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The role of non-normality and nonlinearity in thermoacoustic interaction in a Rijke tube is

investigated in this paper. The heat release rate of the heating element is modeled by a modified

form of King’s law. This fluctuating heat release from the heating element is treated as a compact

source in the one-dimensional linear model of the acoustic field. The temporal evolution of the

acoustic perturbations is studied using the Galerkin technique. It is shown that any thermoacoustic

system is non-normal. Non-normality can cause algebraic growth of oscillations for a short time

even though the eigenvectors of the system could be decaying exponentially with time. This feature

of non-normality combined with the effect of nonlinearity causes the occurrence of triggering, i.e.,

the thermoacoustic oscillations decay for some initial conditions whereas they grow for some other

initial conditions. If a system is non-normal, then there can be large amplification of oscillations

even if the excited frequency is far from the natural frequency of the system. The dependence of

transient growth on time lag and heater positions is studied. Such amplifications �pseudoresonance�
can be studied using pseudospectra, as eigenvalues alone are not sufficient to predict the behavior

of the system. The geometry of pseudospectra can be used to obtain upper and lower bounds on the

growth factor, which provide both necessary and sufficient conditions for the stability of a

thermoacoustic system. © 2008 American Institute of Physics. �DOI: 10.1063/1.2895634�

I. INTRODUCTION

The occurrence of combustion instabilities has been a

plaguing problem in the development of combustors for

rockets, jet engines, and power generating gas turbines.
1

Pre-

dicting and controlling combustion instability requires an un-

derstanding of the combustion-acoustic interactions.

Combustion instabilities are self-sustained large ampli-

tude oscillations of pressure and velocity in combustors with

the flame acting as an acoustic actuator and the combustion

chamber as an acoustic resonator. If the heat released in the

system depends on the pressure and velocity fluctuations in

the system, a feedback loop that can destabilize the system is

established. The occurrence of combustion instability de-

pends on the phase between the heat release fluctuations and

the pressure fluctuations at the flame.
2

Amplification of the

pressure oscillations by the heat addition process will take

place if the maximum and minimum of the heat addition

occur during the compression and rarefaction phases of the

pressure oscillation, respectively. In contrast, the pressure os-

cillations will be attenuated if the maximum and minimum of

the heat addition occur during the rarefaction and compres-

sion phases of the pressure oscillation, respectively.

When pulsations start spontaneously, as they do in a

Rijke tube with a heater at
1

4
length from the bottom of the

tube, the system is said to be linearly unstable, i.e., the sys-

tem is unstable with respect to any small amplitude distur-

bance that may be present in the combustor. This scenario

has been successfully modeled in various systems using clas-

sical linear stability analysis of the normal modes that model

the system as a network model, in which each element is

modeled using a linear transfer function. The stability of the

system can then be determined easily by examining the ei-

genvalues of the system.

It is also possible that a linearly stable combustor �i.e.,

one that does not pulse spontaneously� could be “triggered”

into pulsating operation by the introduction of a finite ampli-

tude disturbance such as might be caused by a spark plug

ignition or a small explosion. Such a system will be stable

with respect to all disturbances whose amplitudes are below

a certain threshold value, but transition into pulsating opera-

tion will occur when the amplitude of the disturbance ex-

ceeds this threshold value. Furthermore, there are instances

of “bootstrapping” where a mode that decays initially can

grow later and ultimately become unstable.
3

A linear stability

analysis using normal modes would always indicate stability

in the case of bootstrapping and miss the ultimate behavior.

A comprehensive prediction of the conditions for the onset of

instabilities is a difficult task, which is not yet mastered. In

particular, predicting the conditions under which finite am-

plitude disturbances destabilize a linearly stable system and

predicting the limit-cycle amplitude of the instability remain

a key challenge, as little is known, even in a qualitative

sense, about the key parameters controlling nonlinear flame

dynamics even in simple laminar flames.
4

The pressing need

to control this phenomenon in combustion chambers

compounded by lack of understanding of combustion insta-

bility due to the complex nature of combustion-acoustic in-

teraction in flames led to interest in simpler thermoacoustic

systems such as Rijke tubes. The Rijke tube serves as a con-

venient prototypical system for the study of thermoacoustic

phenomena.

