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Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric

pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and

equilibrium contact angles are obtained naturally from a single boundary condition in the analytical

energy optimization procedure. The numerical procedure also yields optimum energy shapes,

satisfying Young’s equation without the explicit imposition of a boundary condition at the plate. It

is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times

the capillary length. A related finding is that a range of existing solutions for long two-dimensional

drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume

display only one static solution. In contrast, it is known that axisymmetric drops can display

multiple solutions for a given volume. We demonstrate numerically that there is no limit to the

height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive

lobes forming a convergent series. The stability of such drops is in question, though. Drops of small

volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian

shapes, with a range of longer drops displaying a minimum in energy in the investigated space.

Axisymmetric Kelvin drops exhibit an infinite number of bifurcations. © 2010 American Institute

of Physics. �doi:10.1063/1.3494041�

I. INTRODUCTION

Often, one encounters pendant drops hanging from an

infinite solid surface. However, the body of work on this

geometry is far smaller than on drops hanging from a support

of fixed radius or from an orifice. In contrast to sessile drops

that can be made as large as one would wish, a pendant drop

larger than a certain volume cannot hang in a stationary fash-

ion, as we will demonstrate. Interestingly, while sessile drops

can be no taller than twice their capillary length, we will see

that pendant drops can be infinitely tall, in theory. Thus, an

infinite number of shapes of pendant drops are possible for a

given volume. A generalized boundary condition applicable

in several situations is presented. Such shapes are obtained

numerically without the explicit imposition of boundary con-

ditions at the solid plate.

We begin by briefly discussing some of the earlier stud-

ies on this problem. Using calculus of variations, Gauss, in

1830, unified the results of Young and Laplace to obtain

equations and boundary conditions describing drop shapes,
1

while Plateau
2

classified the solutions of the gravity-free

Young–Laplace equation according to geometry. Adam and

Bashforth
3

obtained gravity-distorted drop shapes. Kelvin
4

geometrically constructed menisci including the multiple-

lobed pendant drops now known by his name. We go forward

by almost a century to early numerical simulations, impor-

tant among which are those of Padday,
5

for axisymmetric

sessile and pendant drops and liquid bridges. Padday and

Pitt
6

calculated axisymmetric equilibrium shapes from the

first variation of energy and graphically examined their sta-

bility through the second variations of energy. More formal

calculations followed, from Pitts,
7,8

who derived the shape

and stability of two-dimensional and axisymmetric pendant

drops for various contact angles and showed that there is a

maximum in the volume that can be sustained. He showed

that drops are unstable in a regime where an increase in

volume is associated with a decrease in height. Boucher

et al.
9,10

carried out a similar analysis on pendant and sessile

drops and emergent and captive bubbles. They explored the

relationship between shape and contact-angle hysteresis.

Many properties of the solutions, including of Kelvin drops,

were elucidated by Concus and Finn.
11

Meanwhile, Michael and co-workers
12–14

conducted a

systematic analysis of the stability of two-dimensional drops

hanging from a fixed support or fixed orifice and axisymmet-

ric drops hanging from a fixed tube, which are discussed in

Sec. III D. Wente
15

carried out rigorous mathematical inves-

tigations whose conclusions include �i� that the drop height

increases monotonically with volume throughout the range

of stability, in agreement with Pitts;
8 �ii� that the area of

contact of the drop with the solid surface attains a maximum

before the volume does; and �iii� that the profile curve of a

stable pendant drop never contains more than one inflection

point.

Chesters
16

attempted to calculate the shape of a pendant

drop hanging from a tube as a first-order perturbation to a

circle. This approach was revisited by O’Brien
17

with an al-a�
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ternate formulation. Through the introduction of different

scaling and boundary layers, the shape of a pendant drop was

calculated using matched asymptotic expansions. Later on,

O’Brien
18

extended the theory to pendant drops with mul-

tiple necks �Kelvin’s drops�.
The recent approach of Snoeijer and Andreotti

19
for

sessile drops is particularly similar to the present, i.e., posing

the problem with free end points. By using a similar ap-

proach on pendant drops, we find that these can be much

more interesting than sessile. In particular, they can have

multiple minimum energy shapes at a given volume. More-

over, they have a different energy landscape, as we shall see.

