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Abstract

The ribosome is an ancient machine, performing the same function across organisms.

Although functionally unitary, recent experiments suggest specialized roles for some ribo-

somal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to

decode genetic information in a context dependent manner. We show through large data

analyses that although many ribosomal proteins are essential with consistent effect on

growth in different conditions in yeast and similar expression across cell and tissue types in

mice and humans, some ribosomal proteins are used in an environment specific manner.

The latter set of variable ribosomal proteins further function in a coordinated manner form-

ing modules, which are adapted to different environmental cues in different organisms. We

show that these environment specific modules of ribosomal proteins in yeast have differen-

tial genetic interactions with other pathways and their 5’UTRs show differential signatures

of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in

higher metazoans such as mice and humans, different modules of ribosomal proteins are

expressed in different cell types and tissues. A clear example is nervous tissue that uses a

ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our

results suggest a novel stratification of ribosomal proteins that could have played a role in

adaptation, presumably to optimize translation for adaptation to diverse ecological niches

and tissue microenvironments.

Introduction

A single celled organism displays a range of phenotypes to survive in diverse environments. In
complex multicellular organisms, in addition to the external environment, tissue specific cell
types display specializedmechanisms to regulate phenotype in local tissue environments.
Much of the research in biology has been directed towards understanding the basis of the infor-
mation flow that gives rise to these diverse phenotypes. This has resulted in the identification
of many regulatory processes [1,2] which fine-tune transcriptional expression and modulate
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the translation of mRNA into proteins [3,4] in response to external and environmental or tis-
sue specific signaling cues. However, in spite of its essential role in this cellular information
flow, the ribosome has always been regarded as an inert participant in the information flow
that regulates cellular and tissue states.

One may ask, “Why is it that, in spite of tantalizing clues to the contrary, this belief in an
invariant, environment independent ribosome has not been significantly challenged?” A possi-
ble reason might be that the high degree of conservation of ribosomal proteins across the three
domains of life, viz., Archaea, Bacteria and Eukarya, and the slow evolution rates of ribosomal
protein sequences [5] seem sufficient evidence for an essential, invariant ribosome, which plays
no regulatory role in cells and tissues or in adaptation and speciation.

However, thermophiles have ribosomes that function at extreme temperatures, suggesting
that the ribosome has been adapting to the environment for over 3 billion years. There are dif-
ferent types of ribosomes in each domain of life, and additionally, the mitochondrial ribosome
distinct in composition from the cytosolic ribosome [6]. It is therefore worth investigating
whether the cytosolic ribosome has also evolved ways to optimize its composition in response
to environmental cues. Testing the ribosomal composition at a protein level is technically chal-
lenging, but significant evidence has been accumulating from the study of ribosomal proteins
that argues for a variability in the composition of the ribosome [7–9]. Deletion experiments in
yeast show that different ribosomal proteins have a differential effect on replicative lifespan [8].
Transcriptional studies in mice [7] and humans [9] show tissue specific expression of ribo-
somal proteins. Specific ribosomal proteins are known to be associated with different types of
cancers [10,11] and mutations in specific ribosomal proteins result in a class of disorders called
ribosomopathies [12,13]. Whereas all these mutations have common effects across develop-
ment, some cause developmental disorders in specific tissues [12,13], suggesting tissue specific-
ity of the function of at least some ribosomal proteins.

To date, most of these effects have been ascribed to extra-ribosomal functions of ribosomal
proteins [14,15]. However, at least some specialized translation by the ribosome is controlled
by specific ribosomal proteins [7,16,17], showing that the extra-ribosomalnature of such con-
trol is not generic.While preliminary, these studies suggest that ribosomeswith variable com-
ponents may exist to optimize translation, depending on environmental and signaling cues
[18–20]. Analysis of the stoichiometry of ribosomal proteins in yeast and embryonic stem cells
has demonstrated differential protein composition of ribosomes in different conditions [21],
further substantiating the possibility of ribosomal variability at a protein level.

In this paper, we question the unitary nature of the ribosomewithin an organism across
environments by analyzing different properties of ribosomal proteins. Does the observed envi-
ronment and tissue specific variation in ribosomal proteins represent regulation of the ribo-
some that is important in evolution and or adaptation? In a changing environment, do all
ribosomal proteins have similar properties, or are specific ribosomal proteins used in an envi-
ronment dependent manner? In this paper we begin to address these questions by uncovering
evidence from data analyses of yeast deletion [22] and interaction [23] datasets, and the
ENCODE [24] and GTEx [25] expression datasets of mice and humans.

Materials and Methods

Yeast Data

Growth data and associatedmicroarray files for a genome-wide yeast homozygous deletion col-
lection [22] for all environments were downloaded from http://chemogenomics.stanford.edu/
supplements/global/download.html. The normalized gene intensity values from the microarray
data were used for analysis. The data of the replicates for each environment were collated using
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their median. The intensity values were scaled to zero mean and unit variance across all genes
and then compared between the rich growth (YPD) and a stress condition, as well as between
the pairs of stress conditions (S1 Table). A set of 68 non-essential structural ribosomal proteins
with microarray tag intensity greater than 2 standard deviations from the background intensity
was used for the analysis.

Thirty four yeast-specific pathways, known to be involved in growth and stress resistance,
described inWikipathways database [26] were downloaded from http://www.wikipathways.
org/index.php/WikiPathways (S2 Table).

Clustering of genetic interactions in yeast

Phenotype data of pair-wise quantitative genetic interactions of 1,712 yeast genes derived from
SGA [23] dataset was downloaded from http://drygin.ccbr.utoronto.ca/index.html along with
their genetic interaction and P values. Genetic interactions of intermediate stringency
(P< 0.05) were selected for our analysis.

In order to cluster the genes into different genetic clusters based on their double-deletion
interactions, an adjacencymatrix with the interaction scores for the genetic interactions was
created from the above data. Pearson correlation among the genes was calculated based on
their double deletion interaction scores. Genes with r2 > 0.2 were grouped in the same cluster
(S2 Table). The threshold of 0.2 in assessing significance in r2 was chosen using a permutation
test in the original study [23]. The Markov Cluster (MCL) algorithm [27] was applied, using R
package functionmcl, to get highly connected clusters of genes, with an inflation factor of 1.4,
as used by the original study Costanzo et al. [23].