Nonlinear effects in a Rijke tube were investigated in
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detail by several authors. A Rijke tube is a relatively simple

system: it is a duct with a heat source �often electrically

heated wires� at quarter length from the bottom �if located

vertically�. Heckl
5

studied the nonlinear acoustic effects

leading to limit cycles in unstable oscillations experimentally

and theoretically for the case of a Rijke tube. She showed

that the important nonlinear effects are �1� the reduction of

the rate of heat transfer when the velocity amplitudes are of

the same order as the mean velocity and �2� increased losses

at the ends of the tube at very high amplitudes. Hantschk and

Vortmeyer
6

showed that the limit-cycle amplitude in a Rijke

tube is determined by nonlinearities in the heat flux from the

heating element to the flow. Yoon et al.
3

proposed a nonlin-

ear response model of a generalized Rijke tube. Their oscil-

latory heat release model was not derived from physical prin-

ciples. They derived both closed form and numerical

solutions for the acoustic field by an approximate modal

analysis using a two-mode formulation. The two-mode non-

linear model is capable of predicting the bootstrapping effect

which characterizes nonlinear velocity sensitive combustion

response in rocket motors. However, they neglected nonlin-

ear convection in their model. In order to explain the nonlin-

ear effects of a Rijke tube, Matveev
7,8

constructed a simple

theory using an energy approach. The equilibrium states of

the system are found by balancing thermoacoustic energy

input and acoustic losses. It is again confirmed that the non-

linearity of the unsteady heat transfer is a dominant factor in

limit-cycle saturation. Further, he demonstrated the necessity

of accurately modeling the effects of temperature gradient on

the mode shapes to obtain accurate results for stability.
9

Although considerable research has been performed on

the nonlinear nature of thermoacoustic oscillations, their

non-normal nature is an aspect that has not received any

attention. Non-normality can lead to transient growth of a

system even when the eigenvalues indicate linear stability.

When the transient growth leads to high enough amplitudes,

it can trigger nonlinearities in the system which can cause

“nonlinear driving,” thereby driving a system which was

thought to be linearly stable under the framework of classical

linear stability. Further, non-normality leads to coupling be-

tween the modes, although this effect has been often attrib-

uted to nonlinearity. The role of non-normality in the context

of thermoacoustic oscillations has been shown in the context

of ducted diffusion flames by Balasubramanian and

Sujith
10,11

using a Galerkin-type analysis. Nicoud et al.
12

have shown that the eigenvectors of a thermoacoustic system

are nonorthogonal in the presence of heat release or in the

presence of general complex impedance boundary condi-

tions. Thus, there are two distinct aspects of combustion-

acoustic interactions: non-normality of the modes and non-

linearities in the system.

Non-normality has been found to play an important role

in several fields such as turbulence,
13–15

instability of mag-

netic plasmas,
16

formation of cyclones,
17

etc. Recently, the

authors have shown that the combined role of non-normality

and nonlinearity can lead to the triggering of thermoacoustic

oscillations in a linearly stable system in the context of

ducted diffusion flames.
10,11

This is a general feature of all

thermoacoustic systems and need not be restricted to diffu-

sion flames. In the case of ducted diffusion flames, the com-

bustion modes themselves are non-normal.
10,11

The objective of this paper is to examine the role of

non-normality in a simpler model for a thermoacoustic sys-

tem, constructed for a Rijke tube. The rest of this paper is

organized as follows. In Sec. II, the characteristics of a non-

normal operator and its consequences are discussed in the

context of thermoacoustic instabilities. The schematic of a

horizontal Rijke tube considered in this study is described in

Sec. III. The equations governing the evolution of the acous-

tic field in this horizontal Rijke tube are derived in Sec. IV.

In Sec. V, examples highlighting the effects of non-normality

and nonlinearity are discussed. The results and inferences are

summarized in Sec. VI.

II. NON-NORMALITY AND TRANSIENT GROWTH
OF THERMOACOUSTIC OSCILLATIONS

A system is said to be non-normal if its eigenvectors are

not orthogonal. The evolution of such a system is governed

by an operator which does not commute with its adjoint. The

nonorthogonal nature of eigenvectors can lead to transient

growth of oscillations before they eventually decay. This

property is illustrated in Figs. 1�a� and 1�b�. The vectors e1

and e2 represent the direction of the eigenvectors and � is a

vector which is expressed as a linear combination of the

eigenvectors. Figure 1�a� shows that for a normal system, �

decreases monotonically if the amplitudes of the individual

1 1d (t)e

1 1d (0)e

2 2d (0)e2 2d (t)e

(0)Φ(t)Φ

(b)

1 1
d (0)e

1 1
d (t)e

(0)Φ

(t)Φ

2 2
d (0)e

2 2
d (t)e

(a)

FIG. 1. �a� Monotonic decay of a normal system; �b� transient growth of a

non-normal system. The initial state is ��0�=d1�0�e1+d2�0�e2, and the final

state is ��t�=d1�t�e1+d2�t�e2. The dashed lines denote the vectors at time

t=0 and the solid lines denote the vector at some time t.
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eigenvectors themselves decay. On the contrary, for the non-

normal system shown in Fig. 1�b�, � increases even when

the amplitudes of individual eigenvectors decay. However, �

decays after a sufficiently long time if nonlinear effects do

not become significant during the transient growth. There

could be situations where the short-term growth of fluctua-

tions can lead to significant amplitudes where nonlinear ef-

fects could cause nonlinear driving, as illustrated in Fig. 2.

Such a scenario arises in the evolution of thermoacoustic

oscillations.

