
 

System modeling and identification in indicator dilution method
for assessment of ejection fraction and pulmonary blood
volume
Citation for published version (APA):
Bharath, H. N., Prabhu, K. M. M., Korsten, H. H. M., & Mischi, M. (2012). System modeling and identification in
indicator dilution method for assessment of ejection fraction and pulmonary blood volume. Biomedical Signal
Processing and Control, 7(6), 640-648. https://doi.org/10.1016/j.bspc.2012.03.006

DOI:
10.1016/j.bspc.2012.03.006

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 10. Jun. 2020

https://doi.org/10.1016/j.bspc.2012.03.006
https://doi.org/10.1016/j.bspc.2012.03.006
https://research.tue.nl/en/publications/system-modeling-and-identification-in-indicator-dilution-method-for-assessment-of-ejection-fraction-and-pulmonary-blood-volume(9854396b-3052-4d4e-b157-03483fe29635).html


S
o

H
a

b

c

a

A
R
R
A
A

K
P
L
L
I
R

1

i
o
s
g
[
c
(
v

a
s
t
s
l
d
r

(
m

1
d

Biomedical Signal Processing and Control 7 (2012) 640– 648

Contents lists available at SciVerse ScienceDirect

Biomedical  Signal  Processing  and  Control

j o ur nal ho me  p age: www.elsev ier .com/ locate /bspc

ystem  modeling  and  identification  in  indicator  dilution  method  for  assessment
f  Ejection  Fraction  and  Pulmonary  Blood  Volume

.N.  Bharatha,∗,  K.M.M.  Prabhua,  H.H.M.  Korstenb,  M.  Mischic

Department of Electrical Engineering, Indian Institute of Technology, Madras 600036, India
Department of Anaesthesiology, Catharina Hospital, Eindhoven, The Netherlands
Signal Processing Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 1 November 2011
eceived in revised form 13 March 2012
ccepted 17 March 2012
vailable online 8 April 2012

eywords:
arameter estimation

a  b  s  t  r  a  c  t

Clinically  relevant  cardiovascular  parameters,  such  as  pulmonary  blood  volume  (PBV)  and  ejection  frac-
tion (EF),  can  be  assessed  through  indicator  dilution  techniques.  Among  these  techniques,  which  are
typically  invasive  due  to  the  need  for  central  catheterization,  contrast  ultrasonography  provides  a new
emerging  minimally  invasive  option.  PBV  and  EF are  then  measured  by a  dilution  system  identification
algorithm  after  detection  of  multiple  dilution  curves  by  an  ultrasound  scanner.  In  this  paper,  dilution
systems  are  represented  by  parametric  models.  Since  the  measured  indicator  dilution  curves  (IDCs)  are
corrupted  by  measurement  artifacts  and  outliers,  the  use  of  conventional  least  square  error  (LSE) esti-
east squares
east absolute deviation
ndicator dilution method
obust regression

mator  for  estimating  system  parameters  is  not  optimal.  Different  estimators  are  therefore  proposed  for
estimating  the  system  parameters.  Comparison  of these  estimators  with  the  LSE  estimator  in  assessing
EF  and  PBV  is  performed  on  simulated,  in  vitro  and  patient  data.  The  results  show  that  the  proposed  total
least  absolute  deviation  estimator  (TLAD)  outperforms  other  estimators.  The  measured  IDCs  are  highly
corrupted  by  noise,  which  affect  the  estimation  of EF  and  PBV.  Therefore,  a  two  stage  denoising  method
capable  of  removing  outliers  is also  proposed  for removing  noise  in IDCs.
. Introduction

Indication dilution measurements are invasive in nature, which
nvolve central catheterization of the patient [1].  After the injection
f an indicator bolus, the indicator concentration is measured at a
pecific region of the circulatory system over a period of time to
enerate a time series, referred to as indicator dilution curve (IDC)
2].  The measured IDC is then analyzed for assessment of several
ardiovascular parameters. Such parameters include cardiac output
CO), ventricular ejection fraction (EF) [3] and pulmonary blood
olume (PBV), which are valuable indicators of cardiac preload.

The injection of an ultrasound contrast agent (UCA) bolus allows
n IDC echographic measurement, resulting in a minimally inva-
ive technique [4,5]. UCAs are micro-bubbles (of diameter from 1
o 10 �m)  encapsulated in a shell of biocompatible material. When
ubjected to an ultrasonic beam, UCAs oscillate and backscatter a

arge part of the acoustic energy [6,7]. As a result, UCAs are easily
etected by an ultrasound transducer. Their passage in a specific
egion-of-interest (ROI) over time can be detected by B-mode
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ultrasound imaging to derive an UCA IDC. Several IDCs can be mea-
sured in different ROIs and directly interpolated and interpreted
by specific models for a minimally invasive quantification of PBV
and CO [8,9]. An UCA bolus is injected into a peripheral (arm) vein
and its movement through the cardiac chamber is tracked by a
transthoracic ultrasound transducer. This will measure the acous-
tic intensity backscattered by the diluted UCA. A four-chamber
view allows one to measure an IDC from each cardiac chamber.
Fig. 1 shows an example of four-chamber view with three ROIs
overlapped on the right ventricle (RV), left atrium (LA), and left
ventricle (LV), respectively. In fact, estimation of EF and PBV
requires identification of the dilution system between two sites of
the circulatory system: LA and LV for EF, RV and LA for PBV [9,10].