Analysis of clusters and pathways in yeast

MCL clusters with 5 or more genes were considered for further analyses (S2 Table). The F-test
statistic, BF-test statistic [28], P values and variances were computed on the standardized phe-
notype data derived from the above-standardizedHillenmeyer dataset. Genes in each cluster in
each condition were compared to their respective YPD control condition. An identical analysis
was carried out for each of the thirty-four pathways downloaded fromWikipathways [26].
Only pathways with 5 or more genes were used (S2 Table). A total of 90 MCL clusters and
pathways were considered further and they were associated with several functional categories
relevant for growth in yeast, such as known biochemical pathways (TCA, glycolysis), signaling
pathways (PKA, MAPK), protein complexes (ribosome, proteasome) and a large number of
various other genetic networks (S2 Table).

Hierarchical clustering of cytoplasmic ribosomal proteins in yeast

The genes coding for cytoplasmic ribosomal proteins (n = 68) were considered in 26 environ-
ments of the above-standardizedHillenmeyer dataset. A hierarchical clustering of both the
environments and the genes were carried out using a Euclidean distance metric using the data,
which was standard normalized (mean zero, variance unity) across the ribosomal protein
genes.

Enrichment of genetic interactions in Clusters A, B and C

Enrichment of GO categories was carried out in the 121 genes identified to interact with at
least 10 out of 65 ribosomal proteins (S3 Table). These 121 interactors interacted either posi-
tively or negatively with ribosomal proteins, with a few genes showing both positive and
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negative interactions (S3 Table). To identify genetic interactors specific to each Cluster, genes
interacting with>10% of the ribosomal proteins in each cluster were identified.

Phenotyping single deletions of yeast ribosomal proteins and their

deletions with GCN5 deletion in various environments

Single ribosomal protein and regulatory gene deletions of S288c background (BY4741) were
obtained from the haploid genome-wide deletion collection library [29] (GE Healthcare Dhar-
macon Inc.). Additional double-gene deletions were generated using a previously described
protocol [30]. SK1 wild type and deletion strains were obtained fromWilkening et al. [31].
Strains were phenotyped in YPD, YPD+Menadione (50μM) and YPD+CdCl2 (10μM). Spot
dilutions, ranging from 10−3 to 10−8 dilutions were incubated at 30°C and phenotyped at 24, 36
and 48h. The strain and primer list is given in S4 Table.

Sequence analysis of coding and 5’UTR regions in SGRP collection

S. cerevisiae and S. paradoxus ribosomal protein and control gene sequences from the SGRP
strains [32] were downloaded from http://www.moseslab.csb.utoronto.ca/sgrp/blast_original.
Sequence alignments, estimation of the maximum likelihood tree (1,000 permutations) and
nucleotide diversity were performed using MEGA 6.06 [33] with default parameters (S5
Table).

For the three gene clusters based on the interactionmodules, the nucleotide diversity in the
coding and promoter regions of the genes in each cluster was evaluated using Shannon Entropy
function as a metric. The sequences of the 5’UTR and coding regions of each gene correspond-
ing to the different strains were aligned separately using the softwareMUSCLE [34] with
default parameters. In the aligned set of sequences for each gene, the mutated sites were identi-
fied, and corresponding to each kind of base at the given site, were assigned a value,

pi ¼
Number of sequences which base of kind i present at given site

Total number of sequences in the aligned set

Here i = 1, 2, 3, 4 corresponds to A, T, G, C respectively.
The Shannon Entropy at each mutation site was computed using the standard definition:

H ¼ �
X

i
pilog2

pi

Variations within a given sequence set can occur in two principal ways: (i) variations in the
proportion of bases at any given mutation site, and (ii) variations in the number of sites of
mutations. The simplest quantity that accounts for both these is the sum of the H values for all
the mutation sites. A higher value for the sum would indicate greater nucleotide diversity in
the corresponding 5’UTR or coding region respectively for each gene across the different
strains. To eliminate any length bias in the comparisons, the sum of the H values was normal-
ized by the length of the aligned sequences for each 5’UTR or coding region (S5 Table).

Prediction of transcription factor binding sites

The database YEASTRACT [35] was used to download known transcription factor (TF) bind-
ing sites of the various ribosomal proteins and to predict potential binding sites on UTR of
ribosomal proteins of different SGRP strains. Of the 700 TFs reported in YEASTRACT, 216
have been shown to experimentally bind to the promoter region of at least one ribosomal pro-
tein present in the three Clusters identified in our study (S6 Table). These 216 TFs were
enriched for various signaling pathways and chromatin remodeling complexes (S6 Table),
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substantiating the enrichment of chromatin remodelers among the positive genetic interactors
of ribosomal proteins. Of these 216, the TFs binding exclusively to ribosomal proteins in Clus-
ter A, B and C were identified.

Analysis of human and mouse ENCODE and GTEx data

Tissue specific count (transcripts per million or TPM) data for human and mouse were down-
loaded from ENCODE (https://www.encodeproject.org/), and mapped to Entrez genes using
annotation packages org.Hs.eg.db and org.Mm.eg.db in R. The genes that were not expressed in
any replicate were discarded. Replicates in which an unusually high (as S1 Fig) fraction of
Entrez genes were not expressed were discarded as well. In the remaining replicates, to elimi-
nate systematic error, the median of all genes was normalized to unity in each replicate by
dividing the count for all the genes by the median count in each replicate array. These median
adjusted TPM values were log transformed to obtain the final expression X of each gene in
each replicate as follows:

X ¼ log
2
ð1þ 1023�median adjusted TPM value of the gene in the replicateÞ

This normalization ensured that genes that were not expressed at all were mapped to X = 0,
and the median of all genes in a replicate was mapped to X = 10. The mean and standard devia-
tion (sd) of expression levels over replicates was computed for each gene-tissue pair to generate
a distribution of x = log10(sd/mean) for human and mouse data respectively (S1 Fig). Based on
these distributions cutoffs xh and xm were established and the gene-tissue pair was excluded
from further analysis if x was greater xh ~ -0.4 and xm ~ -0.6 for human and mouse data respec-
tively. For the gene-tissue pairs that passed this check, the expression of a gene in a tissue was
defined as the mean over replicates. If a gene had to be excluded in many tissues, then that
gene was excluded altogether. Sixty-six ribosomal proteins in 110 tissues in humans (S7 Table),
and 42 ribosomal proteins in 18 tissues in mice (S8 Table), passed this filter. The R package
pvclust was used to perform bootstrapping [36] of hierarchical clustering of ribosomal proteins
and tissues in mouse and humans. Similar filtering was performed for GTEx data. GTEx data
consists of RNAseq data (RPKM) of 54 tissues from 544 donors amounting to a total of 8,555
samples were obtained from GTEx (http://gtexportal.org/).Only the Ensembl genes annotated
as “protein_coding” in Ensembl biomart database were analyzed. The data was median
adjusted as explained above, and log normalized as log2(1+1023�median adjusted RPKM).
Expression of each gene-tissue pair was calculated as explained above, and gene-tissue pair
with xg > 0.1 were excluded from the data. Seventy-nine ribosomal proteins in 54 tissues
passed this filter (S9 Table).