To the best of our knowledge, studies of pendant drops hang-

ing from solid surfaces, which obtain shapes through an en-

ergy minimization procedure, all hold a fixed area of contact

with the solid. Correct drop shapes are then obtained by ad-

ditionally imposing Young’s relation at the solid surface. In

contrast, we fix only one parameter rather than two and allow

the second to come out of the solution. We could do this in

many ways, e.g., by keeping the volume fixed and allowing

the contact area to change or by keeping the contact area

fixed and allowing the volume to change. We choose the

former since it is natural and many features such as multiple

shapes are obtained directly rather than by an exhaustive

search. Drop shapes obeying Young’s relation emerge natu-

rally in our procedure.

II. DROP SHAPES OF MINIMUM AND MAXIMUM
ENERGY

We study both two-dimensional and axisymmetric drops.

The shape of a two-dimensional drop, i.e., an infinite cylin-

der whose cross-section is a drop, is possible to obtain ana-

lytically, whereas axisymmetric drops warrant numerical

computations. Since the analytical solution is often instruc-

tive, we study two-dimensional drops as well, although one

may not often encounter them in reality, except as remnants

of inverted rivulets and in some small-scale situations.

Consider a liquid drop suspended downward from a

horizontal solid surface, subjected to gravity and surface

forces. For a given drop volume, we begin by obtaining

shapes for which the energy is at an optimum. The solid-

liquid contact area is not predefined nor is the contact line

pinned. As sketched in Fig. 1, the bottom tip of the drop is

taken to be the origin of the coordinate system, with the

vertical coordinate z increasing upward. The shape of the

liquid-gas interface is described by x�z� or r�z�, where x for a

two-dimensional drop is the horizontal distance of the liquid-

gas interface from the z-axis and r is the corresponding radial

distance for an axisymmetric drop. Following Pitts,
7,8

we

write

E0 = �
0

h

���1 + xz
2 − �gx�h − z��dz + ��sl − �sg�� , �1�

where the total energy for a two-dimensional drop is 2E0 per

unit span. The solid plate is taken to be the base for potential

energy. The drop is characterized by its total height h and the

solid-liquid interface half-length �. The liquid density is �,

while �, �sl, and �sg, respectively, are the tensions of the

liquid-gas, liquid-solid and solid-gas interfaces. We nondi-

mensionalize the above equation by the capillary length Lc

��� /�g as the length scale and �Lc as the two-dimensional

energy scale. The functional E0 must be extremized subject

to the constraint of constant volume V.

Here we note one point of departure from earlier

works.
7,10

Whereas those studies specified the liquid-gas in-

terfacial contact length 2� to be held constant during the

minimization procedure, thus making the contact line pinned

in effect, we do not �as we should not for our problem!�
impose this additional constraint. In a typical problem of this

class, with the end point held fixed, one would need to

specify an additional boundary condition at this point. Thus,

in order to completely specify the shape, earlier studies im-

posed the equilibrium angle �e at the surface, where �e is

given by Young’s equation

�sl − �sg + � cos �e = 0. �2�

On the other hand, with the end point allowed to move,

no additional information needs to be supplied,
20

so our ap-

proach holds appeal in that the class of solutions of extre-

mum energy that we obtain automatically have Young’s con-

tact angle �e. Also, some additional features of the solution

space are revealed as we shall see below.

We consider a perturbed shape x̂=x+���z� where � is a

small parameter. We prescribe that the bottom tips of the

perturbed and the original drops coincide, as seen in Fig. 1.

