ways. They
can either go via the off-ramps into the SPC, or go
through the paths for which they are the tails. All other
nodes, it is easy to see, have just one choice. �

The SPT incurs a higher hop count than the al-
gorithm described in the proof of Lemma 4.1. Lem-
mas 4.5 and 4.7 formalize this limitation of SPT. The
proofs of either lemmas show that their respective
assumptions (namely, shortest path and elementary
packing) force packets to take the SPC, which in turn
forces them to hop at least 2k2`− k2 log ` times.

Lemma 4.5 Any shortest path solution to the in-
stance E{`} depicted in Figure 3 requires at least

2k2`− k2 log ` hops. This holds regardless of whether
the shortest path solution is deterministic or random-
ized.

Proof 4.6 Each gadget produces k2 readings because
that many nodes are present in the gadget at that
level. This has two consequences. Firstly, the num-
ber of hops within a gadget, not counting the hops
of packets entering the gadget but counting the off-
ramp hops, is at least k2. The total number of such
hops over all ` gadgets is k2`. Secondly, the k2 read-
ings originating in gadget i must each travel a dis-
tance of (k/(i + 1) + k/(i + 2) + · · · + k/`), where
each term accounts for the height of gadget i + 1
up to gadget `. We call these the SPC hops because
these readings must travel up the SPC. Any alter-
nate routing will violate the shortest path property.
Hence, we can argue (in similar lines as in Theo-
rem 3.4) that any optimal shortest path solution will
form k full packets at the gateway node of gadget
i + 1. Hence, the total number of packet hops will be
k[(k/(i+1)+k/(i+2)+ · · ·+k/`)]. The total number
of SPC hops originating over all ` gadgets is

k2 [(1/2 + 1/3 + 1/4 + · · ·+ 1/`) +

(1/3 + 1/4 + · · ·+ 1/`) + · · ·+ (1/`)]

= k2[(
∑̀
i=2

i− 1

i
)] ∼= k2[`− log `].

Therefore, the total number of hops is at least k2` +
k2[`− log `] = 2k2`− k2 log `.

We note here that a randomized shortest path
solution does not have much flexibility because of
Lemma 4.3. The readings from the tail nodes have
two choices. However, any tail node that takes the
off-ramp into the SPC will contribute to the two types
of hops mentioned regardless of the choice it makes. If
it goes through the SPC, it might contribute to more.
Therefore, they are better off traveling through their
individual paths. Hence randomization does not help
in decreasing the number of hops. �

Lemma 4.7 Any elementary solution to the problem
instance E{`} requires at least 2k2`−k2 log ` hops. This
holds regardless of whether the shortest path solution
is deterministic or randomized.

Proof 4.8 To prove this, all we need is to show that
the “best” elementary solution will essentially route
packets to the sink in the same manner as described
in Lemma 4.5. In other words, we need to show that
all packets entering a gadget through the gateway node
must travel through the SPC to the sink. The instance
E{`} is constructed such that only the gateway nodes
have degree greater than 2. Therefore, to ensure that
an algorithm for E{`} is elementary, we only need
to ensure that gateway nodes observe the elementary
packing property.

Consider the gateway node in gadget i + 1. The
readings routed through this gateway can be subdi-
vided into those readings that must be routed through
the gateway and those that have an alternate route.
We first consider the readings that have an alter-
nate route and show that, for the purpose of analy-
sis, they can be assumed to take the alternate route
rather than through the SPC. The reading that have
an alternate route are the readings that originate from
nodes in gadget i+ 1 itself, but not in the segment of
the SPC in that gadget. Consider all the readings from
non-SPC paths in gadget i+ 1. They form (i+ 1)k− 1
paths and each path is of length k

i+1 . If these readings
moved in the tail-to-head direction along the path they
were in (instead of using the SPC), they would require
exactly k

i+1 ((i+1)k−1) hops, which equals the number
of non-SPC nodes in gadget i+1. This implies that ex-
actly one hop must be accounted for each node’s read-
ing. Since each node requires at least one hop, rout-
ing this readings in any other way will not improve
the hop count. Further, this tail-to-head routing does
not violate the elementary packing principle. Hence,
for any elementary solution, we can always construct
another solution in which the readings from nodes not

in the SPC don’t use the segment of the SPC in their
gadget.

The readings that must go through the gateway
node are as follows.