Results

Phenotypic variability of ribosomal proteins in yeast

In all organisms, the ribosome is a ribonucleoprotein complex composed of two subunits each
with an RNA core and large number of ribosomal proteins. In eukaryotes, the 60S large subunit
consists of 46 proteins, and the 40S small subunit consists of 33 proteins [37]. In yeast that has
undergone whole genome duplication [38], most of the ribosomal proteins (paralogs) are
duplicated, as a result of which it contains 137 ribosomal proteins, of which 107 are non-essen-
tial [22].

Deletion collection in yeast allows testing of phenotypic effect of deletions of non-essential
genes in yeast in diverse environments. In order to identify genes which show maximum phe-
notypic variability across environments, we reanalyzed deletion phenotypes for 4,769 single
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gene deletions grown in 293 diverse environments using a previously published dataset [22]
(S1 Table) for all genes, including ribosomal proteins. The surprising observationwas that
across all yeast genes, deletions of ribosomal proteins had the highest differential effect on
growth in different environments, i.e. no effect in some environments and strong effect in oth-
ers. Among the 191 genes with variance σ2> 0.8 across the 293 environments, components of
the ribosomewere significantly enriched (21/191, P< 0.01, S10 Table, S2 Fig). Fourteen out of
these 21 genes belonged to the large ribosomal subunit. These 21 genes contain only one para-
log of the ribosomal proteins, either A or B, indicating a possible but small differential role of
paralogs in responding to environmental heterogeneity. Only ribosomal protein RPL34 was an
exception to this where both paralogs—RPL34A and RPL34B showed high phenotypic
variance.

To test whether this phenotypic variability was a non-specific cellular effect or was specific
to the ribosome, we compared phenotype variability in growth for deletions of genes in 90 dif-
ferent pathways and protein complexes across 293 stress conditions versus growth in rich
media (YPD). These 90 pathways and complexes were defined using both a biased (Wikipath-
ways) [26] and an unbiased (SGA clustering) [23] approaches (seeMethods) and included sig-
naling pathways such as the MAPK and Ras/PKA pathway, protein complexes such as the
proteasome and ribosome, cellular processes such as chromatin remodeling complexes and
vesicular transport machinery, etc. (S2 Table). Differences in variance of a pathway or a com-
plex between stress and YPD indicate variable roles of its constituents in different conditions.
High correlation of constituents of a pathway between stress and YPD would indicate that
independent of the essentiality of the pathway; different constituents have similar functions in
both conditions. Moreover, a higher variance in YPD compared to stress would indicate that
the constituents of the pathway show a more diverse response in YPD but show similar pheno-
type in stress (Fig 1A). Such a co-ordination of stress specific genes has previously been
observed [39] in multiple stresses where the whole pathway is essential to respond to the stress.
On the other hand, higher variance of the pathway in stress compared to YPD would indicate
that different components of the pathway have differential roles in stress and therefore func-
tion in a different manner than in YPD (Fig 1B). Deletions of constituent proteins in 13 path-
ways showed a significant difference in variance in 3 or more stress environments compared to
YPD (P< 0.01 by Brown Forsythe test, S2 Table, S2 Fig), with the higher variance in YPD in
most cases, showing that the pathway was essential in stress. Additionally, constituent of these
pathways showed high correlation of phenotype across YPD and stress indicating that the
functional hierarchy of the genes was conserved (functional homogeneity), but the phenotypic
contribution of the module increased during stress, reducing phenotypic variance. In contrast,
for the cytoplasmic ribosomal proteins, there was a significantly higher variance in 28 stress
environments compared to YPD (S2 Fig, S2 Table), suggesting that ribosomal proteins are dif-
ferentially used in the stress condition. Unlike other pathways, poor correlation was observed
between phenotype of ribosomal proteins across YPD and stress, indicating overall functional
heterogeneity in stress and YPD (Fig 1B). These results independently show that among differ-
ent pathways, deletions of genes in the ribosomal pathway has the greatest effect on growth in
stress versus rich media, suggesting a unique property of the ribosomal genes that they are the
most variable proteins in the cell when comparing diverse environments. A heatmap of growth
for single deletions of the 68 ribosomal proteins with consistent replicate data in 25 stress con-
ditions and YPD (Fig 1C) reinforces the above results and shows that a number of these ribo-
somal proteins have high phenotypic variability, i.e. that they are required for growth in some
environments but expendable in others.

We next asked whether these ribosomal proteins have different phenotypic profiles across
environments, i.e. whether they work independently, or whether they formmodules, whose

The Modular Adaptive Ribosome

PLOS ONE | DOI:10.1371/journal.pone.0166021 November 3, 2016 6 / 23



The Modular Adaptive Ribosome

PLOS ONE | DOI:10.1371/journal.pone.0166021 November 3, 2016 7 / 23



constituents show coordinated regulation across different environments. A clustering analysis of
the Pearson correlation of these ribosomal proteins across environments showed functional
modularity (Fig 2A) in the form of three distinct clusters (S11 Table). Ribosomal proteins in
Cluster 1 were both highly correlated, enriched in large subunit proteins and had high pheno-
typic diversity across environments. On the other hand, proteins in Cluster 2, although highly
correlated and important for growth across most environments, were enriched in small subunit
and pre-ribosomal components (important for ribosomal assembly), which explains the constitu-
tive growth defect when these proteins were deleted (S10 Table). Proteins in Cluster 3, however,
showed low correlation amongst themselves and were important in different environments. The
conclusion that emerges from this analysis is that subsets of ribosomal proteins in Cluster 1 act
together in diverse environments, whereas proteins in Cluster 2 act together in most environ-
ments. Proteins in Cluster 3 on the other hand, seem to play specialized roles in specific
environments.