Since the problem involves free end points, let the corre-

sponding changes in the end points be ��̂=�+�� , ĥ=h

+�H�. As detailed in the Appendix, a standard energy mini-

mization procedure gives the Euler–Lagrange equation

z −
1

r0

=
d

dz
	 xz

�1 + xz
2
 �3�

and the boundary condition

��

�H
	cos �s +

�sl − �sg

�

 = 0, �4�

where cot��s� is the slope xz at the solid surface.

The Euler–Lagrange equations offer a static drop shape

for every r0, so we reduce the solution space to a one-

dimensional space in the Lagrange multiplier, all of which

ensure force balance everywhere.
19

Shapes of minimum or

maximum energy among static shapes may then be picked

εH

x or r

z

λ or R

εΛ or (εR)

h

FIG. 1. Definition of coordinate system �x ,z� for two-dimensional and �r ,z�
for axisymmetric pendant drops. The perturbed shape is shown by the

dashed line.
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from these. This property is exploited in Sec. III A to adopt a

numerical approach. This approach is more elegant than

looking for minimum energy shapes by making arbitrary per-

turbations which may not satisfy force balance, such as that

of Pitts,
7

where the curvature at the bottom was not dis-

turbed. Pitts’s procedure would result in a minimum energy

for any trial shape, but a class of correct shapes was obtained

by imposing Young’s contact angle at the surface. However,

while the present analytical procedure yields correct extre-

mum energy shapes, we resolve the issue of whether the

energy of such shapes is at a maximum or a minimum nu-

merically. Care must be exercised in interpreting these re-

sults in terms of stability, as discussed later.

The above general boundary condition �Eq. �4�� offers

two possibilities corresponding to actual static drop shapes.

�i� If we set the quantity within the brackets to zero, we see

that �s is equal to the equilibrium contact angle �e, to the

automatic satisfaction of Young’s Eq. �2� of local surface

tension balance. We refer to these as Y solutions. �ii� If the

contact line is pinned due to surface roughness or chemical

heterogeneities, then by definition ��=0, illustrating that

drops sitting on nonideal surfaces need not satisfy Young’s

equation at the contact line. The explanation usually offered

for static drops not satisfying Young’s equation is that of

contact-angle hysteresis.
21

Wall roughness is particularly

simple to imagine as a cause for hysteresis: the fluid at the

triple-contact line adjusts its location very slightly to choose

a point on the surface where the microscopic angle is �e,

while maintaining the macroscopic angle at a different �s.

Moreover, since the curvature at any height z is uniquely

determined by r0, the perturbed solution cannot cross the

original one, i.e., ��z� cannot change sign in a given shape.

This implies that to attain a volume V, the perturbed drop

must be taller if the perturbation in r0 is negative and shorter

if otherwise, so H cannot be zero.

These conclusions are easily extended to axisymmetric

pendant drops. The energy functional of an axisymmetric

drop with height h and liquid-solid contact radius R, defined

in a coordinate system �r ,z� �Fig. 1�, when perturbed to a

nearby function r̂=r+�� with the end point moving to �R̂

=R+�	 , ĥ=h+�H�, we obtain the Euler–Lagrange equa-

tion describing the shape of drop as

z −
1

r0

= � rzz

�1 + rz
2�3/2

−
1

r�1 + rz
2�1/2� �5�

and the end-point condition

�	

�H
	cos �s +

�sl − �sg

�

 = 0. �6�

Again we obtain Y and pinned solutions by setting dif-

ferent terms in Eq. �6� to zero.

We have not yet resolved whether the solutions obtained

correspond to maxima or minima in energy. We do this nu-

merically, as discussed in Sec. III, where other features also

come to light.