The acoustic equations �the assumptions in deriving

these equations and the details of nondimensionalization are

given in Sec. IV� in the presence of a heat source can be

written as

�M
�u�

�t
+

�p�

�x
= 0, �1�

�p�

�t
+ �M

�u�

�x
= �� − 1��

La

c0

Q̃
˙
�

�0c0
2

. �2�

The heat release rate in the above equation is calculated from

a model for the heat source. The linearized oscillatory heat

release rate can be written as Q̇�=R�x ,�i��Mu�+S�x ,�i�p�,

where R and S can be treated as continuous functions of x

�which could even be sharply peaked at the flame location as

in the case of a compact heat source�, and �i and �i are

parameters which affect heat release rate. The heat release

rate could have an explicit dependence on time as well.

Equations �1� and �2� can be recast in the matrix form as

�
�

�t

�

�x

�

�x
−

RLa�� − 1�
�0c0

3

�

�t
−

SLa��� − 1�
�0c0

3
���Mu�

p�
� = 0.

�3�

The matrix in Eq. �3� is a matrix of operators. The above

operator does not commute with its adjoint for nonzero R

and S. �The adjoint of a real matrix is simply the transpose of

the matrix. The adjoint of a first derivative operator is its

negative.� Therefore, it is clear that the thermoacoustic inter-

action is non-normal. In the absence of heat release, the ma-

trix is symmetric and hence normal.

The non-normal behavior of the system causes large

transient growth which can potentially trigger nonlinearities

in the system. Classical linear stability analysis then becomes

a poor indicator of system stability due to this algebraic

growth.
14

This phenomenon has been studied in detail in the

context of turbulence by Baggett et al.
13

They explained that

in the non-normal evolution, the input and output structures

�such as streamwise vortices, streaks, etc.� are different and

nonlinearity closes the feedback loop by converting some of

the output into input. In a similar manner, the interplay be-

tween transient linear growth resulting from non-normality

and “nonlinear mixing” can indeed lead to the growth of the

thermoacoustic oscillations.

Equation �3� is analyzed by reducing the infinite dimen-

sional operator to a finite dimensional operator, such as a

finite dimensional matrix. In this paper, this is achieved by

reducing the partial differential equations governing the ther-

moacoustic interaction to a set of ordinary differential equa-

tions �ODEs� using the Galerkin technique. ODEs in time

domain are obtained by decomposing the spatial variation

using basis functions. This is similar to decomposing a vec-

tor along some basis. The basis functions used in this study

are not the eigenmodes of the linearized system, but they are

the eigenmodes of the self-adjoint part of the linearized sys-

tem. Such an approach has been used in solving partial dif-

ferential equations; see, e.g., Henningson and Schmid.
18

These evolution equations are solved numerically using the

fourth order Runge–Kutta scheme. The complete evolution

equations are linearized and the linearized equations are

found to be non-normal. It must be emphasized that the ei-

genvalues of the linearized equations are not the wave num-

bers of the basis functions used in the Galerkin technique.

III. THE HORIZONTAL RIJKE TUBE

A horizontal Rijke tube with an electric heat source is a

system convenient for studying the fundamental principles of

thermoacoustic instabilities both experimentally and theoreti-

cally. In such a setup, the mean flow is provided by a blower,

which sucks air in the tube. This enables us to control the

heater power and the mean flow independently. If the tube

were oriented vertically, as in the classical Rijke tube, the

effect of mean flow component caused by natural convection

will have to be accounted for in the stability analysis. The

horizontal orientation of the Rijke tube is implemented to

exclude the influence of natural convention on the mean flow

rate. Such a setup has been used by Matveev,
7,8

Heckl,
5

and

Kopitz and Polifke.
19

A schematic of the horizontal Rijke

tube setup is shown in Fig. 3. The current study models such

a setup.

Nonlinear

Linear

Nonlinear

Triggering

Transient

Growth

Exponential

Decay

Time

E
n
er
g
y

FIG. 2. Schematic of linear and nonlinear evolutions of the acoustic energy

� 1

2
p�

2+
1

2
��Mu��2�.
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IV. GOVERNING EQUATIONS

Neglecting the effect of mean flow and mean tempera-

ture gradient in the duct, the governing equations for the

one-dimensional acoustic field are

�̄
�ũ�

�t̃
+

�p̃�

�x̃
= 0 �acoustic momentum� , �4�

�p̃�

�t̃
+ �p̄

�ũ�

�x̃
= �� − 1�Q̃

˙
� �acoustic energy� . �5�

A modified form of King’s law is used to model the heat

release rate. Since King’s law exhibits nonlinearity only for

velocity perturbations greater than the mean fluctuations,

Heckl
5

suggested the following empirical model:

Q̃
˙
� =

2Lw�Tw − T̄�

S	3
	��C��̄

dw

2

	�	
u0

3
+ u f��t − 
�
 −	u0

3
���x̃ − x̃ f� . �6�

In the above expression, Lw is the equivalent length of the

wire, � is the heat conductivity of air, C
v

is the specific heat

of air at constant volume, 
 is the time lag, �̄ is the mean

density of air, dw is the diameter of the wire, �Tw− T̄� is the

temperature difference, and S is the cross-sectional area of

the duct. The above equations can be nondimensionalized as

follows:

x̃ = Lax, t̃ =
La

c0

t, ũ� = u0u�, p̃� = p̄p�, M =
u0

c0

,

where c0 is the speed of sound, La is the duct length, p̄ is the

pressure of the undisturbed medium, and u0 is the mean flow

velocity. The acoustic equations in the nondimensional form

can be written as follows:

�M
�u�

�t
+

�p�

�x
= 0, �7�

�p�

�t
+ �M

�u�

�x
= k�	
1

3
+ u��t − 
�
 −	1

3
���x − x f� ,

�8�

where

k = �� − 1�
2Lw�Tw − T̄�

Sc0p̄	3
	��C��̄

dw

2
u0. �9�

The above set of partial differential equation can be re-

duced to ODEs using the Galerkin technique.
20

The velocity

and pressure field can be written in terms of the duct’s natu-

ral modes as follows:
21

u� = �
j=1

�


 j cos�j�x� and p� = − �
j=1

�
�M

j�

̇ j sin�j�x� .

�10�

The Galerkin technique makes use of the fact that any func-

tion in a domain can be expressed as a superposition of ex-

pansion functions which form a complete basis in that do-

main. The basis functions are chosen such that they satisfy

the boundary conditions. However, the choice of the basis

functions is not unique. The basis functions chosen here are

just an arbitrary basis and not the eigenfunctions of the sys-

tem. They are the eigenfunctions of the self-adjoint part of

the linearized system. Clearly, the expansion functions cho-

sen here satisfy the boundary conditions and they form a

complete basis.

Substituting the above expansions into Eqs. �7� and �8�
and projecting along the basis functions �the component or

the projection of a function f along a basis function �n is

given by their inner product �f 
�n� which is defined as

�domainf�x��n�x�dx�, the following evolution equations are

obtained:

d
 j

dt
= 
̇ j , �11�

d
̇ j

dt
+ k j

2
 j = −
2k

�M
j��	
 1

3
+ u f��t − 
�


−	1

3
�sin�j�x f� . �12�

Equations �11� and �12� can be expanded to second order for

low amplitudes to yield the following matrix differential

equation:

d�

dt
+ BNL��T,�� + BNN� = 0, �13�

where �= �
1 
̇1 /� 
2 
̇2 /2�¯
N 
̇N /N��T,

fx

L

Heating Element

Air Flow

FIG. 3. Schematic of the horizontal Rijke tube setup.
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BNN

= �
0 − �1 0 0 ¯ 0 0

�1 + �1 cos��x f� − 
�1 cos��x f� �1 cos�2�x f� − 
�1 cos�2�x f� ¯ �1 cos N�x f − 
�1 cos�N�x f�
0 0 0 − �2 ¯ 0 0

�2 cos��x f� − 
�2 cos��x f� �2 + �2 cos�2�x f� − 
�2 cos�2�x f� ¯ �2 cos N�x f − 
�2 cos�N�x f�
¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 ¯ ¯ ¯ 0 − �1

�N cos��x f� − 
�N cos��x f� �N cos�2�x f� − 
�N cos�2�x f� ¯ �N + �N cos�N�x f� − 
�N cos�N�x f�

� ,

BNL = u��t − 
��
0 0 0 0 ¯ 0 0

�1 cos��x f� − �1
 cos��x f� �1 cos�2�x f� − �1
 cos�2�x f� ¯ �1 cos�N�x f� − �1
 cos�2�x f�
0 0 0 0 ¯ 0 0

�2 cos��x f� − �2
 cos��x f� �2 cos�2�x f� − �2
 cos�2�x f� ¯ �2 cos�N�x f� − �2
 cos�N�x f�
¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 ¯ ¯ ¯ 0 0

�N cos��x f� − �N
 cos��x f� �N cos�2�x f� − �N
 cos�2�x f� ¯ �N cos�N�x f� − �N
 cos�N�x f�

� ,

where � j = �k /�M�	3 sin�j�x f� and � j =−3� j /4.

It can be seen that BNN does not commute with its ad-

joint, and hence it is non-normal. In the above equation, BNL

is the nonlinear matrix. In this paper, the role of damping is

not considered as the authors would like to emphasize the

role of non-normality. The role of damping in Rijke tube can

be studied using the model suggested by Matveev.
8

The com-

bined role of damping and non-normality in thermoacoustic

systems was studied by the authors in the context of diffu-

sion flames.
10,11

Various cases highlighting the non-normal

and nonlinear nature of thermoacoustic oscillations and their

consequences are discussed using examples in the following

section.