These results strongly suggest that the yeast ribosomal proteins do not function in a uniform
manner when the environment is varied.While this environmental variability of deletions of
ribosomal proteins has previously been observed,we have identified a novel underlyingmodu-
larity among these ribosomal proteins, potentially to optimize yeast growth in different

Fig 1. Phenotypic variability of yeast ribosomal proteins. (A) Growth of deletions of DNA repair cluster genes (black

dots) in rich medium YPD (x-axis) versus a DNA damaging agent, cisplatin (y-axis). (B) Growth of deletions of ribosomal

proteins (black dots) in rich medium, YPD (x-axis) versus an oxidizing stress, Cadmium chloride (CdCl2) (y-axis). (C)

Hierarchical clustering heat map of normalized growth of yeast strains for 68 single deletions of ribosomal proteins in 26

environments. The red arrow indicates YPD (rich medium).

doi:10.1371/journal.pone.0166021.g001

Fig 2. Differential modules of ribosomal proteins in yeast. Hierarchical clustering of Pearson correlations among ribosomal proteins for (B) normalized

growth from single deletion of ribosomal proteins in 26 environments, (C) double deletion interactions with 121 genes. Ribosomal proteins within each

cluster are significantly correlated with P < 0.05 for each pair.

doi:10.1371/journal.pone.0166021.g002
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environments. This is the main finding of the present work that distinguishes it from previous
studies. In summary, whereas a core set of ribosomal proteins are important in all environ-
ments, different combinations of a subset of variable ribosomal proteins are functional in dif-
ferent environments to optimize growth.

To test whether the deletion phenotype of ribosomal proteins is conserved among yeast
strains, we compared growth of ribosomal protein deletions in a soil isolate, SK1, in an oxida-
tive stress (S3 Fig). While different ribosomal protein deletions show diverse phenotypic
defects, indicating differential use of ribosomal proteins in SK1, the identity of the variable
ribosomal proteins was different among the two strains, SK1 and S288c. This indicates that dif-
ferent strains functionally employ ribosomal proteins in different ways, potentially as a result
of having adapted in different ways to strain specific selection pressures.

Interactions among ribosomal proteins and genes in cellular pathways

If this observedphenotypic modularity of ribosomal proteins is indeed real, then it should be
reflected in their genetic interactions with both upstream and downstream pathways. This
crosstalk between ribosomal proteins and genes in other pathways was captured by studying
the genome-wide gene-gene interaction SGA dataset [23], to identify positive and negative
genetic interactors of the ribosomal proteins. A positive or negative interaction is one where
the double deletion is respectively better or worse for growth than the sum of the single dele-
tions. A positive interaction indicates that the genes are in the same pathway, while a negative
interaction indicates compensatory pathways [26].

The interactions of a diverse set of genes with 65 ribosomal proteins, 57 of which overlapped
with the ribosomal proteins in the deletion phenotype analysis, was analyzed using the SGA
dataset [23]. While multiple genes showed double deletion genetic interactions with the ribo-
somal proteins, our aim was to identify genetic interactors that are common to the ribosome
and not to a single ribosomal protein. Hence, only those genes that showed a significant inter-
action (P< 0.05) with at least 10 of the 65 ribosomal proteins were considered for further anal-
ysis. This identified a total of 121 genes, 23 ribosomal and 98 non-ribosomal, which had a
significantly positive or negative interaction with at least 10 ribosomal proteins (modifiedF-
test, P< 0.05, S3 Table). Although the 65 ribosomal proteins had many interactions with other
genes, only 12 ribosomal proteins interacted positively among themselves (i.e., were in the
same pathway). The rest interacted either positively or negatively with non-ribosomal proteins.
The ribosomal proteins form a separate cluster in the yeast gene-gene interaction dataset [23]
due to an enrichment of interactions within the complex. Our results show that this enrich-
ment is the result of only 12 ribosomal proteins (enriched in small ribosomal subunit); the
other ribosomal proteins show high interactions with different cellular pathways.

If the ribosomal proteins indeed function in a coordinated and modular manner to regulate
growth across environments, then this modularity should also be evident in their genetic inter-
actions. A clustering analysis of the pairwise correlations of the positive or negative genetic
interactions of the 65 ribosomal proteins (Fig 2B) identified three clusters, which had a highly
significant overlap with the previous clustering based on phenotypic profiling (90% overlap
betweenClusters 1 and A and 89% between clusters 2 and B, Fisher Exact test, P = 0.006, S4
Table). Ribosomal proteins in Cluster A interacted mainly with genes involved in mRNA pro-
cessing, whereas those in Cluster B interacted with other ribosomal proteins. Ribosomal pro-
teins in Cluster C interacted with genes involved in diverse pathways (S10 Table). This strong
overlap of corresponding clusters identified independently through phenotype association
(Clusters 1, 2, 3) and double deletion analysis (Clusters A, B, C) further reinforces our claim of
the modularity of ribosomal proteins wherein subsets of ribosomal proteins function in a
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coordinatedmanner and interact in diverse ways amongst themselves and with other non-ribo-
somal pathways. Introns and alternate splicing are virtually absent in budding yeast except in
some of the genes coding for ribosomal proteins [40,41]. Three-fourths of all ribosomal pro-
teins in yeast contain at least one intron and these introns have been associated with regulation
of expression of ribosomal proteins and cellular fitness in an environment specificmanner
[42]. Similar to our results, Parenteau et al. [43] have shown that while the introns in ribosomal
protein genes do not have an effect on fitness in the rich mediumYPD but affect fitness in pres-
ence of specific drugs. Therefore, enriched genetic interactions of ribosomal proteins in Cluster
A with the mRNA processingmachinery indicates that alternate splicing could be one of the
contributing factors to the observedhigh phenotypic diversity.

We observe that ribosomal proteins and their paralogs show diverse genetic interactions.
Twenty-one of 59 ribosomal protein paralog pairs present in yeast show identical sequence
[44]. However, all the ribosomal protein paralog pairs used in this study differ in at least one
amino acid with most paralogous pairs showing a difference of five to 20 amino acids. Only 4
out of 15 paralog ribosomal proteins considered in our study show similar (not identical)
genetic interactions, i.e. fall in the same cluster. These are RPL6A and RPL6B, and RPL9A and
RPL9B in Cluster A and RPS0A and RPS0B, and RPS29A and RPS29B in Cluster B (S11 Table).
All the remaining paralogs fall into separate clusters or are in Cluster C, indicating that they
have differential genetic interactions. Thus, in spite of sequence similarity amongst paralogs,
the regulation of these modules in yeast seems to have evolved since the duplication event to
create novel functions for these paralogs. Diverse phenotypes of paralogs of ribosomal proteins
have been previously observed [21,44,45]. Our results further support this diversification of
ribosomal proteins by showing paralogs fall in different ribosomalmodules based on their phe-
notypes in different environments and genetic interactions.