III. RESULTS AND DISCUSSION

A. Two-dimensional drops

Equation �3� may be integrated
22

to give

dz

dx
= � 1

�1 − �z/r0� + 0.5z2�2
− 1�1/2

. �7�

The shape for each r0 is obtained by numerically integrating

Eq. �7� by a fourth order Runge–Kutta method and placing

the solid surface at the height h where the volume V is at-

tained. Here, the entire space of shapes has been reduced to a

one-parameter space in r0 since we know that any two-

dimensional or axisymmetric shape outside this family can-

not satisfy force balance which is a necessary condition for

an energy minimum. The liquid-gas and liquid-solid interfa-

cial areas and the center of mass of the shape were deter-

mined and used to calculate the surface energy and potential

energy, respectively. The total energy is then obtained as a

function of the shape factor r0
2 and a line search is employed

to obtain the minimum energy solutions along r0 for each

given volume. These solutions are shown in Fig. 2 in a

height-volume space. Note that the shape of a drop is inde-

pendent of interfacial tensions, but its energy depends on

their combination, appearing through �e. As in the analytical

calculations, the boundary conditions were never enforced,

but they emerged naturally during the minimization proce-

dure.

In Fig. 2, curves I–V show present extremum energy

solutions whose contact angle �s turns out to be equal to �e,

and which therefore belong to the Y branch. These lines

agree very well with those obtained by Pitts
7

by imposing

Young’s contact angle at the solid surface, except that Pitts

obtained two solutions for every volume, while the present

solutions terminate at the curve AFGH. Any point below this

curve corresponds to unphysical shapes which cross them-

selves, so we find that at low volumes only one solution

exists. Note that for contact angles close to 90°, the unphysi-

cal solutions �dashed lines� extend over a significant region.

The curve AF corresponds to limiting shapes where the drop

crosses itself at the solid surface, i.e., the contact area � is

zero, whereas drops on the curve FGH attain a zero width at

0 1 2 3 4
h

0

1

2

3

V

D

F
G

H

X XX

a bc

I, θ
e

= 0
o

II, θ
e

= 30
o

III, θ
e

= 70
o

IV, θ
e

= 90
o

V, θ
e

= 150
o

(a)

(b)

(c)

A

FIG. 2. Volume of extremum energy shapes as a function of height for 2D

drops. Curves I–V correspond to Y solutions of different contact angles.

Points below AFGH, including the dashed lines of Pitts �Ref. 7�, have un-

physical drop shapes. Drop shapes shown in the insets correspond to the

heights indicated by “a,” “c,” and “b,” all with a volume V=1.75. The shape

c sits on the dotted-dashed curve FD discussed in Sec. III D.
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some z�h. We thus conclude that all possible physical two-

dimensional drop shapes are contained within the closed re-

gion AFGHD0A.

B. Axisymmetric pendant drops

Following Boucher,
9

Eq. �5� is converted into three

coupled first-order equations with �, r, and z as parameters

dependent on s, the arc length from the origin,

d�

ds
=

1

r0

− z −
sin �

r
, �8�

where dr /ds=cos � and dz /ds=sin �. This approach avoids

zero and infinite slopes in the computation.

The same numerical procedure as for two-dimensional

drops was adopted here too. Similar conclusions are arrived

at, with the important difference that many shapes are pos-

sible for a given volume. In fact, in some range of volumes,

one can have an infinite number of possible shapes display-

ing minimum energy. This is because the azimuthal curvature

is now finite, ensuring that the drop never intersects itself.

The V−h profile of the shortest few of these drops is shown

in Fig. 3. The first Y limb and a part of the second at low �e

were already obtained by Pitts,
8

but again by pinning R and

imposing �e.

Unlike in the two-dimensional case, at higher �e, one

may have closed curves in the height-volume space; two

examples are seen in Fig. 3. A very large number of such

closed curves are possible �not shown�. These are remarkable

because they represent another basic difference between pos-

sible shapes for two-dimensional and axisymmetric drops:

axisymmetric drops of small volume can be very long. The

second curvature also provides the facility for the longitudi-

nal curvature to be nonmonotonic, so many-lobed, or Kelvin,

drops are possible. Of course these shapes may or may not be

stable.

C. Height of pendant drops

We show analytically that two-dimensional drops can

never be taller than 3.42 times the capillary length. We then

show numerically that the height of an axisymmetric drop

has no limit, but its volume is always finite.