1. It will receive ik2 readings from gadgets 1 through
i.

2. It has its own reading, and

3. it also receives 1 reading from the tail node in the
segment of the SPC in gadget i+ 1.

The elementary packing property therefore requires
that exactly 1 partial packet (containing exactly 2
readings) will hop out of the gateway node. Quite ob-
viously, all the full packets (in any reasonable elemen-
tary algorithm) will follow the SPC. The partial packet
will also move up the SPC because if it were to take
the off-ramp and go up the gadget through any other
path, it will only incur extra hops.

Now that we have shown that the elementary pack-
ing property forces the routing to be similar to the one
shown in Lemma 4.5, we can invoke the mathematical
machinery in that lemma to conclude the proof. �

Theorem 4.9 For any fixed ε > 0, there is no (2−ε)-
approximation algorithm for UCCP that follows the
shortest path property. This holds even if randomiza-
tion is permitted.

Proof 4.10 Using the number of hops counted in
Lemmas 4.1 and 4.5 in the asymptotic sense, the ap-
proximation ratio for any shortest path algorithm is
at least

lim
`→∞

2k2`− k2 log `

k2`+ k`2
= lim

`→∞

2k2(`− log `
2)

k2(`+ `2

k)

u lim
`→∞

2(`− log `
2)

`
(since k � `)

= lim
`→∞

(2− log `

`
)

= 2.

Since the limit reaches 2 from below, the theorem
holds. �

The following theorem also follows similarly except
that we must use Lemma 4.7 instead of Lemma 4.5.

Theorem 4.11 For any fixed ε > 0, there is no
(2−ε)-approximation algorithm for UCCP that respects
the elementary packing property. This holds even if
randomization is permitted.

5 SPT on Tree and Grid Networks

We now turn our attention to the performance of
SPT on special cases based on the graph G.

Theorem 5.1 SPT is optimal for UCCP when the un-
derlying graph G is a tree.

Proof 5.2 Since G is a tree, all the readings from the
descendants of any vertex v (including v’s reading)
will have to pass through v. Suppose there are Rv such
readings. Then any algorithm will have to transmit at
least bRv

k c+d
Rv mod k

k e, which is precisely the number
of packet transmissions out of v in SPT. Therefore,
SPT is optimal with respect to the number of packet
hops. �

Suppose the graph G is a grid with m rows and n
columns and the sink is the vertex at (1, 1), i.e. at row
1 and column 1. Since we are interested in the asymp-
totic behavior, we assume that m and n are ω(k).
Furthermore, without loss of generality, we assume
that m and n are multiples of k. We show that SPT-G,
an implementation of SPT with a specific underlying
shortest path tree designed for grids, is asymptoti-
cally optimal. Whether all underlying shortest path
trees lead to asymptotic optimality remains open.

The specific shortest path tree for SPT-G on an
(m × n) grid is as follows: we designate each edge in
G to be “vertical” (resp. “horizontal”) if it connects
vertices from the same column (resp. same row). All
vertical edges are included in the SPT tree; horizontal
edges are included iff they are from row 1. Intuitively,
the packets move up the columns until they reach the
first row. Once they reach the first row, they move to-
wards the sink along the first row. Note that in keep-
ing with our definition of SPT, once a packet becomes
full, it does not split. We formalize the performance
of SPT-G in Theorem 5.3.

Theorem 5.3 SPT-G is asymptotically optimal for
UCCP when the underlying graph G is an m × n grid,
provided m and n are in ω(k).

Proof 5.4 We begin by evaluating hLB, the lower
bound on number of hops required by any algorithm.
Consider a horizontal cut in G betweens rows i and
i+ 1. There are (m − i)n readings below this cut. All
these readings must pass through this cut. Assume
that they pass through in full packets. Therefore at
least (m − i)n/k hops will pass through the cut. Con-
sidering all such horizontal cuts, the number of hops
crossing these cuts must be at least

∑m
i=1(m−i)n/k =

mn(m−1)
2k . Similarly, we can also construct vertical cuts

which induce at least mn(n−1)
2k row-wise hops. There-

fore, any algorithms will require at least hLB hops
given by

hLB =
mn(m − 1)

2k
+

mn(n − 1)

2k
=

mn(m + n − 2)

2k
.

(5.1)

Figure 6: SPT-G on grid. The square vertex is the sink.
The full edges form the shortest path tree, while the
dotted edges are discarded.