Positive non-ribosomal interactors of the ribosomal proteins were enriched in chromatin
regulators and remodelers (S10 Table). Under the prevailing unitary ribosome hypothesis, this
association is believed to result from a general control of cellular proliferation by epigenetic
regulators [46]. If this is true and genetic interactions between such a global regulator and dif-
ferent ribosomal proteins have no bearing on their observedphenotypic heterogeneity, then a
double deletion of a regulator and a ribosomal protein should have same phenotype as single
deletion of the regulator alone in all environments. Furthermore, this phenotype should be uni-
form for all ribosomal proteins. However, if the genetic interactions have a greater role in regu-
lating the phenotype, then we should observe heterogeneous phenotypic effects of double
deletion of the regulator and ribosomal protein in diverse environments. To test this, we exper-
imentally studied the observedpositive interaction between the chromatin histone deacetylase
GCN5 and the ribosomal proteins RPL11B (Cluster A), RPL6B (Cluster B), RPL38 (Cluster C)
and RPL26B (Cluster C). GCN5 regulates transcription of these ribosomal proteins, presumably
to control cellular proliferation [46]. If this were true, then deletion of gcn5Δwith deletion of
any of these ribosomal proteins should have the same growth phenotype as single deletion of
gcn5Δ. Since ribosomal proteins showed diverse phenotypes in oxidative stresses (Fig 3), we
tested the premise of these genetic interactions by phenotyping double deletions of GCN5 and
ribosomal proteins in YPD, and oxidative stresses menadione and CdCl2. While gcn5Δ rpl38Δ
behaved the same as gcn5Δ in menadione, indicating that GCN5 controls cellular proliferation
using RPL38, double deletion gcn5Δ rps6bΔ resulted in a 20-fold reduced growth compared to
either of the single deletions, indicating parallel or independent roles of both the genes in
growth. Furthermore, deletion of the remaining ribosomal proteins (rpl11bΔ and rpl26bΔ) res-
cued the growth phenotype of gcn5Δ (Fig 3). This observed antagonistic effect suggests that a
more likely scenario is that these ribosomal proteins have a direct functional effect on pathways
that are lost as a result of gcn5Δ deletion. These results show that in addition to diverse
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phenotypic effects in different environments, interactions of ribosomal proteins with the
upstream regulators have diverse environment-specific functional implications. This varied
environmental dependence of genetic interactions of ribosomal protein and GCN5 indicates
that some epigenetic regulators and signaling pathways that interact with the ribosome employ
the flexibility of the ribosome to mediate phenotypic choice in diverse environments.

Differential evolution of ribosomal proteins

If different subsets of ribosomal proteins are under selection for adaptation to different envi-
ronmental conditions, there should be a signature of this effect in yeast strains adapted to dif-
ferent environments. The yeast SGRP population [32] consists of 38 S. cerevisiae strains
isolated from diverse ecological and geographical niches. To detect potential footprints of evo-
lutionary selection, we compared the nucleotide diversity of ribosomal proteins and a control
set of housekeeping genes in the SGRP population in their coding and 5’UTR sequences (S5
Table). While the coding sequence nucleotide diversity was similar for both sets, the diversity
in the 5’UTR regions within ribosomal proteins was twice that of the control genes (P< 0.005,
S4A Fig, S5 Table). Furthermore, in the YEASTRACT database [35], this variability altered the
predicted transcription factor binding motifs on ribosomal proteins in diverse strains (S7
Table). Thus, while ribosomal proteins among the SGRP strains have similar coding sequences,
their promoter regions have been significantly altered, presumably to adapt to different eco-
logical niches.

Coding and 5’UTR regions of ribosomal proteins in the three clusters in Fig 1C were com-
pared using normalized Shannon entropy (S5 Table). All three clusters showed a significant
difference in entropy between 5’UTR and coding regions (S4B Fig). Cluster A showed

Fig 3. Genetic interactions of ribosomal proteins with GCN5. 10-fold spot dilutions series (starting with 108 cells/ml) of wild

type, single and double deletions of GCN5 with RPS6B, RPL38, RPS26B and RPL11B phenotyped in YPD (rich medium) and an

oxidative stress, Cadmium chloride (CdCl2, 10μM).

doi:10.1371/journal.pone.0166021.g003
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significantly high entropy (diversity) for both 5’UTR and coding regions of ribosomal proteins
compared to Clusters B and C (S4B Fig). This differential variability shows that the ribosomal
proteins in the clusters are evolving at different rates across the SGRP population.

Using the YEASTRACT database, we find that whereas most transcription factors (TFs)
bind to ribosomal proteins in all three clusters, some are cluster specific. Transcription Factors
regulating ribosomal proteins in Cluster A are enriched in the histone deacetylase complex
while those that bind to ribosomal proteins in Cluster C are enriched in the HIR (Histone Reg-
ulatory) complex (S5 Fig, S6 Table). This could be a possible explanation for the different rates
of evolution of the 5’UTR regions of the proteins in these three clusters.

Modular ribosomal proteins in higher eukaryotes

Our above results establish modularity in both phenotype and genetic interactions of ribosomal
proteins in yeast. It can be argued that this is merely a unique feature of the yeast ribosome,
presumably because of the whole genome duplication event, which might have allowed differ-
ential adaptation of duplicated ribosomal proteins. To understand whether the ribosomalmod-
ularity observed in yeast extends to higher eukaryotes, we investigated expression levels of
ribosomal proteins in mice and humans, which have a single copy of most ribosomal proteins.

In complex eukaryotes, the analog of adaptation of unicellular organisms like yeast to differ-
ent environments is adaptation to different cellular and tissue microenvironments.We there-
fore expect that if our thesis of the modularity of ribosomal proteins is valid beyond single
celled eukaryotes, ribosomal proteins should be differentially used across cell types and tissues
in mice and humans. In multicellular systems like humans and mice, ribosomal proteins are
present in a single copy, whose deletion results in both cellular and organismal lethality. Our
hypothesis for complex eukaryotes would then be that ribosomal proteins are expressed at sig-
nificantly different levels in different tissue microenvironments in mice and humans. We tested
this hypothesis by comparing the expression levels of ribosomal proteins in diverse cell types
and tissues in human and mouse samples using RNASeq data for mRNA transcript levels from
the ENCODE and the GTEx projects.