For two-dimensional drops, Eq. �7� can be written as

z =
1

r0

+ � 1

r0
2

− 4 sin2	�s

2

�1/2

�9�

so the maximum height hmax=2 /r0 occurs when �s=0. On

examining Eq. �7� by putting the numerator and denominator

to zero separately to obtain the locations of zero and infinite

slopes for zx, one can deduce that �Fig. 4� �i� when 0
r0


0.5, moving upward in z, � will go through � /2 followed

by a zero, without a neck, �see r0
2=0.24 in Fig. 4�; �ii� when

0.5
r0
�0.5 between two points where �=� /2, a saddle

point will exist. These are followed by �=0, so a neck is

seen, �see r0
2=0.36 in Fig. 4�; and �iii� when �0.5
r0, the

drop reaches zero slope with out going through any infinite

slope. �see r0
2=0.55 in Fig. 4�. For all cases, zx has zeros at

z=0 and z=2 /r0
2. In case of �i�, zx has additional zeros at z

= �1��1−4r0
2� /r0 and no drop can be taller than the lesser of

these, which restricts the drop to h
2. Hence arbitrarily

small r0 does not suggest arbitrarily tall drops. Also, self-

crossing drops are not real solutions and should be excluded

from consideration, which has often been overlooked.
7,14

In

cases �ii� and �iii�, a zero would occur at z
8, but the self-

crossing condition occurs at a lower height, as seen below.

Equation �3� may be integrated
7

to give

x = 
1

r0

��2r0
2 − 1�u + E�u4r0

2�� , �10�

where u=F� �

2
4r0

2� and F and E denote, respectively, elliptic

integrals of the first and second kind. The tallest drop is one

which barely grazes itself, i.e., achieves x=0 with �=� /2 at

x=0. Equation �10� can be solved to yield r0
2=0.3419 for

such a drop, so hmax=2 /r0=3.420 is the maximum height

possible for a two-dimensional drop. This value matches

very well with the numerical height at point H in Fig. 2. The

calculations were repeated for various �s using MATH-

EMATICA to generate the curve FGH in Fig. 2.

A typical shape of a Kelvin drop in also shown in Fig. 4

and possible solutions up to some height for Kelvin drops of

�e=30° are shown in Fig. 5. A larger h corresponds to a

smaller r0, enabling the drop to sustain larger hydrostatic

pressures. At every neck, �=90°, so at the jth neck, Eq. �5�
yields

0 1 2 3 4 5

h

0

2

4

6

V
/π

θ
e

= 5
o

θ
e

= 20
o

θ
e

= 50
o

θ
e

= 70
o

FIG. 3. Volume vs height for extremum energy axisymmetric pendant drops

of the Y class obtained during the numerical minimization of energy along

with other solutions. Note that the condition �s=�e was not explicitly

imposed.

0 4 8

x

0

4

8

z

r
0

2
= 0.02

r
0

2
= 0.55

r
0

2
= 0.36

r
0

2
= 0.24

-2 0 2

FIG. 4. Solutions of Eq. �3� for various values of r0 for two-dimensional

drops. Once an r0 is fixed, the only possible shapes for any volume are

dictated by the curves on the left. Thus, to obtain a shape for a given

volume, one merely draws a horizontal cut on the curve to enclose the

desired volume. Shown on the right is a typical Kelvin drop, solution

of Eq. �5�.
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rnj�1 − r0znj� = r0. �11�

Here, the suffix “n” denotes the neck. This shows that each

bulge is uniquely determined by r0 and j, i.e., there is no

similarity solution relating consecutive bulges. O’Brien
18

calculated the first few bulges through asymptotic matching.

While it is evident that the volume tends to converge at

about 2.5�, Fig. 5 does not make it clear whether the height

is converging as well. Figure 6 shows the variation of hh and

hl �heights at the highs and lows in volume, respectively�
with the index j of the Y cycle. Both grow as j1/2, so there is

no limit on the height of an axisymmetric drop, although the

ratios of consecutive heights hh�j+1� /hhj and hl�j+1� /hlj tend

toward unity. On comparing drops with j bulges and one

with j+1, we see that the contribution to the height of each

consecutive bulge is j−1/2. The radius of each consecutive

bulge also goes down roughly on this scale, so the volume of

each additional lobe is �j−3/2. The total volume of the drop

is thus given by a convergent series, ensuring that it is finite.

