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Thermodiffusion as a means to manipulate liquid film dynamics
on chemically patterned surfaces
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The model problem examined here is the stability of a thin liquid film consisting of two miscible
components, resting on a chemically patterned solid substrate and heated from below. In addition to
surface tension gradients, the temperature variations also induce gradients in the concentration of the
film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to
the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and
wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and
the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are
performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically
patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction,
in conjunction with either heating or cooling, can help manipulate the location and time scales of the
film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether
the thermal and solutal contributions to flow are cooperative or opposed to each other. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4984610]

I. INTRODUCTION

Dewetting of thin liquid films (∼1–100 nm) on substrates
with tailored heterogeneity has been recognized as a promising
strategy for templating and nanopatterning.1–5 When thin liq-
uid films dewet physically or chemically patterned substrates,
their dewetting mechanisms are more complex, as additional
length scales pertaining to the pattern geometry need to be
accommodated. This will also result in accelerated instabil-
ity growth,6–10 complex film morphologies, and/or different
rupture locations, if any.6,7,11–15 In many applications, the
thin films of interest could consist of two miscible compo-
nents, both of which have a specific role. A relevant emerging
application is the creation of nanoscale functional structures
based on polymer blends in photovoltaics and LEDs.16–18

Another example is the mixing and separation of small quanti-
ties of two or more liquid components, relevant to micro- and
nanofluidics,19 and micro total analysis systems.20 Especially
important to these applications is an understanding of the flow
dynamics and mass transfer when thin films of liquid mixtures
dewet patterned surfaces.

Motivated by the above, we examine here a model prob-
lem where a thin liquid film mixture consisting of two miscible
components is resting on a solid substrate, which may be
chemically patterned by wettability differences (see Fig. 1).
In addition, the film is subjected to vertical temperature gradi-
ents caused by heating or cooling the substrate, which induces
flow by the thermal Marangoni effect.21 This can not only
accelerate the interfacial instability, but can even potentially
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break the system symmetry.22 As the film here consists of two
miscible liquids, the applied temperature gradients will also
drive the mass flux across the film, resulting in concentra-
tion gradients. This phenomenon, known as thermodiffusion
or Soret effects,23,24 may lead to a solutal flow contribution in a
direction that could counteract the thermal Marangoni flow.25

The dominant mechanism that governs the instability is then
determined by the relative time scales of the two processes.
Aside from these factors, it is well established that long range
molecular forces, such as van der Waals attraction, lead to the
rupture of ultrathin liquid films (≤100 nm) in finite time.26,27

We also incorporate these long range forces in our model prob-
lem as the gradient of a potential (disjoining pressure) in the
momentum balance equations, which is now accepted as a
fairly standard approach. By varying the strength of the dis-
joining forces spatially along the width of the film, we model
the practical situation where the bounding solid substrate is
chemically patterned, based on the tendency of the liquid to
wet/dewet the substrate.9,28,29

Recent experimental works30–32 suggest methods by
which significant temperature gradients can be sustained
across ultrathin liquid films. For example, Dietzel and Troian30

have demonstrated the formation of nanosized pillar arrays
of poly(methyl methacrylate) by spin casting ∼100 nm thick
films of the polymer and heating the substrate, while simulta-
neously cooling the film from above. Similarly, polymer pat-
terning on a sub-micron scale has been reported by Lyutakov
et al.33 using laser scanning in which the Marangoni effect
introduced by light absorption is the proposed mechanism.
In ultrathin liquid films on molten metals, Trice et al.34

have shown experimental evidence via pulsed laser irradia-
tion for thermocapillary-driven dewetting when film thick-
nesses are on the order of ∼10 nm. These experiments also
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FIG. 1. Schematic representation of the problem setup. The hatched and
unhatched areas represent alternating patches of more and less wettable
regions on the solid substrate. Here T̃0, T̃s, and T̃1 represent the tempera-
tures of the solid substrate, film surface, and ambient air, respectively. The
spatial variables are x̃ and z̃.

incite interest in theoretical models that examine combina-
tions of thermal effects and long range molecular forces in thin
films.35–38

We acknowledge here that problems involving stabil-
ity analyses of thin films with miscible fluids have been
attempted in the past.39–46 However, these prior analyses have
not examined the effects of induced temperature variations,
which would cause Marangoni flows and Soret effects to
significantly influence film dewetting. A host of long wave-
length instability problems for binary liquid films including
the interplay of Marangoni and Soret effects have been stud-
ied by Oron, Nepomnyashchy, and co-workers.47–55 Two other
notably important contributions which address these issues
with the inclusion of gravity in the lubrication limit are the
works by Bestehorn and Borcia25 (linear stability analysis)
and Borcia et al.56 (fully nonlinear simulations). Our present
work differs from these in two different ways. First, we gen-
eralize the results on linear stability analyses by adding an
attractive van der Waals potential which these groups have
not explicitly examined. Bestehorn and Borcia25 have qualita-
tively mentioned that such potentials could help in promoting
or preventing rupture when the film thickness is close to tens
of nm, but not provided any detailed analysis. Second, we
extend the nonlinear simulations of Borcia et al.56 to explore
the possibility of whether substrate chemical patterning could
alter the dewetting behavior by confining liquid to certain
areas. Other previous studies which examine the combined
role of Marangoni and Soret effects pertain to thicker liquid
films and for short-wave instabilities,57,58 whereas our focus
is on much thinner films where disjoining forces could be
important.

