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Abstract. A numerical study on the effect of complex fracture aperture geometry

on propagation of thermal front in a coupled single fracture–matrix system has been

carried out. Sinusoidal and logarithmic functions have been used to capture the vari-

ation in fracture aperture. Modifications have been made to existing coupled partial

differential governing equations to consider the variation of fracture aperture. Effect

of temperature on the thermal and physical properties of rock have been incorpo-

rated. A fully implicit finite difference scheme has been used to discretize the coupled

governing equations. Thermal convection, dispersion and conduction are the major

transport processes within fracture, while conduction is the major transport process

within rock matrix. The results suggest that variation of fracture aperture increases the

heat transfer rate at the fracture–matrix interface. Sensitivity analysis on rock thermal

conductivity and fracture aperture have been carried out. The results suggest that the

heat transfer from rock matrix to fracture for the case of the parallel plate model is

greatly dependent on the rock thermal conductivity (λm) as compared to variable aper-

ture model. Further, the thermal front propagation for both parallel plate model and

variable aperture model is sensitive to changes in fracture aperture. The heat transfer

rate at the interface is greater at smaller fracture apertures and decreases with increase

in aperture.

Keywords. Thermal front; variable aperture; rock–matrix; geothermal reservoir;

numerical model, liquid dominated.

1. Introduction

Rapid commercialization in recent years has created a considerable increase in the demand for

energy. This has put excessive strain on the conventional power generation units (thermal, hydro

and nuclear). With ever-increasing costs and depletion of conventional energy sources (natu-

ral gas, coal, nuclear, etc.), the cost of producing energy from these sources is rapidly rising.
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Another major concern is the negative impact that most of these technologies have on climate

and associated life forms. Hence it has become critical to look towards unconventional renew-

able forms of energy production technologies with minimal effect on environment and to reduce

the dependence on existing conventional forms of energy. Geothermal energy from hot rocks

has emerged as a promising unconventional renewable energy production technology, the author

has previously analysed coupled heat and mass transfer through fractured geothermal reservoirs

(Suresh Kumar & Ghassemi 2005; Natarajan & Suresh Kumar 2011b).

The heat source in these rocks may be from volcanic activity, high geothermal gradient or the

presence of hydrothermal system nearby. The basic method is to drill a well into the region of

low permeability hot rock (<500 K). Cold water is then pumped through the injection well in the

region of the hot rock. As cold water circulates through the hot rock region it gets heated up. The

hot water is then extracted from the production well which in turn is used to generate usable

energy. Hence it becomes very critical to study and understand the nature of heat exchange between

the cold water and hot fractured rock to access the feasibility of geothermal energy production.

Propagation of thermal fronts in a single phase fractured porous media was first studied by

Lauwerier (1955). Lauwerier developed an analytical solution for injection of hot water into oil

bearing fractured rocks. Gringarten & Sauty (1975) developed a mathematical model for investi-

gating the unsteady temperature behaviour of a pumped aquifer during reinjection of a fluid at

a temperature different from that of the native water for a single horizontal fracture. Gringarten

et al (1975) extended analytical solution for vertical fractures. Analytical solution from thermal

propagation in a single fracture to fracture network, was extended by Heuer et al (1991) and

Schulz (1987). Cheng et al (2001) provided an integral equation formulation for multidimen-

sional heat flow in a single fracture. Suresh Kumar & Ghassemi (2005) analysed non-isothermal

quartz dissolution/precipitation in a coupled fracture–matrix system. Natarajan & Suresh Kumar

(2011b) included the fracture skin in the analysis of thermal front propagation in fracture–matrix

system. Analysis of flow and heat transport in single and multiple fractures-matrix system in 3D

was carried out by Kolditz & Christoph (1998). Shook (2001) showed that the reinjection of

cold water will rapidly advance thermal front propagation through high permeability fractures

causing a premature breakthrough at the production well and hence influencing significantly the

efficiency of the system.

Most of studies carried out on thermal front propagation in single fracture–matrix system

apply the conventional parallel plate model. The parallel plate model assumes fluid flow to be

between two smooth parallel plates, which effectively means a constant fracture aperture. This

assumption ignores the naturally existing wall roughness and spatial variation of the fracture

aperture along fracture, which have a significant effect on the propagation of thermal fronts.