V. RESULTS AND DISCUSSIONS

The duct acoustic modes are normal in the absence of

heat addition. However, heat addition makes the system non-

normal, as can be seen from the following physical argu-

ments. The heat transfer is a function of the velocity, as

given by Eq. �6�. A small disturbance in the velocity can alter

the heat release rate which in turn acts as the source of dis-

turbance for the acoustic oscillations.

The acoustic pressure and the fluctuating heat release

rate at the heater location can be expressed as

p��x f,t� = �
k=1

�

Pk�k�x f�exp�i�kt�, q� = �
k=1

�

Qk exp�i�k�t� ,

where �k is an eigenmode, and Pk and Qk are some coeffi-

cients. The heat release drives the acoustic oscillations in the

duct when it is in phase with acoustic pressure. The phase

between heat release rate and pressure oscillations is then

given by their correlation, i.e.,
10,11

��t� = ��0� + �
0

t

p��x f,t�q��t�dt�	�
0

t

p�
2�x f,t�dt�

0

t

q�
2�t�dt .

For a general system, the phase between heat release rate and

pressure evolves with time. Hence, the phase difference be-

tween the heat release fluctuations and acoustic pressure os-

cillations at the heater at some instant depends on their phase

difference at an earlier instant. The acoustic modes that are

driven by the heat release oscillations at these two instants

are different. Since the phase difference between the heat

release oscillations and a particular mode of the acoustic

field depends on the phase difference at an earlier time, the

interaction would depend on that mode of the acoustic field

which was in phase with the thermal process at an earlier

time. Hence the mode which is driven at a particular instant

of time depends on which mode got driven at an earlier time.

Hence, the energy in a mode at some instant will depend on
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the energy of another mode which was driven at an earlier

instant of time. This indicates that there is a nonzero projec-

tion of a mode along another mode, indicating non-normal

behavior.

The role played by non-normality on the thermoacoustic

interaction can be studied through the following examples.

The numerical simulations were performed by keeping some

of the parameters fixed and varying others. The parameters

that were kept fixed are �=0.0328 W /m K, C
v

=719 J /kg K, and �̄=1.205 kg /m3. The set of first order

ODEs �11� and �12� was integrated numerically using the

fourth order adaptive Runge–Kutta technique. The numerical

simulations were performed with ten acoustic modes so that

the change in the solution with increase in number of modes

is less than 5%.

A. Triggering

If the system is non-normal as well as nonlinear, oscil-

lations can grow even when the individual eigenvalues indi-

cate linear stability. For such systems, there exists some ini-

tial condition for which the oscillations decay and some

other initial conditions for which they grow. This feature is

captured by a heater located at x f =0.29, ū=0.5 m /s, c0

=399.6 m /s, and Lw=3.6 m. Figures 4�a� and 4�b� show trig-

gering in the absence of damping. Figure 4�a� shows that for

initial conditions of 
1�0�=0.15 and 
i�1�0�=0, the oscilla-

tions decay, whereas Fig. 4�b� shows that the oscillations

grow for a different initial condition, i.e., for 
1=0.2 and


i�1�0�=0. Further, Fig. 4�b� shows that the amplitude of the

oscillations saturates. Hence, this example shows that satu-

ration can occur in the absence of damping. This interesting

feature was discussed by Balasubramanian and Sujith
10,11

in

the context of diffusion flames. The authors have explained

that saturation can occur in the absence of damping if the

phase difference �the phase between pressure and heat re-

lease rate is the correlation between the acoustic pressure and

heat release rate.
10,11� between the acoustic oscillations and

the heat release oscillations evolves to 90°.
22

This is con-

firmed from the evolution of the phase to 90° as the system

approaches limit cycle, as seen in Fig. 4�c�. The evolution of

the nondimensional acoustic energy � 1

2
p�

2+
1

2
��Mu��2� after

locally weighted regression smoothing calculated from both

linear �integration of Eqs. �11� and �12� without nonlinear

terms� and nonlinear simulations �with nonlinear terms in-

cluded� are presented in Fig. 4�d�. The linear simulation

shows that the acoustic energy grows initially and eventually

decays. The nonlinear simulation is almost identical to the

linear simulation initially. After sufficient transient growth,

the nonlinearity “picks up,” which can be seen from the de-
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FIG. 4. Evolution of nondimensional acoustic velocity when the initial conditions are �a� 
1�0�=0.15 and �b� 
1�0�=0.2, x f =0.29, c0=399.6 m /s, Lw

=3.6 m, ū=0.5 m /s, �̄=1.205 kg /m3, Tw=1000 K, C
v
=719 J /kg K, and �=0.0328 W /m K. �c� Evolution of phase and �d� linear and nonlinear evolutions of

the acoustic energy when the initial condition is 
1�0�=0.2.
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viation of the nonlinear evolution from the linear evolution.

The nonlinear simulation also shows that, eventually, the

acoustic energy grows and saturates.