SPT-G starts with moving the packets up along
columns. Once all the readings in a column are col-
lected on the first row, the packets then move along the
row to the sink. In each column, as the packets move
upward, a new full packet is formed every k vertices. If
we count all the partial hops in a single column, they
are at most m − 1 ≤ m. Since there are n columns,

there are at most mn partial hops. Since the lower
bound on the number of hops (from Equation 5.1) is
O(mn(m + n)), the partial hops don’t have any bearing
on the asymptotic approximation ratio. Therefore, we
are interested in evaluating h↑ and h←, which are the
number of full packet hops up (along columns) and
left (along rows) respectively.

There are at most m/k − 1 ≤ m/k full packets
formed in each column. The first full packet is formed
at row m − k and full packets are formed regularly at
an interval of k packets. From the vertex at which a
full packet is formed, it will have to travel up to row
1. Therefore, the number of full packet hops in each
column is at most

(m − k) + (m − 2k) + · · ·+ (m − (m/k)k

≤ (m2/k)− k(1 + 2 + · · ·+ m/k)

≤ (m2/k)− k (m/k)2

2

=
m2

2k
.

Since there are n columns in total, the number of
hops up the columns, h↑, is at most

h↑ =
nm2

2k
. (5.2)

Once the full packets reach the first row, they hop
along the row towards the sink. Each column gen-
erates at most m/k full packets. Therefore, the total
number of horizontal hops, h← is given by:

h← = (m/k)(1 + 2 + · · ·+ n − 1)

= (m/k)(n − 1)(n)/2

≤ mn2

2k
.

Therefore, the total number of full hops for SPT− G
is at most

h↑ + h← =
mn(m + n)

2k
. (5.3)

From Equations 5.1 and 5.3, it is clear that the
upper bound and the lower bound converge asymptot-
ically. �

6 Experimental Study

The lower bound for SPT is derived from pathological
problem instances. It is quite likely that it actually
does much better in practice. We would like to show
this via experimentation. For this purpose, we used
JAVA to implement SPT. To objectively compare SPT,
we computed three lower bounds on the number of
hops for each input instance. They are:

LB1: The number of non-sink vertices |V |,

LB2:
∑

v∈V d(v)/k, where d(v) is the shortest dis-
tance between v and the sink, and

LB3:
∑D

i=1 ni/k, where D = maxv∈V d(v) and ni =
|{v : d(v) ≥ i}|.

Each input instance was generated as follows. We de-
fined an N × N euclidean region and placed nodes
uniformly at random in this region. We normalized
the radio frequency range to be 1. Therefore, a sin-
gle hop link exists between two nodes that are within
an euclidean distance 1 from each other. We deployed
enough sensors such that the set of nodes and links

formed a connected graph. We varied the value of N
from 3 to 15 and for each value of N , we generated
50 input instances. We fixed k = 5. For each input
instance I, we calculated the ratio, r(I), of the num-
ber of hops in SPT over the largest of the three lower
bounds. Figure 6 depicts the results of this experi-
ment.

Based on the experimental results, we make a few
observations. Firstly, the number of times the r(I)
values exceed 1.6 is very low. Secondly, such high val-
ues of r(I) only occur in the relatively smaller in-
stances. As the size of I is increased, r(I) is lower
with values around 1.3. Finally, We also note that
the standard deviation of the larger input instances
are lower implying that the r(I) values in practice
become stable as the input size increases. These ob-
servations clearly validate our claim that SPT requires
few hops in more realistic input instances.

Figure 7: The first graph is the plot of the r(I) values
against their corresponding number of nodes n. For
the second graph, we generate 50 test instances for
each value of N . The plot shows the average r(I) val-
ues for each N . Additionally, we provide the standard
deviation error bars.

7 Conclusion and Future Work

Routing in sensor networks is quite complex owing
to various constraints encountered in real instances.
Our focus, therefore, was on a broad class of nat-
ural algorithms. This allows a network designer to
construct specific algorithms within this class that
fit her requirements. While algorithms in SPEP are
at least 2-approximate (asymptotically), our exper-
imental results indicate that they do quite well in
practice. This leaves us with two questions for future
work. Firstly, is there an algorithm that is indeed a
(2 − ε)-approximation for UCCP? More interestingly,
is it an algorithm that is intuitive, easy to implement

and maintain, and worthy of competing with SPEP al-
gorithms in practice?

References

Akkaya, K. & Younis, M. (2005), ‘A survey of routing
protocols for wireless sensor networks’, Elsevier Ad
Hoc Network Journal 3(3), 325–349.