Experiments and field studies conducted by Keller & Bonner (1985) and Hakami & Barton

(1990) to understand the geometry of naturally occurring fractures, observed that fractures tend

to have very complex geometry and the aperture width varies along fracture length. This causes

the fluid flow path through the fracture to be very tortuous unlike the parallel plate model. A

constant velocity of fluid cannot be sustained through this tortuous path as described by the

parallel plate model. Instead, the fluid velocity varies along the fracture length due to change

in cross-sectional area through which the fluid passes. Witherspoon et al (1980) experimentally

proved that the cubic law is valid for flow through fracture. The cubic law provides the flow rate

(q) of the highly viscous, non-turbulent fluid through an open fracture as a function of cube of

fracture aperture as represented in Eq. (1).

q =
b3�p

12μLf

. (1)
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In Eq. (1), Lf,μ, b and p are length of fracture (m), viscosity of fluid (N·s /m2), half fracture

aperture (m) and pressure (N/m2), respectively. From Eq. (1) it can be seen that the flow rate (q)

varies as cube of fracture aperture, hence even a small variation in aperture width will result in

significant change of flow rate through fracture. Thermal convection, dispersion and conduction

are the mechanisms that have a major influence on the propagation of thermal fronts in a fracture.

Convection and dispersion are dependent on velocity of the fluid which in turn is a function of

fracture aperture width (Harr 1962; Grisak & Pickens 1980). Considering the variable aperture

can help in proper accounting for advection and dispersion in a fracture and capture the undu-

lating patterns of the fracture wall which dramatically increases reacting surface area. Very few

studies have considered variation of fracture aperture in analysing flow and transport in single

coupled fracture–matrix system (Zimmerman & Bodvarsson 1996; Liu 2005; Liu & Fan 2011).

Natarajan & Suresh Kumar (2010) have studied solute transport in coupled fracture–skin–matrix

system in the presence of a sinusoidal fracture aperture. However, these studies were limited to

solute transport in fracture–matrix system.

Thermal conduction coefficient of the rock matrix governs the temperature at the interface of

the fracture and rock matrix which in turn effects the thermal front propagation in the fracture.

The rock thermal diffusivity depends on thermal conductivity of rock, rock density and specific

heat of rock, and all these parameters vary as a function of temperature. Hence it is essential

to include the variation of these parameters as function of temperature for accurate analysis

of the thermal front propagation. However, most of the studies in thermal front propagation

consider these parameters constant with respect to temperature (Suresh Kumar & Ghassemi

2005; Natarajan & Suresh Kumar 2011a; Cheng et al 2001). A generalized empirical equation for

the temperature dependence of thermal conductivity of rock is given by Zoth & Haenel (1988).

Similarly, Somerton (1992) gave generalized empirical equations for temperature dependence of

rock density and rock specific heat.

Propagation of thermal front in fracture–matrix system have followed a pattern similar to

groundwater (solute transport). Similar phenomena (convection, thermal dispersion and conduc-

tion) govern the thermal front propagation as compared to solute transport (advection, dispersion,

and diffusion). For the case of solute transport, the nature of injection (boundary conditions) of

solute influences the transport of solute both in fracture and rockmatrix (Batu & Genuchten 1990;

Logan et al 1996; Allaire et al 2002). Since the nature of boundary condition or the particle injec-

tion has influence on the transport of solute, boundary conditions may also have an influence on

propagation of thermal transport in fracture–matrix system. Most of the studies whether solute

transport or thermal front propagation have used simple Dirichlet boundary condition (Suresh

Kumar & Ghassemi 2006; Suresh Kumar and Sekhar 2005; Suresh Kumar 2008, 2009, 2014;

Natarajan & Suresh Kumar 2011a; Renu & Suresh Kumar 2012). To understand whether the

nature of boundary conditions of the fluid temperature effects the propagation of thermal front

in fracture–matrix system it is important to include different types of inlet boundary condition.

The focus in the present study is to understand the effect of the fracture aperture variation

on propagation of thermal fronts in a single coupled fracture–matrix system. It is hard to pre-

dict the exact nature of the fracture aperture geometry. However, some experimental studies

have revealed that natural porous media exhibit self-similarity up to a certain scale (Feder 1988)

and this concept may also be extended to fractured porous media. The self-similarity concept is

applied in the present study, two distinct geometrical profiles: sinusoidaly and logarithmically

varying aperture have been used to describe (figure 1) the variation of the fracture aperture.