D. Stability and minimum contact area shapes

As detailed in the introduction, the stability analysis of

two-dimensional drops has been carried out by various

authors.
8,12

The region to the left of the volume maxima in

Fig. 2 is found to correspond to energy minima, whereas it is

believed that the region to the right of the volume maxima

consists of shapes unstable to two-dimensional perturbations.

The line joining the maxima in the V−h plane, shown in Fig.

7 by DBJ, is thus a locus of bifurcation points separating

stable and unstable solutions. This, however, as we show

below, is not the only bifurcation possible.

Before that, a word of caution about the present proce-

dure is in order. Our analytical procedure ensures that the

possible shapes we have obtained are all of optimum energy.

About the stability of these optimum energy shapes, how-

ever, we can only obtain a partial answer from our numerical

procedure. This is because, for a given �e, we restrict our

investigations to a one-dimensional space of all possible

Laplacian shapes. When we obtain a maximum in the energy,

we can be sure that the shape is unstable. However, a mini-

mum in energy does not ensure stability, since there is a

possibility of non-Laplacian shapes of lower energy, i.e., the

shape could be dynamically unstable. Second, the drops may

be unstable to nonsymmetric perturbations. Michael et al.
12

showed that two-dimensional drops hanging from a fixed

support could be unstable to three-dimensional perturbations.

Such a study needs to be conducted for drops hanging from

an infinite solid plate.

1. Two-dimensional shapes

Although Pitts mentioned that some range of longer

drops appeared stable, he felt that the result was false due to

the very restrictive assumptions he made about the nature of

the perturbations. Without his assumptions we obtain a re-

gime of energy minima among long drops. Consider curve

III, for example, in Fig. 7. A computation of the energies

shows that the left limb AB consists of energy minima, in

accordance with accepted wisdom. However, only a portion

of BEG, namely, BE, contains energy maxima, whereas the

leg EG consists again of energy minima. At any other contact

angle as well, the picture is similar, with unstable static

shapes to the right of the maximum volume solution, up to

the curve FECD, to the right of which we again obtain en-

ergy minima. The curve FECD thus describes another locus

of bifurcation points. This curve also corresponds to shapes

with a minimum in contact area �MCA� subtended at the

solid surface. In other words, if we consider all shapes along

a horizontal line in Fig. 7, i.e., all shapes of a given volume,

the shape with the smallest � will occur at the intersection of

the horizontal line with the curve FECD. This can be seen

0 5 10 15 20 25

h

0

1

2

3

4

5

V
/π

FIG. 5. Kelvin’s drop solutions for �e=30° illustrating the existence of

multiple configurations for certain volumes.
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visually in the drop shapes for V=1.75 shown in Fig. 2. We

may thus summarize by dividing the energy landscape into

four sections for a given Young contact angle. �i� The region

to the left of the maximum in the V−h plot, i.e., height

increases with increasing volume, corresponds to minimum

energy shapes. �ii� Shapes in the region lying between the

maximum in the V−h plane and the MCA shape on FECD,

i.e., the shaded region in Fig. 7 correspond to energy

maxima. Here the height decreases with increasing volume

and so does the contact area at the solid surface. �iii� The

region contained within FECDHGF again consists of energy

minimum shapes. In this region, the height decreases with

increasing volume, but the contact area with the solid in-

creases. The stability of these shapes to dynamics perturba-

tions needs to be investigated. �iv� The region below AFGH

consists of unphysical shapes.