II. PROBLEM FORMULATION
A. Problem geometry and assumptions

Figure 1 shows the schematic of the problem setup. A thin
layer of a binary mixture comprising of two miscible liquids
is bounded by a rigid solid substrate that is chemically pat-
terned. The chemical patterning is such that the substrate has
alternating patches which are more wettable or less wettable
by the liquid above. The free surface of the liquid is exposed

to ambient air which is assumed to be a passive phase. The
liquid mixture is assumed to be Newtonian and incompress-
ible, and it has a uniform dynamic viscosity µ and density
ρ. The substrate is heated (or cooled) from below such that
its dimensional temperature is maintained constant, at a value
T̃0. The free surface of the liquid has a mean dimensional
temperature T̃s, and the ambient air much above the liquid sur-
face has temperature T̃1. In the case of heating the substrate
from the bottom (or cooling the ambient air above), we would
have T̃0 > T̃s > T̃1, and in the case of cooling the substrate (or
heating the air from above), we would have T̃1 > T̃s > T̃0. The
characteristic length scale in the horizontal direction (e.g., the
wavelength of a typical interfacial perturbation) is denoted
l (dimensional), which is assumed to be much larger than
the characteristic vertical length scale d (dimensional), the
mean film thickness. Thus we have the ratio ε = d/l� 1,
which allows us to employ the lubrication approximation. This
implies that after scaling and non-dimensionalization, only
leading order terms in ε will be retained in the governing
equations (4)–(6) below.

The approach followed to derive the governing equa-
tions is very similar to the detailed derivation by Bestehorn
and Borcia.25 Here we show only some key equations and
scalings to help the reader. We shall also highlight the key
differences between their equations and ours, e.g., extra
terms that arise due to the bottom surface being chemically
patterned.

B. Scalings

The dimensional spatial coordinates x̃ and z̃ (see Fig. 1),
and the dimensional time variable t̃ are scaled as follows:

x̃ = lx, z̃ = ε lz, t̃ = τt, (1)

where τ = ρl2/µ is the time scale of momentum diffusion.
The dimensionless velocity components are ũ= lu/τ and
w̃ = ε lw/τ. As our focus in on a very thin film, we assume
intermolecular forces like van der Waals forces to become
important. They are introduced through the disjoining pres-
sure potential Ṽ . The scalings for Ṽ and the fluid pressure P̃
are chosen so as to reflect a balance between pressure gra-
dients and viscous shear stress in the x̃-momentum balance
equation,

P̃, Ṽ =
µ2(P, V )

(ε2l2ρ)
. (2)

The other variables pertaining to the liquid mixture are
temperature T̃ and surface tension Γ̃. These variables are
non-dimensionalized as

T̃ = (T̃0 − T̃1)T , Γ̃ = µ2
Γ/(ε ρl). (3)

The latter is chosen to scale capillary forces relative to viscous
forces. The local relative concentration of one component of
the mixture may be denoted as Ñ , which is already a dimen-
sionless quantity. Nevertheless we will use a rescaled version
N, given by Ñ = βN (T̃0− T̃1)N , where βN = −sT N̄(1− N̄). The
quantity sT = DT /D is the Soret coefficient which signifies the
ratio of the thermodiffusion coefficient DT to the mass diffu-
sion coefficient D, and N̄ is the mean relative concentration of
the mixture.
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C. Evolution equations

Using the scalings in Sec. II B, the dimensionless momen-
tum balance equations along x and z in the lubrication limit
are solved for the velocity components. The boundary con-
ditions are no-slip at the solid surface, normal and tangential
stress balances at the free surface, and the kinematic boundary
condition at the free surface. When combined with the conti-
nuity equation, the evolution equation for the dimensionless
film height h(x, t) reads

−
∂h
∂t
=

∂

∂x

(
h3

3
C̄−1 ∂

3h

∂x3
+

h2

2
∂Γ

∂x
−

A
h
∂h
∂x

+
1
3
∂A
∂x

)
, (4)

where C̄−1 is the inverse capillary number (see Table I), rep-
resenting the importance of surface tension relative to viscous
forces. Further, A(x) is a parameter which represents the mag-
nitude of van der Waals forces between the solid substrate
and the free surface of the liquid. It comes into (4) through a
disjoining pressure potential term ∼A/h3 in the Navier-Stokes
equation.26,27 Negative values of A are chosen to represent
attraction, while positive values would correspond to repul-
sion. The scaling for this parameter is A = Ãρ/(6πµ2ε l). For
a chemically homogeneous bottom surface, A would have the
same connotation as the Hamaker constant.59 In the present
work, we set A(x) to be a variable along the domain to model
chemically patterned surfaces. This suggests that the magni-
tude of the van der Waals force can be different at differ-
ent regions along the bottom surface, thus modulating the
wettability.

The surface tension Γ in (4) is a function of both tem-
perature and mixture concentration. Therefore, an appropriate
energy equation and an equation for the concentration field
N are needed in a lubrication form to complete the coupled
system of equations. For temperature, the starting point is the
heat transport equation accounting for convection and ther-
mal diffusivity. The boundary conditions are the continuity of
heat flux and temperature at the film surface. For concentra-
tion, the convection-diffusion equation is modified to include
the thermodiffusion (Soret effect) and solved along with van-
ishing diffusive mass flux on the bottom (z = 0) as well as
through the surface (z = h) as the boundary conditions. It turns
out that the evolution equation for the concentration is con-
veniently expressed as the conservation of Φ, which is the
cross-sectionally averaged concentration (i.e., integral of the
zeroth order concentration N (0) over z),

Φ(x, t) =
∫ h

0
(N − N0)dz, (5)

where N0 is the value of N at z = 0 in the stationary, x-
independent state (base state). The conservation equation for
Φ reads

∂Φ

∂t
=

∂

∂x

[
h3

3

(
−C̄−1 ∂

3h

∂x3
+

3A

h4

∂h
∂x
−

1

h3

∂A
∂x

)
f −

h2

2
∂Γ

∂x
f

+ Sc−1h
∂f
∂x

+
B

1 + Bh

(
5

24
h4C̄−1 ∂

3h

∂x3
−

5A
8
∂h
∂x

+
5

24
h
∂A
∂x

+
h3

3
∂Γ

∂x

)]
, (6)

TABLE I. Description of various dimensionless parameters appearing in Eqs. (3)–(9). The range of values calculated here are obtained using properties of
aqueous liquids or common polymeric solutions. Motivating values of common variables are ε ∼ 10�3 to 10�2, l ∼ 100 µm, viscosity µ in the range 10�3 to
1 mPa s�1, and surface tension Γ̃ ∼ O(10�2) Nm�1.