Present study also investigates the effect of various types of water injection boundary condition

on the thermal front propagation. Apart from conventional Dirichlet type of boundary condi-

tion, Neumann boundary condition has also been applied. Further, for Neumann type boundary
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Figure 1. Schematic diagram of the enhanced geothermal systems (EGS), with a single horizontal

fracture in granite rock.

condition, two different functions have been used: exponential variation with time and sinusoidal

variation with time. Sensitivity analysis on fracture aperture and thermal conductivity of rock

matrix has been carried out, as these parameters effectively control the thermal front in fracture.

2. Physical system and governing equations

Figure 1 illustrates the geothermal system along with depiction of thermal front propagation in

single fracture. Cold water is injected from surface trough the injection well into the region of

hot fractured rocks. The injected cold water circulates through hot fractured rock and is extracted

at surface through the production well as hot fluid. The hot fluid from the production well may

be water or steam or combination of both depending on whether the geothermal system is liquid

dominated (water) or vapour dominated (steam/steam and water). Figure 1 also illustrates a

single horizontal fracture. The dashed line parallel to axis of fracture represents the equivalent

aperture for the parallel plate model. In figure 1, 2b is the fracture aperture pertaining to the

parallel plate model, 2b(x) represents fracture aperture for the variable fracture aperture model

(sinusoidal and logarithmic), B is the half fracture spacing, and Lf is the length of the fracture.

Thermal convection, dispersion and conduction are the major transport processes considered

within fracture, while conduction is the major transport process within rock matrix. Additionally,

heat flux transfer between rock matrix and fracture is also considered.

Following assumptions have been applied in the present study.

(i) Transport in fracture is assumed to be 1D with fluid flowing horizontally.

(ii) Transport in rock matrix is assumed to be 1D with the transport of the fluid perpendicular

to flow in fracture.

(iii) The fracture aperture is much smaller in comparison with fracture length (b <<< Lf ).

(iv) Convection in rock matrix is assumed to be non-existent due to assumption that there is no

fluid flow in rock matrix.

(v) Thermal dispersion is analogous to dispersion of solutes in fracture–matrix system.

(vi) There exist a pressure equilibrium between fracture and rock matrix.

(vii) Specific heat capacities are not a function of temperature.

(viii) Symmetry is assumed about the fracture axis. Hence the solution is restricted to one of

half of fracture and its adjoining porous rock matrix (Sudicky & Frind 1982; Natarajan &

Suresh Kumar 2011a).
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(ix) A single phase of fluid exists (water) and there is no change in fluid enthalpy (Cheng et al

2001; Shook 2001; Suresh Kumar & Ghassemi 2005).

On the basis of above assumptions and transport processes, thermal front propagation in a

single coupled fracture–matrix system can be described by two coupled partial differential equa-

tions. One equation representing the thermal transport in fracture and the other representing

thermal transport in rock matrix. These two equations are coupled and coupling is provided

by the continuity of fluxes between them along the fracture–matrix interface assuming the

conductive flux from rock matrix to fracture takes place transverse to the direction of the fracture.

In the present work, the one-dimensional equation representing the thermal transport in frac-

ture has been adopted from Suresh Kumar & Ghassemi (2005) with an improvement in order to

consider the variatioin of fracture aperture. The modified equation is represented by Eq. 2.

∂Tf

∂t
= −V (x)

∂Tf

∂x
+ Df

∂2Tf

∂x2
+ DL(x)

∂2Tf

∂x2
+

λm(T )

ρwCwb(x)

∂Tm

∂y
|y = b(x) . (2)

In Eq. (2), Tf is relative temperature in fracture (K); Tm is relative temperature in rock matrix

(K); t (day) is the time; Df (m2/day) is thermal conduction coefficient of fluid in fracture;

DL(x)(m2/day) is longitudinal thermal dispersion coefficient; V (x) (m/day) is the fluid velocity

through fracture; λm is thermal conductivity of reservoir matrix; ρw(kg/m3) is density of fluid

in fracture and Cw (J/kgK) is specific heat capacity of fluid in fracture.

Thermal conduction coefficient of fluid in fracture (Df ) is a function of fluid density (ρw) and

specific heat capacity of fluid in fracture (Cw). The equation representing this relation is given

by Eq. (3).

Df =
λf

ρwCw

(3)

In Eq. (3), λf (W/mK) is thermal conductivity of fluid in fracture.

The dispersion effect is due to parabolic velocity profile that causes the heat to distribute ahead

and aft of the average fluid velocity. Longitudinal thermal dispersion coefficient (Cheng et al

2001) that characterizes the dispersion effect is given by Eq. (4).

