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Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and

the acoustic field in a combustor, is a major challenge faced in most practical combustors such as

those used in rockets and gas turbines. We employ the synchronization theory for understanding

the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system.

Interactions between coupled subsystems exhibiting different collective dynamics such as periodic,

quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have

focused on different dynamical states separately, synchronous behaviour of two coupled systems

exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first

experimental observation of different synchronous behaviours between two subsystems of a

thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129
(2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase

locking, and phase drifting are observed as the dynamics of such subsystem change. The observed

synchronization behaviour is further characterized using phase locking value, correlation

coefficient, and relative mean frequency. These measures clearly reveal the boundaries between

different states of synchronization. Published by AIP Publishing.

https://doi.org/10.1063/1.4991744

The development of most practical combustors such
as land-based gas turbine engines, aero-engines, and
rocket motors is hampered by thermoacoustic instabil-
ity. Thermoacoustic instability, which results in large
amplitude acoustic oscillations, is a consequence of the
positive feedback between the unsteady heat release rate
and the acoustic field in a combustor. Here, we examine
the interaction between these oscillations using the
framework of the synchronization theory which deals
with the instantaneous interactions between coupled
oscillators and their dynamics. Complex dynamical
systems consist of various subsystems that exhibit differ-
ent collective behaviours due to their interactions. Such
interactions between the subsystems are addressed using
the synchronization theory. The resultant dynamics
of the coupled subsystems can be periodic, quasiperiodic
or chaotic. Among these dynamics, the synchronization
of periodic and chaotic oscillators has been widely
studied. However, the synchronization of quasiperiodic
oscillators is not yet completely understood. In
this study, we show different synchronous behaviours
between the acoustic pressure and the unsteady heat
release rate signals of a laminar thermoacoustic system
exhibiting the quasiperiodic route to chaos. To that end,
we examine the dynamics of the relative phase between
these oscillations and characterize their synchronous
behaviour using phase locking value (PLV), correlation
coefficient, and relative mean frequency. Using these
measures, we are able to detect the boundaries of differ-
ent states of synchronization. Further, the measures
would give robust results even for situations where the

dominant frequencies of the signals are locked, but their
relative phase shows a diverse dynamics.

I. INTRODUCTION

Thermoacoustic instability is a major concern for most

practical combustors such as those used in rockets and gas

turbines for propulsion and power generation.1 The land-

based gas turbine combustors are, in principle, prone to ther-

moacoustic instability while operated with a lean premixed

air-fuel mixture. The susceptibility of flame properties, such

as flame speed, chemical time scale or flame temperature, to

equivalence ratio fluctuations becomes high near lean flam-

mability limit.2 Further, the fact that the flame structure often

becomes acoustically compact during fuel lean conditions

favours the energy transfer from combustion to the acoustic

field leading to thermoacoustic instability. However, a com-

bustor may also become unstable while operated in a

nonpremixed mode as in the case of aero-combustors.

Thermoacoustic instability may also occur while operated in

near stiochiometric air-fuel conditions as in the case of after-

burner and even in rich fuel-oxidizer conditions as in the

case of rocket motors. The occurrence of thermoacoustic

instability, which is mainly characterized by large amplitude

oscillations of the variables such as velocity, pressure, and

temperature, is caused by a positive feedback between the

unsteady heat release rate and the pressure oscillations.

These undesirable large-amplitude oscillations have devas-

tating consequences such as structural damage due to exces-

sive heat transfer and vibrations, thrust oscillations, and even

catastrophic failure of the engines.3a)Electronic mail: sirshendumondal13@gmail.com
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As the onset of thermoacoustic oscillations is a nonlin-

ear phenomenon,4 the tools from the dynamical systems the-

ory provide a framework to study the nonlinear behaviour of

the coupled subsystems of the combustor. These tools have

been successfully used by various researchers in recent

times, to not only explore different dynamical states of the

combustor4–8 but also to detect a transition route to the onset

of thermoacoustic instability.9,10 The approach of nonlinear

dynamics has also been used to explore the dynamical transi-

tion in pulse combustors11–13 wherein the occurrence of ther-

moacoustic instability is expected and maintained to obtain

better performances. All the above studies have character-

ized the dynamical behaviour in different kinds of combus-

tors; however, most of them have looked at one oscillatory

variable, the acoustic pressure.