Range of values used
Parameter Symbol Definition in the present work Remarks

Marangoni number M
εγT (T0−T1)ρl

µ2 �1 to 10

For a 500 nm thick aqueous film, we would
have M ≈ 3, if |T0 − T1 | = 30 K. Note that
To > T1 ⇒ M > 0 (heating from below),
To < T1 ⇒ M < 0 (cooling from below)

van der Waals parameter A Ãρ
6πµ2ε l

�10�2 to �10�5 and 10�5 to 10�2
Attraction if A< 0, and repulsion if A> 0.
Typical magnitudes of Ã (dimensional) for real
systems range between 10�18 to 10�21 J

Marangoni separation ratio Ψ −
γN
γT

sT N̄(1 − N̄)
�1 to 1

Signifies ratio of surface-tension gradients
due to thermodiffusion and thermal factors. See
the discussion below Eq. (9) of Sec. II D

Schmidt number Sc µ
ρD 100

The ratio of momentum to mass diffusivity.
For most realistic liquids, Sc would range from 102–104.
The present analysis and Ref. 25 suggest that Sc in this
range has little effect on instability growth rates

Biot number B ε lha
κ 0.01

Here κ is the thermal conductivity of the liquid
mixture and ha is the heat transfer coefficient in air.
The regime of practical interest is usually B � 1

Inverse capillary number C̄−1 ε 3lΓ̄ρ
µ2 10�6 to 10�5

Here Γ̄ is the mean value of surface tension,
so that C̄−1 itself is a “constant.” The practical
regime of interest of C̄−1 lies between 10�7 to 10�2
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where B and Sc are the dimensionless Biot number and
Schmidt number (see Table I). Setting Sc to infinity would
imply that mass diffusion is absent. In our case, we retain mass
diffusion by setting Sc to values much greater than unity, which
conveys that momentum diffusion dominates mass diffusion.
The function f in (6) has the definition

f (x, t) =
Φ

h
+

Bh
2(1 + Bh)

. (7)

D. Discussion

Equations (4) and (6) together represent a coupled sys-
tem of two nonlinear evolution equations in h and Φ with x
and t being the independent variables. In order, the various
terms on the right hand side of (4) denote the relative con-
tributions of capillarity, surface tension gradients, wettability,
and wettability gradients.9 Note that the second term ∂Γ/∂x
would have both thermal and solutal (thermodiffusion) contri-
butions. The evolution equations, (4) and (6), are same as the
one-dimensional equivalents of Eqs. (48) and (49) in Ref. 25,
with the exceptions that there is no gravity term here, and A is
no longer a constant. The additional ∂A/∂x term is the key fea-
ture of our work, and it models patterned wettability. A smooth
analytical arctangent function as used in prior works9,28,29,60 is
used to represent A(x), which effectively delineates regions of
the solid having larger and smaller values of A. This expression
is described in Sec. IV.

A linear relationship is assumed to describe the variation
of surface tension. In the dimensionless lubrication version at
leading order, it may be expressed as25

Γ = Γ0 +
MB(1 + Ψ)h

1 + Bh
−MΨf (x, t), (8)

where Γ0 is a constant and M is the dimensionless Marangoni
number (see Table I), while f (x, t) is defined by (7). Here Ψ
is the Marangoni separation ratio, which physically signifies
the ratio of solutal to thermal contribution in the deviation of
surface tension from its mean value,

Ψ = −
γN

γT
sT N̄(1 − N̄). (9)

In general, γT would be negative, while the sign of γN and the
Soret coefficient sT would depend on the nature of thermodif-
fusion exhibited by the two liquid components. For example,
sT would be positive if the component measured by N migrates
towards cooler regions and negative otherwise. In a realistic

system like a water-isopropanol mixture in the ratio 10:1, we
find that sT is negative if N measures the relative contribu-
tion of water.25 Together, the signs of γT , γN , and sT would
determine the sign of the separation ratioΨ, which is a control
parameter tunable between �1 and 1.

III. LINEAR STABILITY ANALYSIS

For chemically homogeneous surfaces (constant A), the
initial growth characteristics of small amplitude surface per-
turbations are studied using a linear stability analysis. The
base state for the height h and the cross-sectionally averaged
concentration field Φ is chosen to be h0 = 1 and Φ0 =−

B
2(1+B) .

The latter results from the assumption that both temperature
and concentration profiles are linear in z. Setting ∂A

∂x ≡ 0, the
evolution equations, (4) and (6), are linearized with respect to
ĥ and Φ̂, the perturbations in h and Φ, respectively, around
their corresponding base states. Upon using normal modes
as

(ĥ, Φ̂) ∼ exp(ikx + st), (10)

a quadratic equation for the perturbation growth rate s is
obtained in terms of the wavenumber k,

s2 +sk2(a3k2−a1−b2) + a2k4(b3k2−b1)−b2k4(a3k2−a1) = 0.
(11)

The coefficients ai, bi (i = 1, 2, 3) are functions of the various
dimensionless quantities and are given in the Appendix.