A total of 66 ribosomal proteins with consistent transcript expression levels across replicates
in the ENCODE data were identified in 110 cell types and tissues in humans (seeMethods). As
previously observed [47], we found that while the majority of ribosomal protein transcripts are
highly expressed across diverse tissues and cell types, a few showed low expression levels
throughout. It has been shown that ribosomal proteins can show differential expression levels
based on the proliferation or turnover rate of the cell type. To normalize such global differ-
ences, each ribosomal protein within each tissue was assigned a rank based on its expression
level (rank 1 for lowest expression and rank 66 for highest expression, S7 Table). Despite being
a part of the ribosome, it is known that not all ribosomal proteins are equally expressed in a
given tissue. In complex eukaryotes, just as in yeast, some of the ribosomal proteins are
involved in ribosomal assembly. However, since this is true for all tissues and cell types, their
rank normalized expression levels should be consistent across tissues.

Hierarchical clustering of all ribosomal proteins expression ranks across all tissues resulted
in a single highly correlated cluster (S6 Fig). However, our results from yeast show that while
some ribosomal proteins are essential and behave similarly across environments, others show
high variability. To identify these highly variable ribosomal proteins, the 66 ribosomal proteins
were filtered based on their ranks. In each tissue, the expression level ranks of the proteins were
stratified into 4 classes: class I (rank 1–17), II (17–34), III (35–51) and IV (51–66) (seeMeth-
ods). This showed that across tissues, 46 out of 66 ribosomal proteins were classified into the
same or adjacent classes, while the remaining 20 were classified into 3 classes for 11 or more
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tissues types per class (S7 Table). These 20 were termed as variable ribosomal proteins and ana-
lyzed further. Note that had the rank assignments merely amplified small differences in expres-
sion levels (noise) for a given protein across tissues, such stratification would not have been
observed. Instead, we would have seen a random assignment of ranks across tissues, which is
not what was observed.

The 20 variable ribosomal proteins spannedmostly classes II, III and IV, i.e. their transcripts
were both highly expressed and highly variable across tissues, thereby eliminating technical
noise as the cause of the observedvariability in ranks (S7 Table). Hierarchical clustering of the
ranks of these 20 proteins across cell types and tissues showed that these proteins assort into
distinct groups (Fig 4A). An identical clustering can also be observed in a heat map of Pearson
rank correlations (Fig 4B, correlation P< 0.05). In the hierarchical clustering, distinct sets of
ribosomal proteins were associated with two discrete clusters of epithelial cells, a cluster of the
nervous tissue (tissue from different sections of the brain and spinal cord) and a cluster of
human cell lines (Fig 4A). We note that cell lines cluster separately, indicating that similar to
modification of their signaling pathways [48], expression patterns of ribosomal proteins are
also rewired in these cell lines compared to other human cells and tissues. To investigate this
tissue specific ribosomalmodularity further, we separately analyzed the 20 ribosomal proteins
in the clusters associated with epithelial and nervous tissues. This again showed that the ner-
vous tissue cluster is quite distinct in its use of variable ribosomal proteins compared to epithe-
lial cells (Fig 5A and 5B). Even though the nervous tissues are known to have a reduced
expression of ribosomal proteins compared to other more proliferating tissues, our results
show that the ribosomal protein module in the nervous tissue is distinct from that in the epi-
thelial cells. These results show that, analogous to yeast, ribosomes in humans show expression
modularity across tissues.

While the different cell types separated into different clusters based on the expression of var-
iable ribosomal proteins in ENCODE data, they did not show a significant tissue bias except
for nervous tissue. For example, the two clusters of epithelial cells did not segregate on the
basis of organ of origin, suggesting that modularity of ribosomal proteins plays a role at the res-
olution of cell types instead of whole organs. To validate our result of modularity of ribosomal
proteins in humans and to understand whether this modularity was a property of cell types or
is also visible in bulk tissue, we compared the expression patterns of ribosomal proteins using
the GTEx dataset. The GTEx data consists of RNAseq analysis of 54 different tissues (S9
Table). We extracted expression values of ribosomal proteins from these samples and per-
formed the same analysis as for the ENCODE data (seeMethods). Seventy nine ribosomal pro-
teins passed our filtering criteria and were classified into ranks ranging from 1 for the least
expression and 79 for the highest expression in each tissue. These were further stratified into 4
classes: class I (rank 1–20), II (21–40), III (41–60) and IV (61–79). We found that ribosomal
proteins from the GTEx data showed less variability in classes across tissues compared to the
ENCODE data (S9 Table). Consequently, ribosomal proteins that fell into two or more classes
with at least 10 tissues per class were identified as variable ribosomal proteins. A total of 18
ribosomal proteins were identified to be variable, of which 7 were the same as those identified
in the ENCODE data, showing a significant overlap (Fisher’s Exact test, P< 0.1) between vari-
able ribosomal proteins identified using ENCODE and GTEx data (Fig 6A). The variable ribo-
somal proteins in the GTEx data separated into two modules (Pearson correlation, P< 0.01,
Fig 6A). Similar to the ENCODE data, the nervous tissues (brain and spinal cord) formed a
separate cluster, validating our previous observation that a different module of ribosomal pro-
teins is used in the nervous system compared to other tissues (Fig 6B). However, bulk tissues
did not cluster separately on the basis of variable ribosomal proteins (Fig 6B). The lack of mod-
ularity of ribosomal proteins at the level of tissues indicates that cell specific differences in
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ribosomal protein expression levels are lost when dealing with data from bulk tissue, because
cell specific identity is lost in the GTEx data.

A similar analysis was carried out for expression levels of ribosomal proteins in various tis-
sues in mice from the ENCODE data. We note that the signal to noise ratio in the mouse data
in ENCODE was significantly higher than in the human data. Consequently, only 42 ribosomal
proteins in 18 different tissues passed our filtering criteria and were stratified into four classes
(S8 Table for details of classes). As in the human data, while the majority of mice ribosomal
proteins showed high expression and invariant classification, 14 of these 42 ribosomal proteins
were as variable across tissues (spanning 3 classes in more than 2 tissues). As in ENCODE and
GTEx data from humans, mouse brain tissues also formed a unique cluster, indicating that ner-
vous tissue in general uses a distinct module of ribosomal proteins compared to other tissues
(S7A and S7B Fig).