The phenomenon of triggering has been observed in ex-

periments with Rijke tube
9

and also in other thermoacoustic

devices such as solid rocket motors.
23,24

This is usually at-

tributed to nonlinearities. However, as shown in this ex-

ample, this is not the complete picture. This example shows

that the non-normal nature of the evolution equations is in-

deed responsible for raising the amplitudes to a level where

the nonlinearity in the system is triggered.

Our view on non-normality does not diminish the impor-

tance of nonlinear effects. We are highlighting the role

played by the linear �non-normal� evolution in increasing the

amplitude to a level where nonlinearity becomes significant.

The nonlinear terms in the equation become significant be-

yond a certain value of the amplitude �say, An�. Non-

normality causes an amplitude lesser than An to increase up

to An. Hence, the threshold value beyond which triggering

occurs is less than An.

B. Growth of oscillations in an initially
decaying system

This section discusses bootstrapping in a thermoacoustic

system which is stable according to classical linear stability

analysis based on eigenvalues. In this example, the heater is

located at
1

4
duct length. The initial conditions chosen are


1�0�=0.18, 
i�1�0�=0, and 
̇i�0�=0. Lw and Tw were cho-

sen as 3.6 m and 1000 K, respectively. Other parameters are

maintained to be the same as those in the previous example.

Figure 5�a� shows the evolution of acoustic velocity at

the heater location. It can be seen that low frequency oscil-

lations that are initially present in the system decay and high

frequency oscillations set in after some time. Further, it can

be seen that the oscillations eventually saturate after nonlin-

ear growth. It must be emphasized that classical linear sta-

bility analysis based on the eigenvalues shows all eigen-

modes of this coupled system to be stable.

Figures 5�b�–5�d� show the evolution of the acoustic ve-

locity projected on the first three Galerkin expansion func-

tions. It can be seen that while the acoustic velocity projected

to the first expansion function decays, the projections on the

second and third expansion functions grow. After sufficient

energy is projected onto the second and third expansion

functions, they project the energy back, causing the energy

projected on the first expansion function to grow. This boot-

strapping results in a shift in frequency during the evolution.

The net effect of all these energy transfer causes the acoustic

velocity to grow and eventually saturate. This feature has

been discussed in the context of turbulence and it is known

as bootstrapping.
14,15

Yoon et al.
3

have discussed bootstrap-

ping in the context of Rijke tube using an ad hoc nonlinear

model for the heat release rate.

The above simulation was repeated in the absence of
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FIG. 5. �a� Nondimensional evolution of acoustic velocity when the initial condition is 
1�0�=0.18; ��b�–�d�� evolution of the acoustic velocity projected onto

the various Galerkin modes. Lw=3.6 m, �=0.0328 W /m K, C
v
=719 J /kg K, �̄=1.205 kg /m3, ū=0.5 m /s, Tw=1000 K, 
=0.45�, x f =0.29, and c0

=399.6 m /s.
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nonlinear terms. Figure 6�a� shows the evolution of acoustic

velocity obtained from linear simulations. Figures 6�b�–6�d�
clearly shows energy exchange between the modes even in

the absence of nonlinear terms. The occurrence of energy

exchange between modes can be explained as follows.

There are two mechanisms by which energy can get re-

distributed in the system. The first mechanism is a nonlinear

mechanism where two individual eigenmodes interact di-

rectly, causing exchange of energy between these two modes.

Another mechanism which causes redistribution of energy is

the interaction of various modes with the base flow. At low

amplitudes when the nonlinear effects are not significant, the

redistribution of energy mainly occurs due to the interaction

of various modes with the base flow. When the disturbance is

caused by exciting only one eigenmode, it is expected that

the oscillations will decay if the system is linearly stable.

However, if the system is non-normal, then the oscillations

can grow if there is a small amount of energy in the unex-

cited modes. This could be due to noise in the system or due

to a mild nonlinearity. The authors would like to emphasize

that the mild nonlinearity just transfers some energy from the

excited modes to other modes. Though the individual modes

can decay, there can be an overall growth of amplitude due to

non-normality. This overall growth can cause nonlinear ef-

fects to become significant and more energy can get ex-

changed between the various modes. Such a situation cannot

occur in a linearly stable normal system �classical linear sta-

bility� if the nonlinearity is initially mild. This is because the

amplitudes of a normal system decay if the individual eigen-

modes decay, and hence nonlinearity becomes milder and

milder. This explains how non-normality plays an important

role in the exchange of energy between various eigenmodes.