Inspection of (11) reveals that the growth rate s can in
general be complex, and the system has both monotonic and
oscillatory instability modes.61 Figure 2(a) shows a phase map
on the M −Ψ space for heating from below (M > 0). For posi-
tive values ofΨ, we see that an oscillatory branch of instability
comes first, as its boundary is at lower values of M. This
oscillatory branch also extends continuously upwards as Ψ is
decreased below 0, as shown in Fig. 2(b). However, we do note
that for cooling from below (M < 0), only a monotonic insta-
bility exists. This is in a similar trend to the results for thicker
films with gravity included, as observed by Bestehorn and
Borcia,25 although we do not encounter any Hopf bifurcation
as they did.

Figure 3 shows a phase map on the M � A space upon
cooling the substrate from below (M < 0), for three differ-
ent values of Ψ. As explained before, negative values of A

FIG. 2. (a) Stability map in the M-Ψ space for heating from below (M > 0). Other parameters are fixed at A =�10�3, B = 0.01, C̄−1 = 10−5, and Sc = 100. The
M-axis has been terminated at 20 deliberately for clarity in viewing the oscillatory branch. (b) The oscillatory branch in (a) extends continuously towards
increasing M values when Ψ is decreased below 0. The monotonic branch is not shown.
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FIG. 3. Stability map in the M-A space forΨ= 0.8, 0,−0.8. Other parameters
are set to B = 0.01, C̄−1 = 10−5, and Sc = 100.

correspond to attractive van der Waals potentials. As Ψ
decreases to more negative values, the critical value of M
becomes more negative, indicating the film can be rendered
stable in the presence of an attractive van der Waals force
only upon adequately cooling the substrate relative to the film
surface. As the separation ratioΨ increases towards more pos-
itive values, the solutal contribution to flow acts cooperatively
with the van der Waals force to promote the instability (see
Sec. V B for details about different flow contributions). This
results in an increase in the critical Marangoni number as Ψ
is increased from �0.8 to +0.8, so that the film is stable even
for slightly negative M. As mentioned earlier, the oscillatory
branch is not seen here as it exists only for M > 0. Interest-
ingly, for Ψ=−0.8 in Fig. 3, the film is always monotonically

unstable if the attractive van der Waals potential is stronger
than a threshold (A<−10−3). This is because the thermal and
solutal contributions to flow are always opposed to each other
whenΨ is negative. For large negative values of M, Marangoni
flows prevent the instability while solutal contribution assists
the van der Waals force.

Another interesting result based on linear stability analy-
sis is that even for a stabilizing (repulsive) van der Waals poten-
tial (positive A values as in Table I), the critical Marangoni
numbers for the onset of instability were found to be at most of
O(1). These values are two orders of magnitude smaller in com-
parison to the results by Bestehorn and Borcia.25 The departure
might be explained using the inherent assumption that the ini-
tial film is thinner for disjoining forces to be more important in
comparison to gravity, which in turn initiates instability even
if the bottom substrate is heated slightly (and hence for lower
values of M).

Figures 4 and 5 show the effect of intermolecular interac-
tions on the growth rate maxima for three different values of
Ψ: �0.3, 0, 0.3. Here we set M = 0.5, B = 0.01, C̄−1 = 10−5, and
Sc = 100. In Fig. 4, an attractive van der Waals potential is con-
sidered (A< 0). The increased range of van der Waals attraction
accelerates the growth rate as expected. The growth rates are
also higher as the separation ratio is increased from negative
values (Ψ= − 0.3) towards positive values (Ψ= 0.3). This is
suggestive of cooperative thermal and solutal flow contribu-
tions for positive values ofΨ and conflicting flow contributions
for negative values of Ψ.

In Fig. 5, positive values have been deliberately chosen for
A to model repulsive intermolecular forces (e.g., short range

FIG. 4. The maximum in growth rate,
as given by linear theory [Eq. (11)]
for M = 0.5, B = 0.01, C̄−1 = 10−5, and
Sc = 100, for negative (attractive) values
of the parameter A.

FIG. 5. The maximum in growth rate
as given by linear theory [Eq. (11)]
for M = 0.5, B = 0.01, C̄−1 = 10−5, and
Sc = 100, for positive (repulsive) values
of the parameter A.
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electrostatic/steric interactions), though its exact mathematical
form may not always be ∼A/h3. In any case, such forces would
drive liquid towards the depressions on the free surface of the
film, whenever a rupture-like event is initiated by the thermal
Marangoni instability. The growth of surface perturbations is
then retarded, and more so when the magnitude of such repul-
sive forces increases (i.e., more positive values of A). The plots
for all three values ofΨ approach max(s) = 0 when the value of
A is close to 10�2. This indicates that the thermal Marangoni
instability can be counteracted by sufficiently strong molec-
ular repulsive forces for a given Marangoni separation
ratio.

IV. NUMERICAL METHODS

The long-time evolution sequence of the film height and
concentration for large amplitude surface perturbations was
studied by the numerical integration of the evolution equations,
(4) and (6). Time integration was performed using Differential
Algebraic System Solver (DASSL), a package that employs
backward differentiation formulae of orders one through five.
The typical dimensionless time step used for the simulations
was 10�7. For the initial condition, the height h was perturbed
using a single sine wave of dimensionless amplitude 0.1 about
its base states h0 = 1, while Φ was fixed at its base state Φ0

=− B
2(1+B) .
The wavelength used for the initial perturbation corre-

sponds to that for which the growth rate s obtained from linear
theory (Sec. III) is maximum. Hereafter, it is denoted as λ
(dimensionless). It follows the same scaling for length as in
Sec. II B. The length scales in our nonlinear simulations are
mentioned in units of λ, which is assumed to be of O(1). There-
fore, the typical dimensional value for the wavelength will be
approximately l, which we have chosen to be ∼100 µm (see
Table I).