2. Axisymmetric shapes

Typical shapes for axisymmetric drops are illustrated in

Fig. 8. The repeating pattern of limbs �Figs. 3 and 5� sug-

gests the existence of more than one set of bifurcations. In

fact, each pair of limbs is associated with a minimum contact

area locus, which also bifurcates the neighborhood as before;

this is confirmed in Fig. 9. Since we find regions of static

stability at all Y indices, it is intriguing why we do not see

Kelvin’s drops in nature. Apart from dynamic instability,

since the energy wells are progressively shallower for in-

creasing index, nonlinearities can become important. Thus

the presence of extraneous forces, even if small, could play

spoilsport, especially at the extremely narrow neck regions.

Three-dimensional drops offer an additional possibility of

nonaxisymmetric shapes arising from the extra degree of

freedom to choose two different radii of curvature at the

origin. However, we, following the literature,
6,8

make the

hypothesis that the symmetry of the problem should be re-

flected in the solutions as well and that nonaxisymmetric

shapes are less likely minimum energy candidates. Detailed

studies on stability to nonaxisymmetric perturbations are per-

haps warranted now to prove this point and an ongoing effort

is directed at these. Such studies have so far been restricted

to pinned/fixed contact area pendant drops.
14

For example,

Michael et al.
13

showed that ahead of the maximum in vol-

ume, axisymmetric drops hanging from a tube are stable to

axisymmetric and nonaxisymmetric perturbations below a

contact radius of 3.219. We expect that drops hanging from

an infinite solid plate, being able to take up the most favor-

able contact area, are likely to be more stable to nonaxisym-

metric perturbations.

3. A word of caution

We notice that Eq. �4� can also be satisfied if ��=0, i.e.,

if we restrict ourselves to a special class of perturbations

which contain no terms of O��� in �, i.e., when � is at an

extremum. Since one can always create a perturbation that

contains terms of this order, the minimum energy shapes thus

obtained would be spurious. In fact, the entire MCA curve

FECD would correspond to spurious energy extremum

shapes for any surface tension because by definition, MCA

has a minimum area and no terms of O��� exists in �.

A final word on pinned solutions. Equation �1� is of the

form �Idz+a�b=0, where the integrand I and the product,

given by Eq. �4�, have to each vanish. Looking for a pinned

solution with a particular � will give us only the condition on

I, leading to a contact angle usually different from �e. Sev-

eral authors
7,9

have in effect arrived at these shapes and, by

imposing b=0 by hand, obtained the Y solutions. However,

we do not have any externally imposed conditions and re-

cover all these solutions. Also, pinned solutions are the result

of macroscopic energy minimization where the only relevant

length scale is the capillary length. At smaller length scales,

intermolecular interactions manifest themselves in various

ways at the contact line and a generalized Young’s equation

may be adopted.
23,24

IV. SUMMARY

A general energy minimization procedure is adopted for

studying static shapes of two-dimensional and axisymmetric

pendant drops supported by a solid wall. From this, drops

with both �i� pinned contact lines and �ii� equilibrium

contact-angle solutions emerge naturally as the only possible

optimum energy solutions. Though sessile drops have been

analyzed for variable contact area,
19

the present approach is
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FIG. 8. Typical shapes of axisymmetric drops. �a� V=2� , �e=50°,

�b� V=3� , �e=50°, �e� V=3.5� , �e=30°, and �f� V=4.5�. Shapes sub-

tending a minimum in contact area are shown in �c� V=3� , �e=45.2°,

�d� V=3.5� , �e=39.1°, �g� V=4.5� , �e=26.8°, and �h� V=5� , �e

=20.7°.

FIG. 9. Energy landscape in height-volume space for �e=45°. Deep red

corresponds to hills �energy maxima� and deep blue to valleys �minima�.
The neighborhood of the bifurcation point is enlarged in the inset showing

an exchange of stabilities. For ease of visualization, the energy in the inset is

normalized between 0 and 1 for each volume.
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the only one to our knowledge which is valid for pendant

drops hanging from a surface on which they can choose the

minimum energy. Not only do the possible solutions appear

spontaneously and reveal various features of the solution

space, the approach can be extended toward analytical solu-

tions for patterned surfaces.