Further, although the necessary criterion for the onset of

thermoacoustic instabilities is known over the years,14 the

mechanism pertaining to the coupled interaction between

these subsystems has not yet been understood completely.

Further, the prediction and the control of thermoacoustic

instabilities require an understanding of the instantaneous

interaction between the acoustic field and the heat release

rate fluctuations observed at different dynamical states in the

system.

In the present study, we examine the synchronous

behaviour between two subsystems, the acoustic field and

the unsteady heat release fluctuations present in the confine-

ment, of a simple thermoacoustic system with the laminar

reacting flow. These oscillators undergo a transition from the

limit cycle to chaotic oscillations through quasiperiodic

dynamics with a change in the flame location.4,7 We re-

examine the data presented in a paper by Kabiraj et al.7

Under favorable situations, the acoustic field of the con-

finement gets positively coupled with the unsteady flame

oscillations resulting in self-sustained oscillatory behaviour.

The necessary condition for the onset of thermoacoustic

instability is known as the Rayleigh criterion.14 According to

the criterion, when the phase between acoustic pressure (p0)

and heat release rate fluctuations of the flame ( _q0) lies

between �p/2 and p/2, energy is periodically added to the

acoustic field causing a self-sustained oscillatory behav-

iour.15 We analyze these two subsystems in their coupled

oscillatory state. Such a phenomenon is possibly analogous

to the interactive dynamics of heart and brain of the human

body.16,17 Similar kind of interactive dynamics between two

subsystems, e.g., in the cardiorespiratory system,18 heart-

brain interactions,17 have been studied using the synchroni-

zation theory. Recently, the analysis of synchronous behav-

iour between p0 and _q0 in a thermoacoustic system with

turbulent flow have shed light on the temporal19 and spatio-

temporal20 transition to self-sustained oscillations.

We use the synchronization theory to investigate the

instantaneous interaction between p0 and _q0 in a laminar com-

bustor. The synchronization theory has been used extensively

to explore the collective behaviour of complex systems which

undergo bifurcations leading to a wealth of dynamical

states.21–23 The possible dynamics of such systems could be

periodic, quasiperiodic or chaotic. However, most of the

previous studies were focused on synchronization during

periodic or chaotic dynamics.24 Quasiperiodic oscillations,

which are often exhibited in different realms of science and

technology,25–29 have not received adequate attention in the

context of synchronization.

The entrainment of self-sustained quasiperiodic oscilla-

tors by external forcing or through mutual coupling has been

studied in the recent past.30–34 A quasiperiodic attractor is

often characterized by its winding number which is the ratio

of two incommensurate frequencies of the attractor. Such

winding numbers of two different quasiperiodic oscillators

have been observed to be locked during synchronization30

(akin to frequency locking in periodic oscillators). Further,

forcing a quasiperiodic motion with periodic pulses (a pulse

wave with very short pulse duration) resulted in a plethora of

dynamical states including synchronized period-1 oscilla-

tions depending upon the period and amplitude of the exter-

nal forcing.33 More recently, synchronization in phase

dynamics has also been studied theoretically for coupled

quasiperiodic oscillators.34

However, to the best of our knowledge, there is no

experimental evidence of either forced or mutual synchroni-

zation of quasiperiodic oscillations. Further, the coupled

behaviour between two oscillators has not been investigated

while there is a transition in the coupled dynamics from limit

cycle to chaos through a quasiperiodic route. In other words,

how does the synchronous behaviour of two coupled oscilla-

tors of a real system change as they exhibit the quasiperiodic

route to chaos?

We here, show that during the quasiperiodic route to

chaos, both p0 and _q0 oscillations, transition from a state of

synchronized periodicity to a state of desynchronized chaos.