Fig 4. Clustering of human cell types and tissues based on rank order expression of variable ribosomal proteins in ENCODE data. (A) A

hierarchical clustered tree of 110 human cell types and tissues (1,000 bootstraps) based on rank order expression of 20 ribosomal proteins in ENCODE

data. (B) Pearson correlation (P < 0.05) heatmap based on rank order expression of 20 variable ribosomal proteins results in distinct clusters and sub-

clusters.

doi:10.1371/journal.pone.0166021.g004
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We identifiedRPL38 as a variable protein in ENCODE and GTEx data in humans as well as
ENCODE data in mice (Figs 5 and 6, S7B Fig). RPL38 is the most extensively studied ribosomal
protein associated with ribosomal heterogeneity. This heterogeneity is due to its specialized
translation of only the hox mRNA, without affecting translation of other mRNA [19]. Identifi-
cation of RPL38 as a variable ribosomal protein in our study serves as an independent valida-
tion of our analyses. While different sets of ribosomal proteins were found to be variable in
mice and humans, 6 out of 18 ribosomal proteins variable in mice were also variable in humans
(4 in ENCODE data and 5 in GTEx data, S7B Fig). Furthermore, 4 of these 6 conserved variable
ribosomal proteins fell in one cluster in mouse indicating a partial conservation of variability of
ribosomal proteins across the two species (S7B Fig).

Fig 5. Modules within the 20 variable ribosomal proteins in human tissues. (A) The modular organization derived from

hierarchical clustering of ribosomal proteins rank order expression in 110 cell types and tissues (1,000 bootstraps). (B)

Heatmap showing different modules of 20 variable ribosomal proteins active in epithelial cells and the nervous tissue.

doi:10.1371/journal.pone.0166021.g005

Fig 6. Clustering of human tissues and variable ribosomal proteins in GTEx data. (A) Pearson correlation (P < 0.01) heatmap of 18 variable ribosomal

proteins based on their rank order expression in 54 different tissues in GTEx data. Ribosomal proteins marked in red are also variable in ENCODE data. (B)

Pearson correlation (P < 0.01) heatmap of 54 different tissues based on rank order expression of 18 variable ribosomal proteins. Nervous tissue (brain and

spinal cord) form a distinct cluster and are marked red.

doi:10.1371/journal.pone.0166021.g006
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Discussion

Our study provides several arguments and multiple evidences for the existence of modularity
of ribosomal proteins across eukaryota, presumably to facilitate optimized translation effi-
ciency in different environments. We show that, at least in yeast, we see evidence that the
5’UTRs of ribosomal proteins that form the modules seem to be under selection pressure,
which suggests that they play a role in evolutionary adaptation. We interpret our results as evi-
dence for a hitherto unrecognized ribosomal code, wherein specific ribosomal proteins are
used in an environment specificmanner in yeast and in cell and tissue specific ways in mice
and humans. The existence of such a dynamic modularity of ribosomal proteins is the main
finding of this paper. The mechanisms that regulate these modules remain to be elucidated and
are outside the scope of this paper.

Our study also uncovered some general, conservedproperties of ribosomal proteins. We
find that a subset of variable ribosomal proteins contributes to the plasticity of the ribosome by
functioning independently or in concert across different environments by forming modules,
defined as sets of proteins functioning in a coordinatedmanner. This modularity indicates that
they have been optimized over the course of evolution based on the need for functional adapta-
tion.We note that only a subset of ribosomal proteins varies among cell types and tissues, with
the core ribosome remaining unaffected.Hence cell type specific structural changes resulting
from such variation may be difficult to detect.

One might argue that phenotypic heterogeneity of ribosomal proteins in yeast, identified by
the analysis of deletion strains, might be due to dosage compensation by paralogs or to techni-
cal artifacts arising due to aneuploidy or altered functionality of nearby genes in ribosomal pro-
tein deletion strains. This is highly unlikely as elaborated. Of duplicates retained after the
whole genome duplication event in yeast, majority of these genes are ribosomal protein genes
[38]. While initial growth rate rescue experiments concluded that duplicated ribosomal pro-
teins are functionally redundant [49], various studies since then have shown that many ribo-
somal protein paralogs have differential effects on various phenotypes, viz. sporulation [50],
actin organization [51], bud-site selection [52], replicative lifespan [53] and ER stress [44]. Fur-
thermore, Komili et al. [45] have shown that paralogous ribosomal proteins show diverse phe-
notypes, have different genetic requirements for their assembly and exhibit paralog specific
aberrant localizations in certain backgrounds, and support the existence of a ribosomal code.
Recently, Slavov et al. [21] provided empirical evidence for different stoichiometry of ribo-
somal proteins at a protein level in ribosomes and showed that ribosomal protein stoichiome-
try is not limited to paralogous ribosomal proteins substituting for each other. Our study
supports the existent literature by showing that paralogs of ribosomal proteins show different
phenotypic effects across diverse environments and diverse genetic interactions, and fall in dif-
ferent modules.We do not find significant correlation or anti-correlation between paralogs of
ribosomal proteins indicating that paralog-specificphenotypic effects are not a determining
factor behind the observedmodularity.

Ribosomal proteins have been shown to have extra-ribosomal functions [15], and which
may influence their behavior in different environments. Since, there are only a few validated
examples for extra-ribosomal functions of ribosomal proteins and much of it is an intriguing
possibility [15], it is highly unlikely that these proteins would have produced strongly corre-
lated Clusters A and B.

Similarly, an alternate explanation for the observedphenotypic heterogeneity of ribosomal
proteins could be altered gene function of nearby genes or aneuploidy, which might have
occurredduring generation of ribosomal protein deletion strains [44]. However, again as men-
tioned above, not only do the deletions of ribosomal proteins show heterogeneous phenotypic

The Modular Adaptive Ribosome

PLOS ONE | DOI:10.1371/journal.pone.0166021 November 3, 2016 17 / 23



effects, these effects are correlated among a large number of ribosomal proteins (38 in Clusters
A and B) with significant overlap in these clusters identified from two independent datasets: a
single deletion dataset phenotyped across multiple environments and a gene-gene interaction
dataset. It is therefore highly improbable that aneuploidy in the ribosomal protein deletion
strains, which can affect function of nearby genes or whole chromosomes [54], would result in
these significantly correlated clusters in two independent datasets.