DL(x) =
V (x)[b(x)]2

210Df

. (4)

In Eq. (2), thermal convection is represented by first term on RHS, thermal conduction by the

second and third terms and the fourth term represents the coupling between the fracture and rock

matrix. Unlike the solute transport, the coupling in the thermal transport is not a function of

porosity of rock matrix.

The equation representing the thermal transport in rock matrix adopted from Suresh Kumar &

Ghassemi (2005) is given by Eq. (5).

∂Tm

∂t
=

λm(T )

ρmCm

∂2Tm

∂y2
. (5)

In Eq. (5), λm(T ) is thermal conductivity of fluid in rock matrix as a function of temperature

and ρm(T ) and Cm(T ) are rock density and rock specific heat, respectively as a function of

temperature.
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Zoth & Haenel (1988) gave a general empirical relation for thermal conductivity as a function

of temperature (Eq. 6).

λm(T ) =
A

(350 + T )
+ N. (6)

In Equation (6), A and N are constants which are dependent on type of rock, λm(T ) is in W/mK

and T in ◦C. For granite, quartz porphyry and granodiorite A = 807 and N = 0.64 (Vosteen &

Schellschmidt 2003).

The empirical relation (Somerton 1992) for ρm(T ) and Cm(T ) in the Eq. (5) is represented by

Eqs. (7) and (8), respectively.

ρm(T ) =
2650

[1 + (T − 20) · 0.5e − 04]
(7)

Cm(T ) = 1234.257 − 454.546 · exp(−.0039733482 · T ). (8)

In Eqs. (7) and (8), ρm(T ) is in Kg/m3 and Cm(T ) in J/kgK with T in ◦C. Equations (9)–(15)

represent the initial and boundary conditions required to solve the governing Eqs. (2) and (5). At

initial time (time, t = 0) the temperature in both fracture and matrix is assumed to be a relative

temperature of unity, while the fluid (water) is injected at a constant relative temperature of 0.5

at inlet (at t > 0).

Initial conditions

Tf (x, t = 0) = 1 (9)

Tm(x, y, t = 0) = 1. (10)

Fracture inlet boundary condition in fracture

In the present study, complex boundary conditions have been introduced at the fracture inlet

(source). Two types of inlet (water injection temperature) boundary conditions have been used

which are represented by Eqs. (11) and (12).

Case 1: Dirichlet type boundary condition (First Type)

Tf (x = 0, t) = 0.5 = Tf o. (11)

Case 2: Neumann type boundary condition (Second Type)

∂Tf (x = 0, t)

∂x
= f (t). (12)

The function f (t) represents the 3 different rates of source temperature with respect to time.

f (t) = Tf o(1 − sin(mt)) (Sinusoidally varying source)

f (t) = Tf o exp(−mt) (Exponentially decreasing source)

f (t) = Tf o (Constant flux)

∂Tf (x = Lf , t)

∂x
= 0 (Right Fracture Boundary Condition) (13)

Tf (x, t) = Tm(x = y = b(x), t) (Interface Condition) (14)

∂Tm(x, y = B, t)

∂x
= 0 (Rock Matrix Boundary Condition). (15)
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Table 1. Maximum, minimum and average half fracture aperture values for each of the aperture profiles.

Maximum half fracture Minimum half fracture Average half fracture

Aperture variation profile aperture (μm) aperture (μm) aperture (μm)

Sinusoidal 120 80 100

Logarithmic 143 67 97.5

Parallel plate 100 100 100

To effectively incorporate the variation of fracture aperture in variable aperture model, two dif-

ferent functions have been used in the present study. One of the functions gives a sinusoidal

variation to the fracture aperture as shown in figure 1, which is represented by Eq. (16). The other

function gives a logarithmical variation to fracture with decaying aperture size from fracture

inlet to outlet represented by Eq. (17).

b(x) = Am[1 +
d

Am
· sin(

nπx

w
)] (16)

b(x) = Am · exp(mx) · (1 + sin(nπx)) + a. (17)

In Eqs. (16) and (17), Am [L] and w [L] are the maximum aperture width and distance between

consecutive troughs/crests in meters and m, n, a[L] and d [L] are numerical constants which

decide the nature of variation. For the effective comparative analysis between parallel plate and

variable aperture model, the average value of the b(x) along the fracture length is taken as the

equivalent fracture aperture for the parallel plate model (b(x)avg = b) as shown in table 1. It

should also be noted from table 1 that even though there is large variation in maximum and

minimum values of fracture aperture among the different profiles, the average value of fracture

aperture along the fracture length is approximately around 100 μm.