C. Transient growth

As discussed earlier, the non-normal nature of a system

can cause transient growth of oscillations which can trigger

nonlinearities in the system. In this section, a method to ana-

lyze transient growth is discussed. Schmid and Henningson
25

gave a detailed discussion on the analysis of transient growth

in the context of transition to turbulence in shear flows. They

analyzed the stability of shear flows by studying the energy

growth of the system. This analysis is general and can be

applied to thermoacoustic systems as well. Balasubramanian

and Sujith
10

performed such an analysis in the context of

diffusion flames. The evolution of the acoustic oscillations in

a Rijke tube is also non-normal as BNNBNN
†�BNN

†BNN. The

symbol † denotes the adjoint �conjugate transpose� of an

operator. The solution of the linearized system of evolution

equations �Eq. �13� without the nonlinear term� can be writ-

ten in the operator form as
25


̃�t� = exp�Lt�
̃�0� = S−1 exp�LDt�S
̃�0� , �14�

where L=−BNN is the stability operator, S is the similarity

transformation that diagonalizes L, and LD is the diagonal

form of L. Since L is non-normal, S is nonunitary, indicating
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that it is not possible to make the eigenvectors perpendicular

by a simple rotation. Transient growth is quantified by maxi-

mum growth factor which is defined as
25

G�t� = max



��
̃�t��2
/�
̃�0��2� = �exp�Lt��2, �15�

where “max” indicates that the ratio of the norms is maxi-

mized over all initial conditions. Growth factor is a measure

of maximum amplification of energy density at an instant of

time. The expression in Eq. �15� is maximized for various

instants of times over all possible initial conditions. The

maximum growth factor and the optimum initial condition

were computed using singular value decomposition. The sta-

bility of a system can be studied using the maximum growth

factor in a particular time interval �0, t� which is defined as

Gmax=maxt G�t�. This maximum is obtained after smoothen-

ing G�t�.
The above maximum value is infinite if L has an eigen-

value with a positive real part. This corresponds to a linearly

unstable system. In the present paper, Gmax values for various

parameters such as time lag and flame location are calculated

and the regions with large transient growth are identified.

Transient growth cannot occur for those parameters which

have Gmax=1. When Gmax=1, the energy at any instant is

less than the initial energy of the system, indicating that the

energy of the system decays. When Gmax�1, the system will

exhibit transient growth. Hence, a system which is linear

initially will behave like a linear system throughout its evo-

lution as there is no amplification of the oscillations to trig-

ger nonlinear effects when Gmax=1. This fact is used in the

next section to obtain necessary and sufficiency conditions

for the stability of the system.

Figure 7 shows the variation of the maximum growth

factor with heater location for different values of time lags.

The parameters are given in the figure caption. The growth

factor is a nonmonotonic function of the heater location. The

dependence of growth factor with x f is oscillatory in nature.

Further, the growth factor is of the order of 10. The authors

would like to point out that in the present analysis, a simple

model for the heating element is used. This simplified ap-

proach was used to focus on the non-normal nature of the

acoustic equations alone in the presence of heat source.

However, the energy released at the heating element is gov-

erned by an advection-diffusion equation. It has been shown

that the advection-diffusion equation is non-normal.
26,27

This

may cause the growth factor to be much larger as the number

of eigenmodes of the coupled system will be much larger.

Figure 8 shows the spatial variation of acoustic velocity

in the Rijke tube at various instants of times. The figure

describes how acoustic velocity varies with space as the sys-

tem evolves from the optimal initial condition. This result

was obtained by solving the linearized equations. The param-

eters are given in the figure caption. It is clear that the spatial

variation is a superposition of several modes whose phase

vary with time.

D. Pseudospectra

The degree of resonant amplification that may occur in a

normal system in response to an input frequency is inversely

proportional to the distance in the complex plane between

the input frequency and nearest eigenvalues. However, in the

case of a non-normal operator, the resonant amplifications

may be orders of magnitude larger
14

and cannot be deter-

mined by the eigenvalues alone. Such a resonance of a non-

normal system is known as pseudoresonance.

The concept of � pseudoeigenvalues can be used to ana-

lyze the behavior of evolution governed by such non-normal

operators.
26–28

z is an � pseudoeigenvalue of A if it satisfies

��zI−A�−1���−1. There are other equivalent definitions of

pseudoeigenvalues and they have been discussed in great de-

tail by Trefthen and Embree.
26–28

In the above expression, �

FIG. 7. Variation of maximum growth factor with heating element location

for different values of time lag. Lw=2.0 m, �=0.0328 W /m K, C
v

=719 J /kg K, �̄=1.205 kg /m3, c0=401.2 m /s, ū=0.5 m /s, and Tw

=1000 K.
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is a measure of the distance of the forcing frequency from

the eigenvalues of the system. This can be also interpreted as

the noise level in a system when there is no external forcing.

It should be noted that the system discussed in this paper is a

self-excited system. In a linearly stable self-excited system,

if the initial condition is along one of the eigenmodes, then

there is no growth and the oscillations will decay throughout

the evolution. However, in most situations, the initial condi-

tions do not correspond to any particular eigenmode, and

hence transient growth can occur. In these situations, � is a

measure of the deviation of the initially excited mode from

the eigenmodes of the system.