While it may not be true for ribosomal proteins in Clusters A and B, phenotypic heterogene-
ity and differential genetic interactions of some ribosomal proteins such as in Cluster C, which
show independent phenotypic effects and genetic interactions, could be attributed to dosage
compensation by paralogs, aneuploidy or suppressor mutations in deletion strains or extra-
ribosomal functions. To test these, Steffen et al. [44] generated deletions of 107 ribosomal pro-
teins and compared their growth rate with corresponding deletion strains in the yeast deletion
collection. It was found that new deletions of 31 ribosomal proteins had better growth than
their corresponding strains in yeast deletion collection, suggesting strains in the deletion collec-
tion might have carried suppressors mutations. Eleven of these 31 strains are included in our
analysis and interestingly, 10 out of these 11 strains are present in Cluster C, with only one in
Cluster A. This comparison further affirms that the modules of ribosomal proteins identified
in our study are not a result of technical artifacts in the yeast deletion collection and are
existent.

Our findings would argue that, in spite of high sequence conservation [55], the inability of
human ribosomal genes to substitute for yeast ribosomal genes [56] is probably because of spe-
cies specific functioning of ribosomalmodules. This, along with differential expression vari-
ability of ribosomal proteins in mice and humans, indicates that each species optimizes the
optimizes the combinations of ribosomal proteins to adapt to species specific selection pres-
sures, not by substantially altering the sequence of the ribosomal proteins but by regulating
their expression in an environment dependent manner using mechanisms yet to be discovered.

Our results from two independent expression datasets (ENCODE and GTEx) show that the
nervous tissues use a unique ribosomal code compared to the rest of the tissues in both mice
and humans. While an overall reduced expression of ribosomal proteins in the brain has been
observedpreviously, it has been attributed to the reduced proliferation of nervous cell types.
Here, we show that along with a reduced expression, a unique composition of ribosomal pro-
teins is utilized by nervous tissue. These may play a role in the fundamental physiological dif-
ferences observedbetween the brain and the rest of the body.

In mice and humans, recently evolved paralogs RPL27L, RPL22L1, RPL7L1, and RPL39L,
showed poor but highly tissue specific expression compared to core ribosomal proteins. This
suggests that there is an ongoing process of adaptation drivingmodular ribosomes, with recent
paralog proteins still evolving in response to selection pressures on them and on other, more
ancient ribosomal proteins and pathways.

Our results show that ribosomemodularity is a dynamic, evolving process which seems to
be involved in the evolution of species specific ribosomal proteins, the diversification of their
sequences and functions and the creation of novel, species specific ribosomal proteins [57,58]
leading to diverse phenotypic adaptations.

Supporting Information

S1 Fig. Distribution of signal to noise in human andmouse data from ENCODE. ENCODE
data was normalized by median subtraction per array and then log transformed (seeMethods).
The mean and standard deviation (sd) over replicates was computed to obtain x = log10(sd/
mean). The distribution of x for human (A) and mouse (B) ENCODE data and (C) human
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GTEx data was used to determine the cutoffs xh, xm and xg for reliability of the ENCODE data
for human, mouse and GTEx data for humans, respectively. Gene-tissue pairs for which xh >

-0.4, xm > -0.6 and xg > 0.1 were excluded from the analysis.
(PDF)

S2 Fig. Phenotypic variation of yeast ribosomal proteins. (A) Distribution of variance of nor-
malized growth of all non-essential genes in yeast (4,769) in 293 different environments. The
genes are on the x-axis, arranged in increasing order of the variance of normalized growth in
293 environments (y-axis) due to their deletion. The 191 genes to the right of the red line have
variance greater than 0.8. (B) Stacked histogram showing the number of cases when the vari-
ance of growth from deletion of genes in various pathways was greater or smaller in stress com-
pared to YPD. Gene deletions in the cytoplasmic ribosome and mitochondrial tRNA synthesis
pathways had the highest variance in stress compared to YPD. However, in mitochondrial
tRNA synthesis pathway genes, the variance is greater or smaller in stress compared to YPD
for equal numbers of genes. Only in the ribosomal pathway is the variance in stress conditions
greater than YPD for all genes. (C) This figure shows the same data as in B but with the genes
stratified into clusters based on their double deletion interactions (seeMethods). The ribo-
somal cluster has the highest variance in stress compared to YPD.
(PDF)

S3 Fig. Phenotype of ribosomal protein deletions in SK1 strain. Ten-fold spot dilutions
series (starting with 108 cells/ml) of wild type and ribosomal protein deletion strains of SK1
background phenotyped in rich mediumYPD and an oxidative stress, Cadmium chloride
(CdCl2 500 μM)
(PDF)

S4 Fig. Nucleotide diversity of ribosomal proteins across the SGRP strains. (A) Nucleotide
diversity of coding and promoter sequences of ribosomal proteins and a control set of genes
using Tukey’s multiple comparisons’ test (P< 0.05). The bars with the same letter code do not
differ significantly. (B) Normalized Shannon Entropy of coding region and 5’UTRs of Cluster
A, B and C from Fig 2B. Bars with the same letter code do not differ significantly (Tukey’s mul-
tiple comparisons’ test, P< 0.05). The figure shows that: (i) The 5’UTR regions of the ribo-
somal protein sequences are most variable compared to their coding region as well as the
5’UTR and coding regions of the control set of genes; (ii) The 5’UTRs of all the ribosomal pro-
teins in the three clusters are significantlymore variable (P< 0.01) than their coding regions;
(iii). Proteins in Cluster A have significantlymore variable coding regions than clusters B and
C (P< 0.05 and P< 0.01 respectively); (iv). Proteins in Cluster A have significantlymore vari-
able 5’UTR than Clusters B and C (P< 0.05 and P< 0.01 respectively).
(PDF)

S5 Fig. Networks of transcription factors that bind uniquely to ribosomal proteins in Clus-
ter A, B and C (see Fig 2B). These network clusters were identified using the STRING database
(http://string-db.org). The thickness of blue lines connecting two transcription factors indicates
the strength of experimental evidence for their interaction. Gene enrichment (P< 0.001) of
transcription factors in Cluster A is for Histone DeacetylaseComplex and in Cluster C for the
HIR Complex.
(PDF)

S6 Fig. Pearson correlation heatmap (P< 0.05) of 110 human cell types and tissues based
on rank order expression of 66 ribosomal proteins in ENCODE data.
(PDF)
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S7 Fig. Variable ribosomal proteins across tissues in mouse. (A) Hierarchical clustering of
18 tissues in mice based on expression rank orders of 14 variable ribosomal proteins (1,000
bootstraps). (B) Hierarchical clustering of the 14 variable ribosomal proteins based on their
expression rank orders in 18 tissues in mice (1,000 bootstraps). The ribosomal proteins form
three distinct clusters indicated in different colors. The red arrows indicate ribosomal proteins
that are also variable in human ENCODE and GTEx data.
(PDF)
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