To identify the dilution system using the measured acoustic
intensity, a linear relationship between UCA concentration and
detected acoustic intensity is necessary. It is shown in [9,11] that
at low UCA concentration and low mechanical index (MI) of the
ultrasound scanner, the relationship between UCA concentration
and the detected acoustic intensity is linear. The use of specific
contrast detection modes [12], such as power modulation, allows
reducing UCA concentrations while increasing the image signal-to-

noise ratio (SNR). Yet the SNR in IDC measurements is corrupted
by several noise sources, comprising bad UCA  mixing as well
as measurement artifacts due to pressure variations and blood
acceleration in the cardiac chambers [9].  For IDC data acquisition,
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ig. 1. Example of transthoracic four-chamber view with three ROIs overlapped on
he right ventricle (RV), left atrium (LA), and left ventricle (LV), respectively.

he adopted ultrasound imaging mode was power modulation at
.9 MHz  with low mechanical index (MI  = 0.1). The MI  determines
he mechanical interaction between ultrasound waves and UCA;
herefore, a low MI  helps in limiting the bubble disruption [13,14].

In this paper, the dilution systems are assumed to be linear and,
herefore, the impulse response is sufficient to represent the entire
ilution system. The estimated impulse response of the dilution
ystem between the two detection sites can then be interpolated
y specific models for the assessment of PBV and EF [10,15]. Once
he IDCs are measured using the ultrasound scanner, linear dilu-
ion system can be identified through deconvolution techniques. In
iscrete domain, convolution can be viewed as a system of linear
quations, y = Ah,  where y, A and h are the output signal, circulant
onvolution matrix (composed of the input signal) and the dilu-
ion system impulse response, respectively. Then the estimation of
he impulse response, h, is an inverse problem, whose least square
rror (LSE) solution is ĥ  = (AT A)−1AT y. Although this approach is
traight forward, the matrix ATA will be nearly singular due to low
NR of the measured IDCs, and hence its inversion will be difficult.
ingular value decomposition (SVD) can be used to find approxi-
ate inverse of ATA, but this will result in poor estimates of EF and

BV.
An adaptive Wiener deconvolution filter is adopted to estimate

he impulse response of the dilution system [10,15].  However, the
iener deconvolution filter requires model interpolation of the

stimated impulse response to calculate EF and PBV. This increases
he variance of the estimated EF and PBV. Also at low SNR, Wiener
lter acts as a low-pass filter [16]. As a result, the model interpo-

ation of the impulse response is inaccurate. Besides, the model
nterpolation will be inaccurate when the frequency component of
he input IDC is lower than those representing the transfer func-
ion of the dilution system. Since the estimation of EF and PBV
epends on the quality of model interpolation of the estimated

mpulse response, this may  result in erroneous assessment of EF
nd PBV.
To overcome the problems associated with the Wiener filter,
 new parametric deconvolution method was proposed [16]. This
ethod employs specific parametric models that represent the

ilution system. As a result, the system identification reduces to
ssing and Control 7 (2012) 640– 648 641

finding a few system parameters rather than all the frequency com-
ponents of the dilution system transfer function. In the parametric
deconvolution method, system parameters are estimated without
model interpolation of the impulse response; therefore, the esti-
mated system parameters show less variance. This improves the
measurement of EF and PBV. In this method, the system param-
eters are identified by minimizing the squared error between the
measured and the estimated output IDC of the dilution system rep-
resented by the parametric model. In [16], a low-pass finite impulse
response (FIR) filter is used for denoising the measured IDCs and
the system parameters are estimated using an LSE estimator. It is
observed that the measured IDCs contain outliers and nonlinear-
ities. LSE is not a robust estimator in the presence of outliers and
also the FIR filter is not capable of removing outliers. As a result,
the estimated EF and PBV will not be robust and may  result in poor
estimates.

In order to overcome the problem with LSE estimator, we pro-
pose many robust estimators which can take care of outliers present
in the IDCs. In this paper, the low-pass FIR filter proposed in [16]
for removal of the IDC outliers is replaced by a two stage denois-
ing method. The remainder of the paper is organized as follows:
In Section 2, the modeling of the dilution system is described. In
Section 3, different estimators used for system identification are
proposed. The denoising methods used and the LA IDC attenua-
tion compensation are discussed in Section 4. A comparison of the
proposed estimators using a set of measurements in patients is
presented in Section 5. Conclusions and future course of work are
discussed in Section 6.

2. System modeling

For EF measurements, the LV dilution system is described by a
mono-compartment model [16], whose impulse response to a rapid
contrast injection is given by an exponential decay signal

h(t) = c0e(−t/�), (1)

where � is the time constant of the system and c0 is the initial
contrast concentration at time t = 0. Once the LV dilution system
parameters, c0 and �, are estimated, EF is calculated as

EF = 1 − hi+1

hi
= 1 − e�t/�, (2)

where hi and hi+1 are contrast concentrations at two subsequent
systole and �t is the cardiac period [3].