Convection is the major phenomena in the propagation of thermal fronts through the fracture

of a fracture–matrix system and is function of velocity of the fluid. Harr (1962) presented an ex-

pression for a single horizontal coupled fracture–matrix system, the fluid velocity trough a single

fracture for a non-turbulent, viscous, incompressible flow neglecting inertia forces as a solution

of Navier–Stokes equation given by Eq. (18) (Grisak & Pickens 1980; Lipson et al 2005).

V (x) =
ρwg[b(x)]2

12μ
∇h. (18)

In Eq. (18), ∇h is the hydraulic gradient whose value ranges from 0.003 to 0.007 for fracture

(Lipson et al 2005), V (x) is the average velocity of the flow parallel to horizontal fracture,

μ (N-s/m2) is the dynamic viscosity of the fluid, ρw (kg/m3) and g (m/s2) are density of the

fluid through the fractured porous media and acceleration due to gravity, respectively. Here x

represents flow in horizontal direction (along the fracture).

2.1 Effective heat transfer factor

To effectively and easily understand the extent of heat transfer from rock matrix to fluid in

fracture a new non-dimensional parameter called ‘effective heat transfer factor’ is introduced for

the first time in the present study. Eq. (19) gives the mathematical expression for the factor.

εT =
Lf − Lo

Lf

. (19)
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In Eq. (19), Lf is the length of the fracture (limited to 30 m in this study) and Lo is the point

at which the propagation reaches unit relative temperature in fracture (saturation point measured

from fracture inlet) that is the point at which it attains the temperature of the rock matrix. Lesser

the value of Lo, the closer will be the point of unit relative temperature to the fracture inlet. This

indicates a greater heat exchange at fracture–matrix interface. Greater the value of Lo, further

will be the point of unit relative temperature from fracture inlet, which indicates reduced heat

exchange at fracture–matrix interface. The value of εT ranges from 0 to 1. For εT = 1.0, Lo

will be zero, which signifies the conditions wherein the fluid attains the rock matrix temperature

(relative temperature = 1.0) instantaneously upon entering the fracture, a hypothetical scenario

signifying an infinite conduction. Minimum heat transfer from hot rock matrix to fluid in fracture

occurs when Lo attains the value of Lf effectively making εT = 0. In this condition, either

the fluid attains the rock matrix temperature near the exit of the fracture or exits the fracture at

temperature lower than the rock matrix. Hence this non-dimensional parameter quantifies the

extent of thermal front propagation in the fracture.

3. Numerical model and verification

A single fracture–matrix system considered in the present numerical study is described by a

set of coupled partial differential equations, Eq. (2) represents thermal front within fracture,

while Eq. (5) within porous rock matrix. These set of equations are solved using a fully implicit

finite difference method. Iteration is performed at each time step to satisfy the continuity at the

fracture–matrix interface. A uniform grid spacing is adopted along fracture and a geometrically

varying (increasing) grid spacing is used along the rock matrix perpendicular to flow in fracture.

The grid size in rock matrix increases geometrically with the size of first grid is equal to half of

the fracture aperture at that point.

In the present study, the rock thermal conductivity of (λm) is as a function of temperature

(Eq. (6)) and is calculated at each grid point at every time step. The value of rock thermal con-

ductivity (λm) is taken as input into coefficient of conduction term (Eq. (5)). Hence both spatial

and temporal variation of rock thermal conductivity (λm) and coefficient of the conduction term

in Eq. (5) with respect to temperature has been captured for unsteady analysis.

A first order implicit forward difference is used to discretize the convective term (first term

on RHS of Eq. (2)), second order implicit central difference is used to discretize the conduction

terms (second term and third on RHS of Eq. (2)), a two point backward finite difference is used

to discretize the temporal term (term on LHS of Eq. (2)) and an implicit first order forward

difference is used to discretize the coupling term (fourth term on the RHS of Eq. (2)). Second

order implicit central difference is used to discretize the conduction term in Eq. (5).

Figure 2 shows the comparison of the present numerical model for parallel fracture aperture

with that of available analytical solution given by Sudicky & Frind (1982). The respective frac-

ture and matrix parameters used for the comparison have been tabulated in table 2. It is seen

from figure 2 that the present numerical model is in close agreement with the model presented

by Sudicky & Frind (1982).