Whenever the rupture location was the specific question
of interest, a random initial condition was employed. In this
case, the initial perturbation was an average of Fourier modes
with random phases and amplitudes, and a series of wave-
lengths ranging between λ/100 to 3λ. This was necessarily
done while determining film profiles on chemically patterned
surfaces.

Spatial discretization was achieved using a centered finite
difference of fourth order accuracy with 1000 nodes per 3λ
of the domain length. Periodic boundary conditions were
employed for both the evolution equations, which would have
a strong influence on film ruptures, as noted by Kargupta and
Sharma.13 Mass conservation was ensured by maintaining an
average height of h0 ± 0.001% at all times during the course
of the simulations. A minimum film height less than 5 × 10�2

was used as the criterion for rupture.
For modeling chemically patterned surfaces, the parame-

ter A was varied along x using an analytical expression, adapted
from prior work,9,28,29,60

A(x) =
A0

π

[
tan−1

(
x + w/2

δ

)
− tan−1

(
x − w/2

δ

)]
. (12)

Figure 6 shows the variation of A(x) as given by (12), plotted
for A0 =�1,w = 0.5, and δ = 0.01 in the domain−1< x < 1. The

FIG. 6. Plot of (12) showing a typical variation of A(x) by setting A0 = �1,
w = 0.5, and δ = 0.01.

function closely resembles a step function with A(x) approach-
ing 0 at the left and right patches and approaching the value A0

at a central patch of width w. The quantity δ is the transition
width over which A(x) changes the value from its minimum
to its maximum. From a practical standpoint, the two-side
patches on the left and right where A→ 0 would correspond to
neutral zones which have no net attractive or repulsive poten-
tial. The central patch with A → −1 would correspond to a
region with an attractive potential between the film surface
and the solid. For an aqueous film, the central patch on the
solid would be a hydrophobic zone, as the attractive potential
would cause the liquid to dewet this region. The value of A0

may as well be set positive, in which case A(x) would approach
0 at the left and right patches, and approach the correspond-
ing positive value of A0 at the center, denoting a repulsive
potential. In that case, the central patch would represent a
hydrophilic zone for an aqueous film. The steepness of the tran-
sition from A(x)→ A0 to A(x)→ 0 may be increased by using
lower values of δ. In the present work, we set δ = 0.01 in all
cases.

The validity of the long wave theory in the proximity of
the wettability gradients is worth examining. For a mean ini-
tial film thickness of 100 nm and ε = 0.001, our chosen value
of δ = 0.01 translates to a dimensional value of 1 µm for the
transition width. This is still 10 times larger than the mean
film thickness, and the patch widths w to be used in our sim-
ulations are even larger by at least an order of magnitude.
Therefore, the long wave theory would still be expected to be
valid to a large extent over the problem domain. Similar mod-
els have also been used in prior work,9 and the justification
therein for the validity of the model is also relevant in this
context.

V. NONLINEAR DYNAMICS

It is important to emphasize that the highly nonlinear
interactions between capillary forces, Marangoni forces, Soret
effects, and van der Waals forces over long times of the film
evolution can only be explicitly determined through nonlinear
simulations. In particular, the linear theory cannot reveal the
shape of the interface, which is especially important to know
for dewetting on a chemically patterned substrate. Therefore
we resort to fully nonlinear simulations, which will also reveal
the likely rupture location, if any, and is also equally important
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as the instability growth rates and rupture time. First, we briefly
review the limit of a pure liquid film dewetting a patterned
surface with and without Marangoni effects. We then compare
this limit with the results for miscible liquids and distinguish
between two situations: (i) heating the substrate relative to the
film surface (M > 0) and (ii) cooling the substrate relative to
the film surface (M < 0).

A. Rupture behavior of a pure liquid

For chemically patterned surfaces, the rupture and near-
rupture locations are expected to be functions of the pattern
width itself relative to the system’s natural length scale λ.6,9,12

In the case of a pure liquid film, one can broadly distinguish
three different types of film profiles at rupture. Typically, if
the pattern width w of the less wettable patch in the center
was much smaller than λ, a single rupture event at the cen-
ter is expected. This would be due to cooperation from the
Marangoni flows, van der Waals forces, and wettability gradi-
ents. For an intermediate patch width, the wettability gradients

with assistance from Marangoni flows would try to cause near-
rupture events at both the patch sides, but capillary forces
oppose the formation of large curvatures at the center. This
would result in two frustrated off-center ruptures (see Fig.
7 of Ref. 7 or Fig. 5 of Ref. 13). Note that the asymme-
try about the center in the rupture profiles of Figs. 7, 9, 12,
and 16 that follow, arises from the random initial conditions
used.

For larger patch widths, independent ruptures are likely
to occur at the ends of the patch, with some slight curva-
tures within them. When Marangoni forces are present, these
curvatures would result in temperature variations at the film
surface, causing additional flow outwards due to Marangoni
effects. This difference is illustrated in Fig. 7, which shows
film profiles at rupture when (a) Marangoni effects are absent
(M = 0) and (b) Marangoni effects are present (M = 1). The
profiles for a pure liquid film have been obtained by setting Φ
to be constant and f (x, t) = 0 in (6) and solving it simultane-
ously with (4), with M = 0 for (a) and M = 1 for (b). In both
cases, the pattern width w is set to 2.5λ out of the total domain

FIG. 7. Liquid film profile at rupture
in the limit of a pure liquid, when
(a) M = 0 and (b) M = 1. The domain
length in each case is 3λ, and the cen-
tral patch width of the less wettable
zone (shaded region) is 2.5λ, where λ is
the corresponding wavelength from lin-
ear theory. The other parameters used
are A0 =�10�3, δ = 0.01, B = 0.01, and
C�1 = 10�5.