For PVB measurements, the transpulmonary dilution system
between RV and LA is modeled as local density random walk
(LDRW) model [16], with impulse response,

C(t) = m

Q
e�

√
�

2��t
e−(�/2)((t/�)+(�/t)), (3)

where m is the injected dose of contrast, Q is the flow, � is the
mean transmit time (MTT) that the contrast takes to cover the dis-
tance between the injection and the detection sites after an impulse
injection and � is a parameter related to the diffusion constant of
the system that determines the IDC skewness [9,8]. Once the LDRW
parameters Q, � and � are estimated, the volume between two sites
is given by

PBV = Q�. (4)

Here the flow Q, which corresponds to the CO used in the PBV calcu-

lation, is not assessed from dilution system identification, but only
the parameter � is derived from the LDRW model representation
of the dilution system. The flow Q is calculated by echo-Doppler
time integration in the aorta [17].
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.1. LV dilution system

(1) Model-1
The LV dilution system transfer function in the Laplace domain

s given as

(s) = c0

s + (1/�)
.  (5)

This continuous-time transfer function is mapped into an
quivalent discrete-time transfer function using the bilinear trans-
ormation as

1(z) = (c0/((1/�)  + (2/T)))(1 + z−1)
1 + (((1/�)  − (2/T))/((1/�)  + (2/T)))z−1

, (6)

here T represents the sampling period. The time-domain repre-
entation of (6) is given by

(n) = c0

((1/�)+(2/T))
(x(n)+x(n − 1)) −

(
(1/�)−(2/T)
(1/�)  + (2/T)

)
y(n − 1),

(7)

here y and x are the output and the input of the system, respec-
ively.

(2) Model-2
The LV dilution system impulse response h(t) is discretized by

ampling at T, which is the sampling period of the input and output
DCs. The discrete–time system and its Z-transform is given by

2(nT) = c0e(−(nT/�)), (8)

2(z) = c0

1 − (e−(T/�))z−1
. (9)

The time-domain representation of (9) is given as

(n) = c0x(n) + (e−(T/�))y(n − 1).  (10)

Both the systems, namely, Model-1 and Model-2, can be repre-
ented in a matrix form as

 = Ah, (11)

here A is a circulant convolution matrix formed from the input
ignal x.

.2. Transpulmonary dilution system

Due to the complexity of the Laplace transform of the LDRW
odel, the impulse response c(t) is simply discretized by sampling

t at T, as in the case of Model-2, which is given by

(nT) = m

Q
e�

√
�

2��nT
e−(�/2)((nT/�)+(�/nT)), (12)

nd its matrix representation is given as

 = Ac. (13)

. System identification

Once the system has been modeled as in Section 2, the prob-
em of system identification reduces to the estimation of system
arameters. Direct estimation of the system parameters has two
dvantages: (1) the EF and PBV are obtained directly as in (2) and
4), without interpolating the system impulse response and (2) the

stimated system parameter will have less variance. Since the sys-
em parameters are not linearly related to the system input, any
on-linear optimization technique such as the Nelder Mead Sim-
lex Method can be used to estimate the system parameters.
ssing and Control 7 (2012) 640– 648

The system parameters are obtained by minimizing an error
function over the system parameters.

�̂ = min
�

f (x, r, �),  (14)

where f is the error function, x is the measured system input, r
is the measured output and � is the set of system parameters. In
this paper, we  consider eight estimators corresponding to different
error functions for the estimation of EF and PBV.

Let y be the output of the system for an input x. For EF measure-
ments, y is obtained as in (7) or (10) and for PBV measurements y
is obtained as in (13).

(1) Least square error (LSE):
This is the most widely used error function, where the squared

error between the measured and the estimated output is minimized
over system parameters

�̂ = argmin
�

N∑
i=1

(y(i) − r(i))2. (15)

If the noise is stationary and has a normal distribution, LSE cor-
responds to the maximum likelihood criterion [18]. However, the
measured IDCs are corrupted by non-stationary noise along with
non-linearities in the measurements and, therefore, the LSE esti-
mation deviates from the maximum likelihood criterion.

(2) Least absolute deviation (LAD):
Here the sum of the absolute error between the measured and

the estimated output is minimized as given by

�̂ = argmin
�

N∑
i=1

|y(i) − r(i)|. (16)

LAD is more robust to outliers in data than LSE. Since there are
many outliers present in the measured IDCs, LAD will be a better
choice than LSE for EF and PBV estimation.

(3) Iteratively reweighed least squares (IWLS)
In IWLS, the weighted LSE, given in (17), is solved iteratively:

�̂(k+1) = argmin
�

N∑
i=1

W (k+1)(i)|y(i) − r(i)|2. (17)

At each iteration, the weights W(i) are updated based on the
residual error, �(i) from the previous iteration [19]. Here, we have
used a bi-square weight function to update the weights, which is
given by

W(i)  =
{

(1 − �2(i))2, |�(i)| < 1
0, |�(i)| ≥ 1

, (18)

The weights are not used for the first iteration and the algorithm
stops when the relative change in the system parameters is less
than some fixed constant.

(4) Huber function regression (HFR):
This acts as an hybrid between LSE and LAD. For an error residue

�, the Huber function is defined as

H(�) =

⎧⎨⎩
1
2

�2, |�| ≤ �

�|�| − 1
2

�2, |�| > �
.  (19)

With a slight modification to Huber function given in (19), a new
error function, referred to as modified Huber function regression
(MHFR), is obtained as
H1(�) =
{

�2, |�| ≤ �

�|�| + 1
2

�2, |�| > �
.  (20)
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In the modified Huber function regression (MHFR), large errors
re given greater weight than in HRF. The system parameters are
btained by minimizing the Huber function.