4. Results and discussions

A numerical model has been developed to analyse the propagation of thermal front in a single

horizontal coupled fracture–matrix system with variable fracture aperture using a fully implicit
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Figure 2. Verification of the present numerical model with parallel fracture aperture with that of available

analytical solution given by Sudicky & Frind (1982).

finite difference model. Sensitivity analysis of rock thermal conductivity and fracture aperture

has been performed. Further, dependence of propagation of thermal fronts on inlet (water injec-

tion temperature) boundary condition has been studied. The parameters used for the analysis are

tabulated in table 2.

Table 2. Transport parameters used for verification of the present numerical model for parallel plate

model.

Parameters Values

Grid spacing in fracture, �x (m) 0.005

Time step, �t (days) 0.005

Simulation time (days), Ts 100

Thermal conduction coefficient of fluid in fracture, Df (m2/day) Equation 3

Longitudinal thermal dispersion coefficient in fracture, DL (m2/day) Equation 4

Density of fluid, ρw (kg/m3) 1000

Density of rock matrix, ρm (kg/m3) Equation 7

Rock thermal conductivity, λm (W/mK) Equation 6

Thermal conductivity of fluid in fracture, λf (W/mK) 0.5

Specific heat of water, Cw (J/kg K) 5000

Specific heat of rock matrix, Cm (J/kg K) Equation 8

Half fracture aperture, b (μm) 75 – 300

Velocity of fluid, V (x) (m/day) Equation 18

Length of fracture, Lf (m) 30

Half fracture spacing, B (m) 0.15
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Figure 3 shows the spatial propagation of thermal fronts in fracture for a single fracture–

matrix system for both parallel plate model and variable aperture model for different averaged

fracture apertures (b = 75–300 μm). The ordinate of the plot represents the relative temperature

in fracture and abscissa represents the distance along the fracture (m). It is observed from figure 3

that for both parallel and variable aperture models, the point at which the fluid temperature in

fracture approaches the relative temperature of unity tends to move further away from fracture

with the increase in half fracture aperture. Thus, there is a reduction in heat transfer from at the

fracture–matrix interface. There is an increase in the fluid velocity with the increase in average

half fracture aperture, which varies as a square of fracture aperture (Eq. 18). The increase in

the fluid velocity with aperture leads to a greater convective heat transport along the fracture.

Further, the coupling between the rock matrix and the fracture gets weakened with increase in

fracture aperture since it varies inversely with the aperture (fourth term in RHS of Eq. (2)).

The combined effect of these two phenomena, shifts the point at which the fluid temperature in

fracture approaches the relative temperature of unit further away from fracture with the increase

in half fracture aperture. However, compared to the parallel plate model the position of unit

relative temperature of thermal front is nearer to fracture aperture for the variable aperture model.

It can be observed from figure 3 that there is a negligible difference between the two models

for smaller fracture aperture (b = 75 μm). As the fracture aperture increases (b = 150 μm),

the distance of unit relative temperature point from fracture inlet (Lo) also increases and Lo

becomes significantly large at b = 300 μm. Further it can be observed that at b = 75 μm the

relative temperature profile is hyperbolic in nature (indicating a relatively greater heat transfer

from rock matrix to fracture) for both parallel and variable aperture (sinusoidal and logarithmic)

model. At higher average half fracture aperture (b = 150 μm) the relative temperature profile

for variable aperture model is still hyperbolic in nature, however the temperature profile for the

parallel plate model is more of parabolic in nature, indicating lesser heat transfer rate from rock

matrix to fracture. At high values of average half fracture aperture (b = 300 μm) the temperature

profile is parabolic in nature for variable aperture model and almost linear for the parallel plate

model. Thus the presence of variable aperture alters the rate of thermal transport between fracture

and rock matrix. This deviation in the point at which the fluid attains the temperature of rock

Figure 3. Spatial propagation of thermal fronts in fracture for a single fracture–matrix system, considering

both parallel plate model and variable aperture model for different fracture aperture (b = 75–300 μm).
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matrix occurs is due to the curvature or undulated surface of fracture wall which increases the

surface area. The increased surface area in variable aperture model causes greater heat transfer

at fracture–matrix interface and hence the fluid attains unit relative temperature sooner than for

parallel plate model.