FIG. 8. Schematic illustration of the directions of different flow contributions for the following cases: (a) M > 0,Ψ> 0, (b) M > 0,Ψ< 0, (c) M < 0,Ψ> 0, and
(d) M < 0,Ψ< 0. The solid substrate is chemically patterned with a less wettable patch at the center. The curved line is the free surface of the liquid film.



214706-8 S. K. Kalpathy and A. R. Shreyes J. Chem. Phys. 146, 214706 (2017)

FIG. 9. Liquid film profile at rupture
for a film of miscible liquids with M = 1,
Sc = 100, and other parameters as in
Fig. 7. The separation ratios are (a)
Ψ= − 0.8, (b) Ψ= − 0.2, (c) Ψ= + 0.8.
The shaded region is the less wettable
patch having width w = 2.5λ, while the
total domain length is 3λ.

length 3λ. Further, we have used A0 =�10�3 and C�1 = 10�5.
Nearly simultaneous ruptures are seen at the ends of the pat-
tern in each case, with the free surface being slightly curved
(concave upward in both cases) as we approach the center
of the domain. In Fig. 7(b), however, with M = 1, prominent
depressions are seen on additional locations at the free surface
due to extra thinning from Marangoni flows.60 The config-
uration in the outer domain of Fig. 7(b) is different from
that of the hump seen in Fig. 7(a) because now there is a
driving force (M = 1) causing film thinning even in the outer
region.

B. Parameter spaces for miscible liquids

If the heated film consisted of miscible liquids, the
thermodiffusion effects could either aid or counteract the
Marangoni flow contributions depending on the sign of the
separation ratio Ψ.25,56 For example, assuming γT in (9) to

be negative as in most liquids, a negative value of Ψ would
result when sT < 0 and γN > 0. By the convention used here
(Sec. II D), sT < 0 implies that the component measured by N
migrates to warmer regions. This would counteract the ther-
mal Marangoni flow, which would instead drive a flow from
warmer regions (low surface tension) to cooler regions (high
surface tension). Now, by heating or cooling the bottom sub-
strate, the Marangoni flow itself can be used to either assist
or counteract the patterned wettability gradients in causing
the film rupture. Thus, one could in principle identify four
interesting regimes of operation as follows: (i) M > 0,Ψ > 0,
(ii) M > 0,Ψ < 0, (iii) M < 0,Ψ > 0, and (iv) M < 0,Ψ < 0.

Figure 8 schematically illustrates the directions of result-
ing flow contributions in each of the four parameter spaces.
In (a) and (b), the bottom substrate is heated, and for a large
enough pattern, near-rupture events would be initiated at the
ends of the patch. The wettability contribution (attractive van
der Waals forces) will cause the free surface to be pulled closer

FIG. 10. Fraction of liquid volume
trapped in the center at rupture, for a
film of miscible liquids, as a function of
the separation ratioΨ. Other parameters
used are as in Fig. 9.
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to the substrate by removing liquid from both sides. This is
accommodated by the upward Marangoni flow which drives
liquid from warmer regions to cooler regions (pockets of lower
surface tension to higher). In (a), the thermodiffusion contri-
bution is in tune with the Marangoni flow, but in (b), both
the effects counteract. When the bottom substrate is cooled
relative to the film, as in (c), the downward Marangoni flow
tends to replenish some of the liquid that is being removed by
the wettability-driven flows. If Ψ is sufficiently positive, the
solutal contribution would assist the thermal Marangoni con-
tribution, whereas in (d), when Ψ is negative, both the effects
again counteract.

C. Miscible liquids and M > 0

Figure 9 shows the rupture profiles for a film of mis-
cible liquids, when thermal Marangoni effects (M = 1) and
thermodiffusion (Ψ= −0.8,−0.2, +0.8) contributions are both
present, with all other parameters the same as in Fig. 7. It
may be remembered that this condition would be realized
by either heating the substrate from below, or equivalently
cooling the ambient air from above. In (a) and (b), the sepa-
ration ratio is negative, so any near-rupture event assisted by
the Marangoni flows would tend to be reversed by the solutal
contribution [see Fig. 8(b)]. Any additional thinning within
the central patch interiors would no longer be prominent.
With more liquid trapped in the center, the free surface there
at rupture assumes a concave downward shape with a large
curvature. As Ψ changes to more positive values [Figs. 9(b)
and 9(c)], the curvature decreases, and for Ψ= 0.5, a nearly
flat interface results at the center. The fraction of liquid vol-
ume trapped in this case is higher when Ψ is more positive,
as all three driving forces to rupture (van der Waals forces,
Marangoni effects, thermodiffusion) are cooperative. This is
evident from Fig. 10, which shows that the fraction of liq-
uid volume trapped in the center increases from ∼47% for
Ψ=−0.8 to ∼61% for Ψ=+0.8, for the same pattern width
w = 2.5λ.

We next examine the time of rupture, which is an impor-
tant parameter that could suggest variations in the rupture
mechanism. Figure 11 shows the dimensionless rupture time
for the parameters used in Fig. 9, as a function of the pattern
widthw for different separation ratiosΨ. Herew is the width of
the less wettable patch in the center where rupture-like events
are more likely to occur. It is given in units of λ, while the total

FIG. 11. Rupture time as a function of the pattern widthw for different values
of the separation ratio Ψ. Other parameters used are as in Fig. 9.

periodic domain length is 3λ. Rupture times are seen to be
higher as Ψ becomes more negative, which may be attributed
to the counteractive solutal flows that oppose any instabilities
triggered by the thermal Marangoni effect. For Ψ=−0.8, the
rupture time variation is similar to the manner seen in prior
work with pure liquid films.7,9 The local minima and max-
ima seen at specific pattern widths indicate regions where the
driving forces (especially the van der Waals forces and cap-
illarity) are either cooperative or conflicting, as discussed in
Sec. V A.