(5) Iterative reweighed least absolute deviation (IRLAD):
A weighted LAD, given in (21), is solved repeatedly with weights

eing updated after each iteration based on the residual error:

̂ (k+1) = argmin
�

N∑
i=1

W (k+1)(i)|y(i) − r(i)|. (21)

At each iteration, the weights are updated using a Cauchy’s
eight function

(i) = 1
1 + �2(i)

, for i = 1, 2, . . . , N. (22)

The iteration is carried out n times and in this paper we  have
sed n = 3.

(6) Total least squares (TLS):
Both the measured IDCs (input and output) are subjected to

andom noise and the error model is given by

 = xo + ı (23)

 = yo + 	 (24)

here xo and y0 are the true values of the input and output, respec-
ively, ı and 	 are additive noise. The system output, y0 is given as

 function of xo and system parameters, �.

o = f (xo, �)  (25)

r

 = f (x − ı, �)  + 	. (26)

The total least squares formulation for system parameter iden-
ification [20] is given as

̂ = argmin
�,ı

N∑
i=1

(y(i) − f (x(i) − ı(i), �))2 + ı(i)2. (27)

The problem in (27) can be solved using Orthogonal Distance
egression approach [20]. In this method, the number of unknown
ariables to be estimated is large, as the minimization is done over
oth � and ı. To overcome this problem, the TLS represented in
27) is reformulated, such that the minimization is done over the
ystem parameter � only.

Let us consider linear regression with errors in the measurement
atrix. The measurement, b is modeled as

 = (D + E)x + 	, (28)

here D is the measurement matrix, E is the unknown perturbation
atrix (errors in measurement) and 	 is the unknown perturbation

ector (additive error at output). In TLS approach, we seek the val-
es of x, 	 and E such that the perturbations E and 	 have minimum
2 norm with the constraint that (28) is consistent, which is given
y

ˆ  = argmin
E,x,	

{‖E‖2
2 + ‖	‖2

2 : b = (D + E)x + 	}. (29)

By minimizing (29) with respect to E and 	, the problem can be
eformulated as a minimization problem in variable x [21] as

ˆ = argmin
x

‖Dx − b‖2
2

‖x‖2
2 + 1

. (30)

Based on (7) or (10), the TLS formulation given in (30) is applied

or estimating the system parameters of the LV dilution system as

ˆ
 = argmin

�

‖y − r‖2
2

‖˛‖2
2 + 1

,  (31)
ssing and Control 7 (2012) 640– 648 643

where y is the estimated system output, r is the actual measured
noisy system output and  ̨ is a vector of parameters. For Model-1
and Model-2,  ̨ is determined from (7) and (10), respectively, as

 ̨ =

⎧⎨⎩
[

c0

((1/�)  + (2/T))
,

((1/�)  − (2/T))
((1/�)  + (2/T))

]T

, for Model-1

[c0, eT/�]T , for Model-2.

Since there are many outliers present in IDCs, L1 norm is more
robust than L2 norm, so the L2 norm error, ‖y − r‖2

2 in (31) is replaced
by L1 norm error, ‖y − r ‖ 1. This modified formulation is referred to
as total least absolute deviation (TLAD)

�̂ = argmin
�

‖y − r‖1

‖˛‖2
2 + 1

. (32)

The system parameters are estimated by minimizing the
error functions described above. In this paper, we  have used
Nelder–Mead simplex method [22] to minimize the error functions.
Nelder–Mead simplex method requires initial values of the system
parameters to start. In LV dilution system identification, � = [c0,
�] = [0.05, 2] is used as the initial value. MHFR is sensitive to the
chosen initial values. Therefore, the system parameter estimated by
LAD is used as an initial parameter for the MHFR. In transpulmonary
dilution system identification, the initial value used for optimiza-
tion is, � = [�, �, a0] = [5, 10, 20]. The initial values, � and � used
in system identification are based on the average values observed
in patients. The initial values of other parameters, c0, � and a0 are
selected empirically.

4. Pre-processing steps

The measured signal is corrupted by additive noise,

y = x + 	, y, x, 	 ∈ R
n,

where y is the measured signal, x is the actual signal and 	 is
the additive noise. In this paper, the noise is removed by a two
stage denoising technique. In the first stage, high frequency noise
is removed from corrupted IDC using a finite impulse response
(FIR) filter or total variation (TV) denoising method. In the second
stage, FIR filtered or TV denoised signals are smoothed using a local
regression technique called robust locally weighted regression and
smoothing scatterplots (Rloess) [23]. Rloess is used here mainly to
remove outliers present in the IDC. For FIR filtering, we have used
a 5-tap low-pass FIR filter with a normalized cut-off frequency of
0.025 and the normalization is done with respect to the sampling
frequency.

4.1. Total variation (TV) denoising

TV of a signal is a measure of change between the signal values.
For a discrete signal with N samples, TV is defined as

TV(x) =
N∑

n=2

|x(n) − x(n − 1)|,  (33)

which can also be written as,

TV(x) = ‖Dx‖1, (34)

where D is the difference operator. Denoising is done by minimizing
an objective function with a TV constraint given by

x̂ = minJ(x) = min‖y − x‖2
2 + �‖Dx‖1, (35)
x x

where y is the measured noisy signal, x̂ is the denoised signal and �
is the regularization parameter which controls the smoothness of
the signal. For larger noise levels, larger values of � are required. It is
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is linearly proportional to acoustic intensities. Therefore, once the
IDCs in dB are denoised, they are converted to acoustic intensi-
ties, xi = 10(x/10). In fact, due to the multiplicative characteristics
of IDC noise [8],  denoising in the logarithmic domain seems a

Table 1
Mean (top) and variance (bottom) of the estimate � using LAD, LSE, TLAD, TLS, HRF
and MHFR estimators for different values of �.