This transition happens through an intermediate state of

quasiperiodic oscillations which display rich synchronous

behaviour such as phase locking, intermittent phase locking

and phase drifting. For calculating the instantaneous phase

of the signals, we adopt an analytic signal approach35 based

on the Hilbert transform.36 We further calculate the relative

phase between the signals and quantitatively characterize

different states of synchronization using various measures

such as phase locking value (PLV), correlation coefficient

(r), and relative mean frequency (Dx).

II. EXPERIMENTAL SETUP

The experiments were performed by Kabiraj et al.7 in a

laminar thermoacoustic system, where a multiple flame

burner was located inside a long borosilicate glass duct (a

schematic of the experimental set-up can be found in Ref. 7).

A burner tube of inner diameter 16mm, thickness 1.5mm,

and length 800mm is used to hold the multiple flame burner

on top of it. The burner consists of a perforated copper block,

18mm in height, with seven equispaced holes of diameter

2mm. The top of the burner is covered with a fine wire mesh

which enhances the stabilization of the flames and, in turn,

prevents their blowout during the onset of instability. The

fuel (LPG) and air are mixed in a premixing chamber which

is packed with steel wool for better mixing of the gases. The

upstream of the burner tube is connected to a large cylindri-

cal decoupling chamber to isolate the fuel and air supply
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system from the downstream acoustic fluctuations. The

decoupler located in between the burner tip and air/fuel sup-

ply inlets dampens the acoustic waves, and therefore, flow

rates are not affected. Thus, the presence of the decoupler

removes the possibility of having equivalence ratio fluctua-

tions in our system.

The glass duct (inner diameter 56.7mm, length 800mm)

was kept open to the atmosphere at the top end (where, the

acoustic pressure, p0 ¼ 0 as p ¼ �p þ p0 ¼ patm) and closed at

the bottom end (where, the acoustic velocity, u0 ¼ 0). This

results in no acoustic power flowing in or out at boundaries

as the acoustic intensity, hIitime or the acoustic power

hPitime ¼ hp0u0itime ¼ 0 at boundaries. Further, since the bot-

tom end of the glass duct is closed, there is no mean flow of

air around the flame which could entrain and mix with the

fuel. Therefore, there is no possibility of getting the air flow

perturbed by acoustic fluctuations and resulting in equiva-

lence ratio fluctuations.

The relative location of the burner, and thereby the loca-

tion of flames, was varied through a traverse mechanism

which was connected with the glass duct. During experimen-

tations, the equivalence ratio is kept constant at / ¼ 0.46

(with the uncertainty of 2.8%), by keeping the volumetric air

flow rate at 4 lpm and the volumetric fuel flow rate at 56

ccm (with uncertainty in flow rates of 2% of full-scale read-

ing). As we are interested in lean premixed combustion

where gas turbine engines are prone to thermoacoustic insta-

bility, experiments were conducted at the lean equivalence

ratio. Simultaneous measurements of the acoustic pressure

and the heat release rate fluctuations (measured in terms of

fluctuations of CH� chemiluminescence intensity from the

flame) were performed. A piezoelectric pressure microphone

(PCB103B02 of sensitivity ¼ 223.4mV/kPa and uncertainty

¼60.14 Pa) and a photomultiplier tube (Hamamatsu H5784)

with a narrowband CH� filter (4326 10 nm) were used to

measure p0 and _q0, respectively. The pressure microphone

was mounted near the closed end of the glass duct as the

amplitudes of standing waves are always the maximum at

the acoustically closed end. As CH� chemiluminescence is

considered as a signature of the heat release rate,37,38 a

global variation of CH� intensity was captured through PMT

outfitted with a CH� filter. The data was acquired using a 16-

bit analog to digital conversion card (NI-6143, resolution

0.15mV). To ensure the repeatability, the acoustic damping

was maintained within the bounds of an exponential decay

rate. For the present setup, a mean exponential decay rate

was found to be 16/s (evaluated in cold flow). All experi-

ments were performed only when the decay rate of the sys-

tem falls within 610% of the mean value.