A range of solutions of long drops obtained by earlier

workers is shown to consist of unphysical shapes, so at small

volumes, a two-dimensional drop has a unique static shape.

This is confirmed analytically by showing that the maximum

height achievable by a static two-dimensional drop is 3.42Lc.

It is obtained numerically that axisymmetric drops, on the

other hand, can be infinitely long, but their volume must

remain finite. While a two-dimensional drop can have, at

most, two static solutions of a given volume, an axisymmet-

ric drop can adopt infinitely many shapes. A range of longer

two-dimensional drops is found to be of minimum energy in

a one-dimensional space of Lagrange multipliers and stable

to two-dimensional perturbations. In this range, for a given

contact angle, the drop height decreases with increasing vol-

ume, while the contact area with the solid surface increases.

There is thus an additional bifurcation curve between un-

stable and stable solutions, corresponding to minimum con-

tact area shapes. In axisymmetric drops, over a small range

of volume, repeated sets of left and right Y limbs are pos-

sible, with repeating regions of minimum and maximum en-

ergy separated by bifurcation curves. The dynamics of these

drops when subjected to forces, as well as their stability to

three-dimensional perturbations, are being studied.
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APPENDIX: ENERGY MINIMIZATION

The extremization of a functional with variable end

points is conducted in the standard manner prescribed, for

example, by Brunt.
20

We give here the essential steps toward

obtaining Eqs. �3�–�6�.
The functional E0 must be extremized subject to the con-

straint of constant volume V, i.e., the first variation of

E0 = �
z=0

z=h

G�z,x,xz�dz + �V �A1�

with respect to x�z� must be zero. Here V=�0
hxdz is referred

to as volume, as per convention. � is the Lagrange multiplier,

xz denotes dx /dz, and

G � �1 + xz
2 +

�sl − �sg

�
xz + xz − V − �x . �A2�

We consider a perturbed shape x̂=x+���z�, where � is a

small parameter. We prescribe that the bottom tips of the

perturbed and the original drops coincide, as seen in Fig. 1.

Let the corresponding changes in the end points be

��̂=�+�� , ĥ=h+�H�.
The energy minimization functional defined as

E�x̂� − E�x� = �
0

h+�H

G�z, x̂, x̂z�dz − �
0

h

G�z,x,xz�dz .

After a few mathematical manipulations, we get

E0�x̂� − E0�x� = ���
0

h

�� �G

�x
−

d

dz
	 �G

�xz


�dz

+ ���
�G

�xz

+ H	G − xz

�G

�xz


��
z=h
� . �A3�

For the functional E0 to be stationary at x�z�, terms of

O��� should add to zero in the above expression. The pertur-

bation ��z� can be chosen arbitrarily, which demands that the

integrand be zero. This gives the Euler–Lagrange Eq. �3�. A

hydrostatic force balance indicates that �=1 /r0, where r0 is

the radius of curvature at the origin, assigning a physical

meaning to the Lagrange’s multiplier. Defining cot ��xz,

Eq. �3� can be written as

z = 	 1

r0

− cos �
d�

dx

 . �A4�

To satisfy Eq. �A3�, in addition to the force balance, we

must have

��	 ��

�H
− xz
 �G

�xz

+ G��
z=h

= 0, �A5�

assuming �H�0.

Noting that the volume may be expressed as
7

V = h� −
�

r0

+ sin �s, �A6�

where cot��s� is the slope xz at the solid surface, we get Eq.

�4� as the boundary condition.

For axisymmetric pendant drops, the energy functional

�Fig. 1�, will have the same form as in Eq. �A1� but with

G � 2�r��1 + rz
2 +

�sl − �sg

�
rz� + �r2�z −

1

r0

� − V .

�A7�

The appropriate value of the Lagrange multiplier has been

used. In this case, volume may be determined as

V = �R2h − �R� R

r0

− 2 sin �s� . �A8�

As before, Eqs. �5� and �6� can be recovered.
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