Figure 4 shows the spatial variation of the thermal front propagation for parallel plate and

variable aperture model in rock matrix at a cross section 1.5 m from fracture inlet (point of water

injection). The ordinate of the plot represents the relative temperature in rock matrix and abscissa

represents the distance along the rock matrix (m). The analysis is carried out for different values

of half fracture apertures (b = 75–300 μm). It is observed from figure 4a that for half fracture of

b = 75 μm, there is a significant difference in thermal front along the rock matrix for variable

aperture model compared to the parallel palate model. However, this difference decreases as half

fracture aperture increases to 150 μm (figure 4b) and finally the difference is negligible (profiles

overlap) at 300 μm (figure 4c). Further at b = 75 μm the temperature profile for variable aper-

ture model (sinusoidal and logarithmic) has a parabolic nature indicating a higher heat transfer

(parabolic heat Eq. (5)), the same cannot be said about parallel plate model as the tempera-

ture profile is less parabolic in nature as compared to variable aperture model. However, as half

fracture aperture increases the temperature profile for both parallel plate and variable aperture

Figure 4. Spatial variation of the thermal front propagation for both parallel plate and variable aperture

model in rock matrix at a cross section 1.5 m from fracture inlet (point of water injection).
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behaves in similar manner (less parabolic). Thus the thermal fronts in the rock matrix depends

significantly on type of model used at lower fractures apertures. This difference between the

behaviour of the variable aperture and parallel plate model gets reduced as the fracture aperture

increases, becoming insignificant beyond 300 μm.

Table 3 shows the values of thermal saturation point (Lo) and effective heat transfer factor

(εT ) at different values of half fracture aperture (b = 50, 100 and 150 μm) for both parallel

plate and variable aperture model (sinusoidal and logarithmic). It is observed from table 3 that

for low half fracture aperture value (b = 50 μm) the thermal saturation point (Lo) (unit relative

temperature of fluid in fracture) for parallel, sinusoidal and logarithmic aperture variations have

small values of Lo, signifying their nearness to fracture inlet. The effective heat transfer factor

(εT ) is very close to unit for all the fracture variation types for b = 50 μm. This indicates a

greater heat transfer from rock matrix to fracture for the small fracture aperture values for all

fracture variation types. From table 3 at the half fracture aperture of b = 100 μm, the value of

Lo increases indicating the shift of saturation point away from fracture inlet for all the types

of fracture variations. However, this shift is greater for the parallel plate model as compared to

logarithmic and sinusoidal aperture variations. With the increase in value of Lo, the magnitude of

numerator in Eq. (19) becomes smaller and value of effective heat transfer factor (εT ) decreases.

There is a greater reduction of εT for the parallel plate model compared to variable aperture

model (sinusoidal and logarithmic), indicating a lesser heat exchange for parallel plate model

as compared to variable aperture model. At half fracture aperture of 150 μm, the εT is almost

negligible for parallel plate model as Lo (28.305 m) is very close to Lf (30 m) making the

numerator in Eq. (19) very small and hence a very low heat transfer from rock to fluid in fracture.

However, for variable aperture model εT still has considerable values as compared to parallel

plate model indicating moderate heat transfer even at large values of half fracture aperture. The

curvature introduced to the fracture aperture in variable aperture model increases the surface

area for the extra heat transfer and even the velocity is varied in variable aperture model which

effects the convection process.

Figure 5 shows the spatial variation of the rock thermal conductivity (λm) and thermal con-

duction coefficient of fluid in fracture (coefficient of the conduction term in Eq. (5)) along rock

matrix at a cross-section located at 1.5 m from fracture inlet. In figures 5a and b rock thermal

conductivity (λm) and thermal conduction coefficient of rock are represented on the ordinate and

distance along the rock matrix (m) (along x axis) on abscissa. The analysis is done for both par-

allel plate and variable aperture model for half fracture aperture of b = 100 μm (rest of the data

remains unchanged in table 2). It is observed from figures 5a and b that rock thermal conductiv-

ity (λm) and thermal conduction coefficient of rock will have a larger variation for parallel plate

model due to a slower heat transfer rate as compared to variable aperture model. This is due to

the presence of curvature in variable aperture model, which has increased heat transfer rate. In

the present study, thermal conductivity of rock (λm) and thermal conduction coefficient of rock

are taken as function of temperature (Eqs. (6) and (3)), respectively.