III. RESULTS AND DISCUSSIONS

A. Bifurcation: Quasiperiodic route to chaos

As the flame location (xf, measured from the top end of

the duct) is varied, the onset of limit cycle oscillations hap-

pens through a Hopf bifurcation7 (at xf¼ 13.8 cm). With fur-

ther variation in xf, the system dynamics undergoes a

transition from periodic to chaotic oscillations via quasiperi-

odic dynamics. The representative time series of both p0 and

_q0 are shown in Fig. 1 for periodic, quasiperiodic, and cha-

otic dynamics. From the time series, it is evident that,

although the dynamical states of p0 and _q0 are the same at a

particular xf, their oscillations need not be evolved in sync

all the time. Therefore, the instantaneous interaction between

p0 and _q0 needs more rigorous analysis. Further, the ampli-

tudes of local maxima in the pressure time series are shown

as a function of xf in a bifurcation plot as shown in Fig. 2(a).

This shows the dynamical transition between various states

when the flame location is varied.

We further characterize the dynamical nature of these

states by plotting the phase portraits and the amplitude spec-

tra of p0 as shown in Figs. 2(b) and 2(c), respectively. A

closed orbit in the phase portrait [Fig. 2(b-I)] and a single

dominant frequency (f¼ 560Hz) in the frequency spectra

[Fig. 2(c-I)] indicate the periodic (limit cycle) dynamics of

p0. On the other hand, a toroidal structure in the phase por-

trait [Fig. 2(b-II)] and the presence of two incommensurate

frequencies (f1¼ 368Hz; f2¼ 571Hz; f12¼ f2 � f1 ¼ 203Hz)

in the frequency spectra [Fig. 2(c-II)] confirm the quasiperi-

odic dynamics of p0. Such a non-harmonic state can appear

due to the increased number of modes excited in the ther-

moacoustic system.39,40 Further, the modal interaction can

results in the onset of quasiperiodic oscillations in such sys-

tems.41 The chaotic dynamics is affirmed from the multiple

frequency peaks (f1¼ 368Hz; f2¼ 581Hz; f3¼ 524Hz) in

the frequency spectra [Fig. 2(c-III)] and the appearance of a

strange attractor [Fig. 2(b-III)]. The attractor was proved to

be chaotic and strange through a positive maximal Lyapunov

exponent and a higher correlation dimension by Kabiraj

et al.7

Depending upon the location of the flame in the duct,

the acoustic admittance (Y ¼ û=p̂, where û and p̂ are the

complex amplitudes of acoustic velocity and pressure,

respectively), which is the assistance of a medium to a longi-

tudinal wave motion through a duct, varies differently for

different modes. In other words, for a particular mode, the

acoustic admittance at the flame affects the ease with which

thermal energy is transferred to the acoustic field. Therefore,

for a particular location of the flame, one or more number of

modes can be excited resulting in the generation of sound

with a single frequency or multiple frequencies, respectively.

FIG. 1. The representative time series of both p0 and _q 0 are shown for (I)

periodic (xf¼ 13.9 cm), (II) quasiperiodic (xf¼ 15.6 cm), and (III) chaotic

(xf¼ 17.5 cm) dynamics.
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B. Synchronization behaviour of acoustic pressure
and heat release rate oscillations

Having described the dynamical nature and the transi-

tion of the system dynamics observed in a ducted laminar

flame, we turn our attention towards obtaining an under-

standing of coupled interactions between p0 and _q0 signals

using the synchronization theory. The temporal variation of

the relative phase between the signals helps in detecting dif-

ferent dynamical states of synchronization. The first return

maps of p0 and _q0 [Figs. 3(II), 3(III), 4(II), and 4(III)] along

with their relative phase [Figs. 3(I) and 4(I)] show that

although the dynamics of the oscillations in the system are

FIG. 3. (I) The temporal variation of

phase difference between p0 and _q 0,

(II) the first return maps of the acoustic

pressure, and (III) the heat release rate

signals are shown. Row “(a)” shows a

representative case during limit cycle

oscillations (xf¼ 13.9 cm) whereas row

“(b)” (xf¼ 16.5 cm) and row “(c)”

(xf¼ 17.7 cm) are in the chaotic regime

displaying different states of synchro-

nous behaviour. During periodic oscil-

lations, instantaneous phases of two

oscillators are locked (a-I). Whereas,

during the chaotic state, intermittent

phase locking (b-I) and phase drifting

(c-I) are observed depending on the

values of xf.