Actual � LAD LSE MHFR HFR TLAD TLS

0.4 0.4182 0.4323 0.4257 0.4237 0.4394 0.4493
0.0033 0.0060 0.0041 0.0046 0.0027 0.0053

0.5  0.5089 0.5165 0.5137 0.5120 0.5236 0.5292
0.0025 0.0054 0.0033 0.0038 0.0024 0.0051

0.7  0.7015 0.7185 0.7042 0.7049 0.7106 0.7201
0.0031 0.0068 0.0034 0.0042 0.0030 0.0066

1.0  1.0017 1.0095 1.0013 1.0036 1.0061 1.0146
0.0021 0.0055 0.0030 0.0033 0.0021 0.0055

1.3  1.3049 1.3039 1.3090 1.3065 1.3082 1.3076
0.0028 0.0084 0.0036 0.0045 0.0028 0.0084

1.9  1.8946 1.8983 1.8956 1.8952 1.8963 1.9010
0.0018 0.0081 0.0030 0.0035 0.0017 0.0081
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ifficult to solve the problem presented in (35) because of the non-
mooth part (� ‖ Dx ‖ 1). To overcome this difficulty, we use a dual
pproach proposed in [24,21]. The dual formulation of the problem
n (35) is given by

ˆ  = max
|z|≤1

min
x

‖y − x‖2
2 + �zT Dx, (36)

here z is an auxiliary variable and zT is its transpose. The dual
roblem given in (36) can be solved iteratively using gradient-
ased algorithm and majorization–minimization method [25,26].
he update equations for x and z at each iteration are given by

x(k+1) = y − �

2
DT z(k) and

z(k+1) = clip
(

z(k) + 2
˛�

Dx(k+1), 1
)

,
(37)

here DT is the transpose of D and clip is a clipping function defined
elow:

lip(b, 1) =
{

b, |b| ≤ 1
sign(b), |b| > 1

. (38)

 and z are updated iteratively till the relative change in x between
he iterations is less than a fixed constant, ı, i.e., ‖xk − xk−1‖2

2 < ı
we have used ı = 0.0001).

.2. Robust locally weighted regression and smoothing
catterplots (Rloess)

In Rloess, denoising is done based on the assumption that
riginal signal is smooth. This assumption allows us to use neigh-
orhood points of (xn, yn) to estimate the denoised signal, ŷn, and,
herefore, the name locally weighted regression. This algorithm is
escribed below.

Let us define a weighting function, W with properties:

(a) W(x) > 0 for |x| < 1.
b) W(− x) = W(x).

(c) W(x) is a non increasing function for x ≥ 0.
d) W(x) = 0 for |x| ≥ 1.

If l is the half length of the local span window, then the weights
re defined as

k(xn) = W((xk − xn)/l), for k = 1, 2, . . . , N. (39)

(1) For each n, find the estimate, ˛(xn) = [˛0, ˛1, ˛2] of a sec-
nd order polynomial regression. The ˛(xn)’s are estimated using a
eighted least squares fit with weights defined as in (39):

(xn) = argmin
˛

N∑
k=1

wk(xn)(yk − ˛0 − ˛1xk − ˛2x2
k )2. (40)

The smoothed or denoised signal value at xn is (xn, ŷn), where
ˆn is the fitted regression value given as

ˆn = ˛0 + ˛1xn + ˛2x2
n =

N∑
k=1

rk(xn)yk, (41)

here rk(xn) is independent of the signal y. The estimates, ŷn are
alculated for all n = 1, 2, . . .,  N, to obtain a smooth signal ŷ. However,
his estimate is not robust and is sensitive to outliers. To make this

ore robust to outliers, the following steps are applied:

(2) Let B be a bi-square weight function defined as

(x) =
{

(1 − x2)2, |x| < 1
0, |x| ≥ 1

. (42)
Fig. 2. LV IDC after denoising using single stage TV denoising and two stage TV-
Rloess methods.

Let �n be the residual error, i.e., �n = yn − ŷn. Then, the robust-
ness weights are defined as

�n = B
(�n

6s

)
, (43)

where s is the median of the residual error, �.
(3) The new estimate ŷ is computed as described in step 1, but

with a new weight �nwk(xn) at each (xk, yk).
(4) Steps 2 and 3 are repeated till the relative change in the

estimated ŷ between iterations is less than a fixed value.
The weight function used in step 1 is tri-cubic weights, defined

as

W(x) =
{

(1 − x3)3, |x| < 1
0, |x| ≥ 1

. (44)

4.3. LA IDC attenuation compensation

All the measured IDCs are obtained by software Q-Lab® (Philips
Healthcare, Andover) for acoustic quantification. The returned data
series are given in decibel (dB). However, for application of the
indicator dilution theory by system identification, IDCs must be
represented as acoustic intensities, since the UCA concentration
3.0  2.9996 2.9973 2.9982 2.9981 3.0007 2.9993
0.0019 0.0098 0.0030 0.0036 0.0019 0.0098

6.0  6.0094 6.0157 6.0147 6.0111 6.0103 6.0175
0.0036 0.0190 0.0064 0.0088 0.0036 0.0190
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Table 2
Mean (top) and variance (bottom) of the estimate � using LAD and LSE estimators for different values of �.