Transient growth and the non-normal nature of the op-

erator can be studied using pseudospectra. The pseudospectra

of normal operators are closed circles. When a contour cor-

responding to some � value does not lie entirely in the left

half plane, the system exhibits transient growth, causing the

amplitudes to increase to high values.
14

Further, it is possible

to obtain necessary and sufficiency conditions for an oscilla-

tion to be stable based on the geometry of pseudospectra.

Trefethen et al.
14

have used the relation between the ge-

ometry of the pseudospectra and the lower bound on the

transient growth factor to analyze hydrodynamic instability

in Couette and Poiseuille flows. The lower bound on the

transient growth factor is given by

max
t

�etA� � max
�

maxz����� Re�z�

�
. �16�

This inequality serves as a necessary condition. The pseu-

dospectra contours should protrude far into the right half

plane for the system to exhibit large transient growth. Hence,

for a system not to grow �either transient or exponential�,
pseudospectra must lie entirely on the left half plane.

Similarly, a sufficiency condition for a system to be

stable can be obtained by relating the upper bound on tran-

sient growth to the geometry of pseudospectra. The upper

bound on the transient growth factor of a non-normal opera-

tor can be obtained from the pseudospectra as follows.
28

The

exponential of an operator A, etA, can be defined by the

Dunford–Taylor integral �operator analog of Cauchy inte-

gral�,

etA =
1

2�i
�

�

�z − A�−1etzdz , �17�

where ���� is the boundary of pseudospectra corresponding

to some �. Hence, the norm of the evolution operator is

bounded by the Cauchy integral of 
etz
��z−A�−1�. When �

encloses the � pseudospectra, then the upper bound for the

transient growth factor can be written as

�exp�tA�� � � L�

2��
max

z�����

exp�tz�
� , �18�

where L� is the length of the contour �or convux hull� ����.
The following sufficiency condition for a thermoacoustic

system to be stable can be obtained by choosing A as the

stability operator L. The upper bound on the maximum

growth rate is given by

Gmax = max
t

�exp�tL��2 � max
t
� L�

2��
max

z�����

exp�tz�
�2

.

�19�

Hence, a system is stable if the real parts of all the eigenval-

ues are negative and if the right hand side of the above ex-

pression is 1. Hence, if the pseudospectra lie entirely in the

left half plane and if Gmax=1, then the system will not grow

for any initial condition.

Rayleigh criterion gives the condition for acoustic driv-

ing to occur. However, the prediction of transient growth by

Rayleigh criterion requires the precise knowledge of initial

conditions. The ambiguity of initial conditions due to noise

makes the identification of transient growth using Rayleigh

criterion difficult. However, the necessary and sufficiency

conditions obtained in this paper are conditions on the evo-

lution operator, and hence do not depend on the initial con-

ditions.

Figure 9 shows the pseudospectra for a Rijke tube with

length of 1 m and time lag 
=0.1� and ū=0.5 m /s. It is

clear from the noncircular behavior that the system is non-

normal. It is clear that the contour is not entirely on the left

half plane. Hence, it can be inferred from Eq. �24� that this

system shows transient growth. This indicates that there is an

“unstable” pseudoeigenvalue for some �. Even if a system

behaves linearly, the transient growth can cause the ampli-

tudes to reach high values and trigger nonlinearities which

can cause the oscillation to grow further.

VI. CONCLUSION

In this paper, the nature of thermoacoustic interaction is

studied in the context of a simple model for a horizontal

Rijke tube. The coupled thermoacoustic system is non-

normal, and hence the eigenvectors are nonorthogonal. Non-

normality can lead to short time growth of oscillations before

they eventually decay even when the system is linearly

stable. Transient growth can cause the amplitudes of the os-

cillations to trigger nonlinear driving. It has been observed

that the various eigenmodes of the coupled thermoacoustic

system interact, resulting in the growth of oscillations even

when the eigenvalues indicate stability. The current method-
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FIG. 9. Pseudospectra of a Rijke tube in which the heater is located at x f

=0.18. The time lag was chosen as 
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ology to study the onset of thermoacoustic oscillations in-

volves looking for exponentially growing or decaying modes

by calculating the individual eigenvalues of the linearized

system. The role of non-normality has not been considered in

predicting the stability margins of a system.

The stability of a system can be studied by calculating

the transient growth factor. The growth factor shows a non-

monotonic variation with the heater location. For a non-

normal system, “pseudoresonance” can occur at frequencies

far from the spectrum and pseudospectra can be used to ana-

lyze such systems. The pseudospectra of normal operators

are disjoint circles. The pseudospectra of the thermoacoustic

system considered in this study are noncircular, implying a

highly non-normal nature of the system. Estimates of tran-

sient growth factors can be obtained by studying the geom-

etry of the pseudospectra. The relation between the bounds

of transient growth factor and the geometry of the pseu-

dospectra provide necessary and sufficient conditions for the

stability of a system. If the pseudospectra protrude into the

right half plane, then the system can show transient growth.
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