Chandy, K. M. & Misra, J. (1982), ‘Distributed
computation on graphs: shortest path algorithms’,
Commun. ACM 25(11), 833–837.

Deshpande, A. & Madden, S. (2006), Mauvedb: Sup-
porting model-based user views in database sys-
tems, in ‘Proceedings of ACM International Con-
ference on Management of Data (SIGMOD)’.

Gandham, S. R., Zhang, Y. & Huang, Q. (2007),
Method and apparatus for optimizing convergecast
operations in a wireless sensor network, U. S.
Patent Office. U.S. Patent Application Number
20070140149.

Garey, M. R. & Johnson, D. S. (1979), Computers
and intractability, Freeman.

Goel, A. & Estrin, D. (2003), Simultaneous opti-
mization for concave costs: single sink aggrega-
tion or single source buy-at-bulk, in ‘Proceedings
of ACM-SIAM Symposium on Discrete Algorithms
(SODA)’.

Heinzelman, W. R., Chandrakasan, A. & Balakr-
ishnan, H. (2000), Energy-efficient communication
protocol for wireless microsensor networks, in ‘Pro-
ceedings of Hawaii International Conference on Sys-
tem Sciences (HICSS)’.

Hohlt, B., Doherty, L. & Brewer, E. (2004), Flexible
power scheduling for sensor networks, in ‘IPSN ’04:
Proceedings of the 3rd international symposium on
Information processing in sensor networks’, ACM,
New York, NY, USA, pp. 205–214.

Intanagonwiwat, C., Govindan, R. & Estrin, D.
(2000), Directed diffusion: A scalable and robust
communication paradigm for sensor networks, in
‘MOBICOM’.

Kesselman, A. & Kowalski, D. R. (2006), ‘Fast dis-
tributed algorithm for convergecast in ad hoc geo-
metric radio networks’, J. Parallel Distrib. Comput.
66(4), 578–585.

Krishnamachari, B., Estrin, D. & Wicker, S. B.
(2002), The impact of data aggregation in wire-
less sensor networks, in ‘ICDCSW ’02: Proceed-
ings of the 22nd International Conference on Dis-
tributed Computing Systems’, IEEE Computer So-
ciety, Washington, DC, USA, pp. 575–578.

Lindsey, S., Raghavendra, C. & Sivalingam, K. M.
(2002), ‘Data gathering algorithms in sensor net-
works using energy metrics’, IEEE Trans. Parallel
Distrib. Syst. 13(9), 924–935.

Lu, G., Krishnamachari, B. & Raghavendra, C. S.
(2007), ‘An adaptive energy-efficient and low-
latency mac for tree-based data gathering in sensor
networks: Research articles’, Wirel. Commun. Mob.
Comput. 7(7), 863–875.

Madden, S., Franklin, M. J., Hellerstein, J. M. &
Hong, W. (2002), Tag: a tiny aggregation service for
ad-hoc sensor networks, in ‘Proceedings of USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI)’.

Pan, M. & Tseng, Y. (2008), ‘Quick convergecast
in zigbee beacon-enabled tree-based wireless sensor
networks’, Comput. Commun. 31(5), 999–1011.

Paradis, L. & Han, Q. (2009), ‘A data collection pro-
tocol for real-time sensor applications’, Pervasive
and Mobile Computing (PMC) 5(1).

Porta, L., Illangasekare, T. H., Loden, P., Han, Q. &
Jayasumana, A. P. (2009), ‘Continuous plume mon-
itoring using wireless sensors: Proof of concept in
intermediate scale tank’, ASCE’s Journal of Envi-
ronmental Engineering 135(3).

Upadhyayula, S. & Gupta, S. K. S. (2007), ‘Spanning
tree based algorithms for low latency and energy
efficient data aggregation enhanced convergecast
(dac) in wireless sensor networks’, Ad Hoc Netw.
5(5), 626–648.

Yu, Y. & Prasanna, V. K. (2005), ‘Energy-balanced
task allocation for collaborative processing in wire-
less sensor networks’, Mob. Netw. Appl. 10(1-
2), 115–131.

Zhang, Y., Gandham, S. & Huang, Q. (2007), ‘Dis-
tributed minimal time convergecast scheduling for
small or sparse data sources’, Real-Time Systems
Symposium, IEEE International 0, 301–310.