Actual � 2 4 6 8 10 12 14 16

LAD 1.9953 3.9943 5.9977 8.0033 10.0000 11.9974 13.9427 15.9783
0.0036 0.0088 0.0042 0.0078 0.0049 0.0057 0.1673 0.1062

038 10.0005 11.9493 13.8049 14.7760
043 0.0090 0.2900 1.5321 11.3662
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Table 4
MAD, SD, correlation and bias values of the error between EF estimates by biplane
method and the parametric deconvolution method using LSE, LAD, MHFR HRF,
IRLAD, TLAD, TLS estimators. Both LA and LV IDC are denoised using TV denoising
method. All the EF estimates are based on Model-1.

LAD LSE MHFR HFR IRLAD TLAD TLS

MAD  10.8958 14.6143 10.2553 11.1644 11.2719 8.8928 10.5598
SD 15.3194 19.4656 14.4912 15.2726 15.8109 12.2734 14.2007
LSE  1.9893 4.0004 6.0002 8.0
0.0098 0.0069 0.0080 0.0

roper choice, resulting in additive noise. The LA IDC measurement,
hich is used for assessment of both EF and PBV, suffers from non-

tationary distortion due to acoustic intensity attenuation by LV
ontrast dilution. Also, the LA IDC suffers from stationary attenua-
ion due to tissue between the transducer and LA region, the tissue
an be seen in Fig. 1. The compensation for LA IDC is given by [16]

LA(t) = ÎLAe4arf .

(
ÎLVmax e−4arf

bÎLAmax

)(ILV (t)/ÎLVmax )

, (45)

here ILA, ÎLA and ÎLV are the real LA IDC, and the measured LA IDC
nd LV IDC, respectively. The LA attenuation compensation in (45) is
ased on the assumption that b, the ratio between ILAmax and ILVmax ,

s equal to one. The parameters a, r and f are the attenuation coef-
cient of the tissue, the distance between LV and LA ROI and the
entral frequency of ultrasonic pulses, respectively. As in [16], the
alues of these parameters are a = 0.3 dB cm−1 MHz−1, r = 5 cm,  and

 = 1.9 MHz. The LA IDC attenuation compensation is divided into
wo parts, the stationary part given by e4arf and the non-stationary
art, (ÎLVmax e−4arf /bÎLAmax )(ILV (t)/ÎLVmax . Firstly, the stationary com-
ensation is done, while the non-stationary compensation is done
nly if the peak LA IDC is larger than the peak of LV IDC after sta-
ionary compensation.

. Results and discussion

To compare the behavior of the estimators for EF estimation,
imulation is performed in the presence of noise. LA IDC is gener-
ted using LDRW model curve with � = 8. LV IDC is generated with
A IDC as input to the LV dilution model with different values of
. The values of � used corresponds to EF ranging from 10% to 80%
or a heart rate of 90 bpm. For both LA IDC and LV IDC, Gaussian
oise is added (SNR = 12 dB), whose variance is proportional to the
mplitude of the IDCs [8].  Mean and variance of the estimated �
or 100 different noise sequences is given in Table 1. Although the

ean value of � is almost the same for all the estimators, LAD and
LAD estimators have the least variance of �, followed by MHFR
nd HRF and TLS estimators. LSE has the highest variance among
ll the estimators.

The performance of LAD and LSE estimators in the estimation
f the PBV is compared by simulation in the presence of noise. RV
DC is generated by convolving a rectangular impulse of 1 s that

timulates the injection function and a LDRW model curve (� = 3
nd � = 5) that stimulates the impulse response between arm and
he RV. The RV IDC is then convolved with a LDRW model curve
ith � = 7 and � ranging from 2 s to 16 s to generate LA IDCs.

able 3
AD, SD, correlation and bias values of the error between EF estimates by biplane
ethod and the parametric deconvolution method using LSE, LAD, MHFR HRF,

RLAD, TLAD, TLS estimators. Both LA and LV IDC are denoised using FIR filter. All
he  EF estimates are based on Model-1.

LAD LSE MHFR HFR IRLAD TLAD TLS

MAD 11.4725 15.0982 9.8963 11.6057 11.4328 8.6025 11.6417
SD 15.4234 19.8174 13.4031 15.4158 15.4374 11.9032 15.3694
Corr 0.7070 0.5889 0.7185 0.7053 0.7073 0.7162 0.6697
Bias 13.1615 17.8977 10.5966 13.4101 12.7851 7.1807 13.6403
Corr 0.6492 0.5947 0.6569 0.6915 0.6352 0.6836 0.6630
Bias 10.8048 18.2252 9.2675 12.2658 10.2478 5.6540 12.5437

The values of � considered, covers the entire range measured in
patients. For both RV IDC and LA IDC, Gaussian noise is added
(SNR = 12 dB), whose variance is proportional to the amplitude of
the IDCs [8].  Mean and variance of the estimated � for 100 different
noise sequences is given in Table 2. Simulation results show that
the variance of the estimated � is less in LAD estimator compared
to LSE estimator.