As Ψ increases to more positive values, the variations in
rupture time withw become minimal, as forΨ= +0.8 where we
note that the plot is nearly horizontal and flat. This is because
for a pattern width w = 2.5λ, large curvatures are seen on the
more wettable regions outside the central patch [Fig. 9(c)], just
as large curvatures would be seen inside the central patch for
smaller widthsw ∼ 1.5λ. In the latter case, frustrated off-center
ruptures would result as seen in Fig. 7 of Ref. 7. In both these
cases, there would be some resistance from capillary forces,
which try to flatten out interfacial curvatures. On the contrary,
for a pure liquid dewetting a pattern of width w = 2.5λ, the
curvatures are not as large, both within the less wettable patch
and the more wettable regions outside the central patch [see
Fig. 7(a)]. Therefore, the capillary resistance experienced is

FIG. 12. Film height profiles at rup-
ture for M = 10 and w = 1.5λ (shaded
region) for two different values ofΨ: (a)
Ψ=+0.5 and (b) Ψ=−0.5, with other
parameters same as in Figs. 9–11.
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FIG. 13. The minimum film height as
a function of time when M = 10 and
Ψ=−0.5 for a homogeneous surface vs
a chemically patterned surface having
w = 1.5λ. Other parameters are the same
as in Figs. 9–11. Note that minimum
film heights at rupture are in the range
10�5–10�6 but may appear to touch zero
due to the y-axis scale used for the plot.

lesser, and the rupture is slightly faster for widths between 2λ
and 2.5λ.

D. Other features of the instability

Figure 12 shows the film height profiles at rupture for
M = 10 andw = 1.5λ for two different values ofΨ: (a)Ψ= +0.5
and (b) Ψ=−0.5, with other parameters same as in Figs.
9–11. This pattern width is now smaller than that for which
two independent ruptures can form, so two frustrated off-
center ruptures would be expected for a pure liquid. This
is also the result seen for miscible liquids with Ψ=+0.5 in
Fig. 12(a). With Marangoni effects being stronger (M = 10),
we also notice the emergence of secondary humps or “fin-
gers” adjacent to the highly curved ridge at the center.
This occurs when perturbations to the ridge cause mobil-
ity differences and results in uneven thinning of adjacent
regions.62

In contrast, the rupture profile for the same pattern width
in Fig. 12(b) (Ψ=−0.5) shows a single rupture near the cen-
ter of the domain. Tracking the progressive time evolution
sequence of the film in the latter case suggests that during the
initial phases, localized holes and ridges that form are con-
vected in arbitrary directions. At every time instance, a new
fluid element at a different location corresponds to the mini-
mum film height, until the minimum height is small enough
for the van der Waals forces to dominate and cause rup-
ture. This is the characteristic of an oscillatory instability.
It occurs when the thermodiffusion effect is strong enough
to induce large concentration gradients, and its nonlinear

interplay with the patterned geometry is asymmetric about the
center.

The minimum film height as a function of time for
Fig. 12(b) (Ψ=−0.5) is plotted in Fig. 13, and the same
is compared with the corresponding evolution on a chem-
ically homogeneous surface. The non-monotonic variation
seen for a chemically patterned substrate is consistent with
the oscillatory behavior. The kinks in the curve for the pat-
terned substrate represent the change in location and fluid
element corresponding to the minimum film height. However,
such an oscillatory behavior is found to result only within the
selected M − Ψ parameter space and selected pattern widths
w. Consequently, the rupture can be delayed at these param-
eter values, by even a couple of orders of magnitude greater
than the rupture time taken for a chemically homogeneous
surface. A plot of the rupture time vs Ψ for a homogeneous
and chemically patterned substrate (w = 0.7λ) is shown in
Fig. 14. Wettability gradients on a chemically patterned sub-
strate are known to be responsible for rupture times at least
an order of magnitude smaller than those on homogeneous
surfaces.6–10 Therefore the present result suggests a possi-
ble mechanism by which these wettability gradients can be
overcome to maintain a minimally thick film for longer times
and also obtain newer templated structures for the same pattern
size.

E. Miscible liquids and M < 0

We now investigate the effect of Marangoni flows result-
ing from cooling the bottom substrate (M < 0), which would in

FIG. 14. The rupture time vs separation
ratioΨwhen M = 10 for a homogeneous
surface vs a chemically patterned sur-
face having w = 1.5λ. Other parameters
are the same as in Figs. 9–11.
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FIG. 15. Rupture time as a function
of Ψ for a chemically patterned bot-
tom surface when M =�0.5, A =�10�3,
C�1 = 10�5, B = 0.01, Sc = 100, and
w = 0.5 units.