Table 3. Lo and εT values for different fracture aperture widths.

b = 50 μm b = 100 μm b = 150 μm

Effective heat Thermal saturation Effective heat Thermal saturation Effective heat Thermal saturation
Fracture variation transfer factor: εT point: Lo (m) transfer factor: εT point: Lo (m) transfer factor: εT point: Lo (m)

Parallel plate model 0.982500 0.525000 0.784000 6.480000 0.056500 28.305000
Sinusoidal 0.991500 0.255000 0.89750 3.075000 0.760500 7.185000
Logarithmic 0.990500 0.285000 0.921000 2.370000 0.65750 10.275000
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Figure 5. Spatial variation of the thermal conductivity of rock (λm) and thermal conduction coefficient

of fracture along rock matrix at a cross-section located at 1.5 m from fracture inlet for b = 100 μm.
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Figure 6 shows the spatial variation of thermal front propagation in fracture for different values

of rock thermal conductivity (λm) for a half fracture aperture of b = 75 μm. It is observed

from figure 6 that both parallel plate and variable aperture model, the thermal front in fracture

is sensitive to variations in rock thermal conductivity (λm). However, the sensitivity is more in

the case of parallel plate model as compared to variable aperture model. This tells that the heat

transfer from rock matrix to fracture for the case of parallel plate is heavily dependent on the rock

thermal conductivity (λm). Hence considerable thermal front variation is observed in figure 6

with variation in λm. However, for the case of variable fracture aperture the heat transfer not

only dependent on the λm but also on the increased curvature of the fracture wall. Hence there

is no considerable change observed in thermal front propagation for the case of variable fracture

aperture for different values of rock thermal conductivity (λm).

Figure 7 shows the effect of various types of boundary condition (Dirichelt, Neuman – Expo-

nential Type Source, Neuman – Pulse Type Source, Neuman – Constant Flux Type Source) on the

thermal front propagation in fracture at a fixed average fracture aperture of b = 75 μm. Figure 7a

represents the effect of different types of boundary conditions on spatial variation of thermal

front for the case of the parallel plate model. Figure 7b represents the effect of different types of

boundary conditions on spatial variation of thermal front for the case of variable aperture model.

As observed from figures 7a and b, unlike what has been observed in solute/colloidal transport

(Batu & Genuchten 1990; Logan et al 1996; Allaire et al 2002), the sensitivity of boundary con-

ditions (injection condition) on the propagation of thermal fronts in a coupled fracture–matrix

system nearly remains insignificant. A very negligible change in spatial variation of thermal front

propagation along fracture can be observed in the vicinity of fracture inlet, while the location,

where it reaches unit relative temperature remain the same, irrespective of the boundary condi-

tions. This trend is observed for both variable aperture (figure 7b) and the parallel plate model

(figure 7a).

Figure 6. Spatial variation of thermal front propagation in fracture for different values of rock thermal

conductivity (λm) for a half fracture aperture of b = 75 μm.
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Figure 7. Effect of various types of boundary conditions on the thermal front propagation in fracture for

fracture–matrix system at a fracture aperture of b = 75 μm.

5. Conclusions

An implicit finite difference scheme has been used to investigate the propagation of thermal

front in single fracture–matrix system. Effect of variation of fracture aperture on the thermal
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front has been analysed by implementing sinusoidally and logarithmically varying fracture aper-

ture in the present study. Rock thermal conductivity and the coefficient of thermal conduction

are considered as a function of temperature. Effect of the boundary condition on the thermal

propagation is also studied. Further, sensitivity analysis of thermal conductivity of rock and half

fracture aperture have been analysed. The following conclusions were made from the combined

analysis.

(i) The numerical results suggest that conventional parallel plate model significantly under-

estimates the thermal front propagation along the fracture, while the proposed variable

fracture apertures using sinusoidal and logarithmic variations have a significantly different

thermal front as compared to the conventional parallel plate model.

(ii) There is greater amount of heat transfer at fracture–matrix interface for variable aperture

model as compared to parallel plate model due to increased curvature (undulated surface).

(iii) The thermal front propagation is sensitive to changes in fracture aperture. At small averaged

fracture aperture the heat transfer at fracture–matrix interface is very high (particularly for

variable aperture model) and the heat transfer decreases with the increase in fracture aper-

ture. This effect is more prominent for the case of the parallel plate model as compared to

variable aperture model, due to absence of any undulation in fracture aperture. At large frac-

ture apertures, both parallel plate and variable aperture model yield the same heat transfer

rate at fracture–matrix interface.

(iv) The heat transfer at the fracture–matrix interface for the case of parallel plate model is

greatly dependent on the rock thermal conductivity (λm) as compared to variable aperture

model, while the heat transfer rate at fracture–matrix interface for variable aperture model

is dependent on both variation (increased surface area) of fracture aperture and rock thermal

conductivity (λm), adding to an increased heat transfer.

(v) Unlike solute/colloidal transport in fracture–matrix system, different types of boundary

conditions (injection condition) has negligible effect on the heat transfer at fracture–matrix

interface for all the aperture models.
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