To assess the clinical feasibility of these methods, IDCs were
measured by a Philips Sonos 5500 scanner (Philips Healthare,
Andover), equipped with transthoracic S3 probe, after the injec-
tion of a 0.05 mL  bolus of SonoVue® UCA (Bracco Suisse, Geneva)
diluted in 5 mL  of saline (0.9% NaCl) [27].

The EF estimates of dilution methods are tested using a set
of 82 measurements in patients with EF ranging from 10% to
80%. The measurements are compared with biplane echocardio-
graphic assessments after contrast opacification of the LV (an
average of three measurements). The use of contrast enhance-
ment allows a better delineation of the endocardial wall, leading
to improved accuracy of the biplane method, with reduced intra-
and inter-observer variabilities of the measurement [28,29].  The
measurements were performed at the Catharina Hospital in Eind-
hoven, The Netherlands. All the patients provided informed written
consent.

Comparisons of different estimators and denoising techniques
were done based on 4 parameters:

(1) Mean absolute deviation (MAD) of the difference between EF
estimates by the bi-plane method and the dilution method:

MAD(x) = mean(|X − mean(X)|). (46)

(2) Standard deviation (SD) of the difference between EF estimates

by the bi-plane method and the dilution method.

(3) Correlation coefficient (CC) between EF estimates by the bi-
plane method and the dilution method.

Table 5
MAD, SD, correlation and bias values of the error between EF estimates by biplane
method and the parametric deconvolution method using LSE, LAD, MHFR HRF,
IRLAD, TLAD, TLS estimators. Both LA and LV IDC are denoised using Rloess denoising
method. All the EF estimates are based on Model-1.

LAD LSE MHFR HFR IRLAD TLAD TLS

MAD 10.4528 12.6153 9.6248 10.7296 10.4670 8.5616 9.6323
SD 14.8571 17.1073 12.7341 14.9651 14.8871 11.6626 12.7286
Corr 0.6644 0.6331 0.7091 0.6967 0.6684 0.7202 0.7104
Bias 9.6361 13.1996 7.7468 10.9143 9.4000 5.1422 9.6296
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Table  6
MAD, SD, correlation and bias values of the error between EF estimates by biplane method and the parametric deconvolution method using LSE, LAD, MHFR HRF, IRLAD, IRLS,
TLAD,  TLS estimators. Both LA and LV IDC are denoised using two  stage FIR-Rloess denoising method. All the EF estimates are based on Model-1.

LAD LSE MHFR HFR IRLAD IRLS TLAD TLS

MAD  10.0377 11.655 9.2764 9.7430 10.1569 10.2391 8.8741 9.7895
SD 14.0974  16.3087 12.5089 12.9283 14.4434 13.8128 12.1550 13.2544
Corr  0.6778 0.6304 0.7146 0.7369 0.6716 0.6683 0.6957 0.6782
Bias  8.5396 11.6162 6.9697 9.4705 8.0461 3.7200 5.1030 8.7926

Table 7
MAD, SD, correlation and bias values of the error between EF estimates by biplane method and the parametric deconvolution method using LSE, LAD, MHFR HRF, IRLAD, IRLS,
TLAD,  TLS estimators. Both LA and LV IDC are denoised using two  stage TV-Rloess denoising method. All the EF estimates are based on Model-1.

LAD LSE MHFR HFR IRLAD IRLS TLAD TLS

MAD 9.1023 11.3735 8.7669 10.4091 8.7749 10.6977 8.5890 9.5542
SD 12.3349 15.5278 11.8045 14.6833 

Corr 0.7185 0.6312 0.7352 0.6788 

Bias  8.2662 11.3106 7.0053 10.3255 
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Fig. 3. EF (percentage units) measurements performed by the LSE, LAD and TLAD
estimators on 82 measurements in patients. The line represents the same measure-
ments made by the echocardiographic biplane method.
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Fig. 4. Bland–Altam plot of the comparison between the LSE (dot-dashed lines), LAD
(dashed lines) and the TLAD (continuous lines) with the echocardiographic biplane
method after contrast opacification of the LV. The lines indicate the average and
standard deviation interval.
12.0505 14.6354 11.9145 12.9265
0.7337 0.6551 0.7042 0.6702
7.9044 5.0571 5.4130 8.2190

(4) Bias, which is the mean of the difference between EF estimates
by the dilution method and the biplane method.

The values of MAD, SD, CC and Bias for different estimators
(LAD, LSE, MHFR, HFR, IRLAD, IRLS, TLS and TLAD) are provided in
Tables 3–7,  for different denoising methods, namely, FIR denoising,
TV denoising, Rloess denoising, two stage FIR and Rloess denois-
ing and two  stage TV and Rloess denoising. The results shown in
Tables 3–7 are based on Model-1.

FIR and TV denoising methods are not capable of removing out-
liers present in IDC, so the MAD  and SD are higher as shown in
Tables 3 and 4. With two stage denoising methods FIR-Rloess or TV-
Rloess, the outliers are removed as shown in Fig. 2. This improves
the EF estimation and results in lower values of MAD  and SD, which
is evident from Tables 6 and 7. Even though single stage denoising
using Rloess method removes outliers, it performs poorer when
compared to the two  stage denoising method.