FIG. 16. Film height profiles at rupture
when the bottom surface is chemically
patterned, for parameters M =�0.5 and
w = 0.5 units for three different values of
the separation ratio Ψ: �0.8, �0.6, and
�0.4. Other parameters are the same as
in Fig. 15.

general oppose the van der Waals instability. With M set equal
to �0.5, we tune the parameter Ψ in the negative as well as
positive range. Figure 15 shows the rupture time variation as a
function of Ψ on a chemically patterned bottom surface, with
other parameters being A =�10�3, C�1 = 10�5, B = 0.01, and
Sc = 100. Recall that the linear stability analysis (Fig. 3) pre-
dicts the film to be stable forΨ ≥ 0 in this parameter space for
chemically homogeneous surfaces, while for Ψ= − 0.8, there

FIG. 17. Temporal evolution sequence of the film when Ψ=−0.6 for the
parameters of interest in Fig. 16. The shaded region represents the less wettable
patch of the chemically patterned surface.

would be an instability. A characteristic instability length λ
cannot be identified for all values of Ψ. For uniformity, we
use a domain length of 1 dimensionless unit, and a pattern
width w = 0.5 at the center in all cases. In accordance with
the linear theory, Fig. 15 suggests delays in the rupture time
with Ψ becoming increasingly positive, especially steeply for
Ψ >−0.4. However, the instability does kick in at very large
times whenΨ= 0, due to wettability gradient driven flows. The
different flow contributions for this case are as in Figs. 8(c)
and 8(d) for Ψ > 0 and Ψ < 0, respectively. When Ψ > 0, the
solutal flows ally with thermal Marangoni flows to flatten the
surface and stabilize the film. But for Ψ < 0, a sufficiently
strong contribution from thermodiffusion can assist the van der
Waals forces which are in conflict with the Marangoni flows.
The film is found to be remarkably stable for positive values
of Ψ.

The rupture location for three different negative values of
Ψ presents an interesting contrast, as seen in the film rupture
profiles in Fig. 16. For Ψ=−0.8, one off-center rupture and
another off-center near-rupture events are seen. This would
have been originally expected, as the pattern width w = 0.5
is neither much smaller than the domain length to cause a
centered rupture nor large enough to cause two independent
ruptures at the boundaries of the patch. However, forΨ= −0.6
and Ψ=−0.4, there is only one rupture, nearly centered. The
mechanism of rupture may be understood through the tem-
poral evolution sequence depicted in Fig. 17, for the repre-
sentative case of Ψ=−0.6. The locations where depressions
have formed at t = 10 are near the boundaries of the pattern,
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initiated by the wettability gradients. These would also be
the expected rupture locations, as seen in the rupture pro-
file for Ψ=−0.8 [Fig. 16(a)]. But for Ψ=−0.6 and Ψ=−0.4,
the thermodiffusion contribution that conflicts the thermal
Marangoni flow is weaker [Fig. 8(d)]. It is now easier for the
Marangoni flows to flatten the depressions that are observed
at t = 10, by pushing liquid upwards to warmer regions. At
t = 50, the free surface is nearly flat at the center and sloping
upwards as we move sideways. With some thinning already
present, the rupture is finally accomplished as a van der Waals
instability, nearly symmetric about the center. The wettability
gradients are inconsequential beyond a point in determining
the rupture location. No evidence of oscillatory instability is
seen, unlike in a similar situation for M = 10 seen in Sec. V D
(Fig. 12).

VI. CONCLUSIONS

The current work extends the study of dynamics of non-
isothermic thin liquid films of a binary miscible mixture by
Bestehorn and Borcia25 and Borcia et al.56 In particular,
the role of long-range intermolecular interactions like van
der Waals forces and film behavior on wettability-patterned
surfaces is examined, ignoring gravitational effects. These
forces become important in ultrathin liquid films as thin as
hundreds of nanometers. The linear stability analysis pre-
dicts that the oscillatory instability branch exists for positive
values of M (heating from below), while for M < 0, the insta-
bility is monotonic. With attractive van der Waals forces,
the film can be rendered stable only by adequately cooling
the substrate from below. Increasingly positive values of the
separation ratio Ψ assist the thermal contribution in accelerat-
ing the growth rate, when M > 0. If repulsive intermolecular
forces are present, the critical Marangoni numbers to result
in an instability are positive for all separation ratios from
�1 to 1.

If the bottom surface on which the film rests is chemi-
cally patterned by wettability gradients, the dynamics is more
complex. Rupture times and profiles can be profoundly modu-
lated for patterns of different sizes by varying the strength and
relative direction of the Soret effect. Within certain parameter
spaces, the presence of wettability gradients could result in an
oscillatory instability. This could also possibly delay ruptures
significantly in comparison to the film rupture on chemically
homogeneous surfaces. By using suitable combinations of
heating/cooling, the choice of fluids with different sense of
migration by thermodiffusion, and their relative strengths, a
variety of different rupture behaviors can be obtained. This
would help in the creation of various liquid morphologies
which is useful in applications that rely on templating. Besides,
the results on instability examined here would be important
in microfluidics-based applications which employ tempera-
ture gradients to move around liquids confined to a certain
area.63

A more focused set of simulations can target the devel-
opment of pattern regime maps or phase diagrams that predict
the nature of instability (oscillatory or monotonic) and the rup-
ture location on a 3-D space of Ψ, M, and the pattern width. A
short range Born repulsion would further help in capturing the

transition of a film to steady states like isolated droplet forma-
tion or coarsening, especially through 3D simulations. With
transitions across steady states, a weakly nonlinear analy-
sis might as well be able to provide new analytical insights
into the nonlinear effects. These aspects may be probed as
more challenging future extensions of the present work. Yet
another practically useful strategy would be localized heating
and/or cooling of the less (or more) wettable areas of a pat-
tern. In that case, the length scale of the heated and cooled
areas is also important in addition to the pattern dimensions.60

Such selective heating and cooling of micron-sized patterns
are achievable in practice through programmable microheaters
and adaptive cooling devices.64,65
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APPENDIX: COEFFICIENTS OF THE GROWTH RATE
EXPRESSION

The coefficients of the dispersion relation (11) in Sec. III
are as follows:

a1 = −A +
BM(2 + Ψ/2 − BΨ/2)
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2
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