It is well known that LAD is a better estimator than LSE in the
presence of outliers. Although denoising removes the main outliers
from the IDCs, small residual noise remains which may become
significant when the IDC is converted from dB into acoustic inten-

sities, forming new outliers. Therefore, LAD, MHFR, IRLAD and TLAD
give better EF estimates. HFR and IRLS, which are robust estimators,
perform better than LSE.
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Fig. 5. In vitro volume measurements for four different volumes by LSE and LAD
estimators. The results are the average of the volume estimates for four different
flows, going from 1 to 5 L/min.
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ig. 6. Bland–Altman plot comparing the PBV estimates by LSE and LAD estimato
ndicates the variance of the difference between LSE and LAD methods.

Comparison of MAD, SD, CC and Bias between Model-1 and
odel-2, given in Tables 7 and 8, respectively, shows that Model-1

erforms slightly better than Model-2.
Fig. 3 shows the estimates of EF by LSE, LAD and TLAD, plotted

gainst bi-plane method and Fig. 4 shows the Bland–Altman anal-
sis of bi-plane method with LSE, LAD and TLAD dilution methods
30].

The comparison of different EF measurement techniques shows
ignificant standard deviations (usually of the order of 10–20%)
31]. The echocardiographic biplane method produces an EF under-
stimation with respect to magnetic resonance measurements
gold standard) [28]. Therefore, the EF overestimation by the

odel-based dilution methods with respect to the biplane method
ould effectively result in EF estimates that are closer to the gold
tandard.

The performance of PBV estimator is tested by using the data of
he in-vitro experiment performed in [9].  In the in vitro set up, IDCs
ere measured before and after a capillary network whose volume

s varied from 310 mL  to 1080 mL  by clamping different tubes. The
ow is generated by a calibrated centrifugal pump (Medtronic 550
ioconsole) and an electromagnetic flowmeter embedded in the
ump measures the flow. Flows ranging from 1 to 5 L/min were gen-
rated, in steps of 1 L/min. The estimated PBV values using LSE and
AD are shown in Fig. 5. The correlation coefficients with respect
o the real volumes are 0.9955 and 0.9961 for LSE and LAD, respec-
ively. The larger volumes (>1000 mL)  are slightly underestimated
y both the methods. However, volumes larger than 900 mL  have
ever been measured in patients.

PBV estimation using LSE and LAD is performed in 80 of the 82

easurements collected in patients. In two patients, the RV win-

ow was not sufficient for IDC measurement. IDCs are denoised
sing a two stage TV-Rloess denoising. The results are shown in the
land–Altman plot given in Fig. 6. The mean difference between LSE

able 8
AD, SD, correlation and bias values of the error between EF estimates by biplane
ethod and the parametric deconvolution method using LSE, LAD, MHFR HRF, TLAD,

LS  estimators. Both LA and LV IDC are denoised using two stage TV-Rloess denoising
ethod. All the EF estimates are based on Model-2.

LAD LSE MHFR HFR TLAD TLS

MAD 11.1365 12.5754 10.8934 11.2059 9.0227 10.8118
SD 15.0944 16.8342 14.7681 15.197 12.1845 14.8193
Corr 0.7174 0.6337 0.7105 0.7155 0.7076 0.6474
Bias 11.6473 12.575 11.4237 11.5661 6.4388 10.1751
80 measurements in patients. Dashed line indicates the mean and dash-dot line

and LAD method is 18.6 mL  and the standard deviation is 29.6 mL,
which correspond to 4.7% and 7.5% of the average volume (average
between the estimates of the two  methods), respectively. These
results confirm the feasibility of the measurements and their con-
sistency across different implementations.

6. Conclusions and future work

Estimation of EF and PBV using indicator dilution methods is
studied, where we have used a parametric system identification
technique to calculate EF and PBV. Two  system models are pro-
posed for the LV dilution system and one for the transpulmonary
dilution system. Analysis of the two  models (Model-1 and Model-
2) proposed for EF estimation suggests that Model-1 approximates
the LV dilution system better than Model-2.

Different estimators are proposed for estimating the LV and
transpulmonary dilution system parameters and performance
analysis of these estimators in assessing EF and PBV is done. In EF
estimation, analysis of the results show that the LAD, HFR, MHFR
and IRLS estimators perform better than the conventional LSE esti-
mator. Since all the measured IDCs are corrupted by noise, TLS and
TLAD are more suitable for system identification. Results given in
Tables 3–7 show that the TLAD method, which accounts for mea-
surement errors in both the input and the output IDCs, together
with its robustness to outliers, is best suited for dilution system
identification. In PBV estimation, only two estimators, LSE and LAD,
are compared. In vitro results show that the LAD performs slightly
better than LSE, but the difference is not significant.

The two stage denoising method, namely, TV-Rloess, proposed
to denoise IDCs, gives significant improvement over single stage
denoising methods, namely, FIR filtering and TV denoising in esti-
mating EF and PBV.

6.1. Future work

The proposed dilution systems and the error functions for
estimating EF and PBV requires a more extensive validation. EF esti-
mates were compared with the bi-plane method, which is not a gold
standard and has to be compared with magnetic resonance imaging
method [31]. PBV estimates should be compared with transpolmu-

nary dye or thermodilution measurements.

The values of regularization parameter, � and local window
length, l used in TV and Rloess denoising methods will effect the
estimation of EF and PBV. In this paper, the values of � and l are
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ound empirically and the same values are used for denoising all
easured IDCs. Future work can also include a method to find the

ptimal values � and l adaptively for each IDC. Finding the values
f � and l based on the IDC will prevent over or under smoothing of
he IDCs and will therefore result in better EF and PBV estimation.
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