FIG. 2. (a) A bifurcation plot showing

the amplitudes of local maxima in the

acoustic pressure time series (p0) as a

function of xf. The representative (b)

phase plots and (c) amplitude spectra

(the spectral bin size is 0.15Hz) are

shown for (I) xf¼ 13.9 cm (limit cycle;

f¼ 560Hz), (II) xf¼ 15.6 cm (quasipe-

riodicity; f1¼ 368Hz; f2¼ 571Hz;

f12¼ f2 � f1 ¼ 203Hz), and (III)

xf¼ 17.7 cm (chaos; f1¼ 368Hz;

f2¼ 581Hz; f3¼ 524Hz). The corre-

sponding time series of p0 and _q 0 are

shown in Fig. 1.
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similar for both p0 and _q0, the temporal correlation in their

phases can be different for a particular dynamical state.

The phase dynamics of periodic and chaotic oscillations

are examined first [Fig. 3(I)]. The occurrence of congregated

cluster of points in the first return maps [Figs. 3(a-II) and

3(a-III)] reconfirms the limit cycle behaviour.42 In an ideal

situation, periodic dynamics corresponds to a single point in

the return map. However, a small cluster of points in heat

release rate oscillations could be due to measurement noise.

We notice more noise level in _q0 oscillations than that in p0

oscillations, and this is consistent with the observation of

Kabiraj et al.43 The relative phase (unwrapped instantaneous

phase difference) between p0 and _q0 is bounded and fluctuates

around a constant phase value [Fig. 3(a-I)], confirming their

phase locking (or synchronization) behaviour. The fluctua-

tions of the relative phase are periodic with a dominant fre-

quency same as the frequency of the limit cycle oscillations.

Figure 3(a-I) shows the fulfillment of the Rayleigh criterion

through phase locking. In other words, the acoustic driving

required for a growth in the amplitude of oscillations occurs

during the synchronous behaviour of p0 and _q0.

A set of scattered points around the main diagonal in the

first return maps reconfirms the presence of chaotic dynam-

ics42 in both p0 and _q0 [Figs. 3(b-II) and 3(b-III) and 3(c-II)

and 3(c-III)]. In the initial regime of chaotic oscillations, we

witness a state of intermittent phase locking [Fig. 3(b-I),

xf¼ 16.5 cm], which transitions to a state of continuous

phase drifting [Fig. 3(c-I), xf¼ 17.7 cm] at a sufficiently

higher value of xf. During the intermittent phase locking

state, the instantaneous phases of p0 and _q0 show locking for

the short epochs of the oscillations and jumps of integer mul-

tiples of 2p radians between the consecutive epochs of phase

locked oscillations [see Fig. 3(b-I)]. On the other hand, dur-

ing phase drifting, we notice a continuous increase in the rel-

ative phase of the signals see Fig. 3(c-I)]. Note here that the

high value of relative phase shown in Figs. 3(I) and 4(I) does

not provide any information about the (instantaneous) phase

delay between signals, but it indicates the cumulative phase

difference along the duration of the signal.

We will now shift our attention towards the quasiperi-

odic regime. A closed loop structure in the first return maps,

shown in Figs. 4(II)–4(III), indicates the presence of quasipe-

riodic oscillations in both acoustic pressure and heat release

rate signals.42 However, in Figs. 4(d-III) and 4(e-III), we

notice the distorted closed loop structures of 2D torus in the

first return maps of heat release rate oscillations, which pos-

sibly reflect the transition from quasiperiodic to chaotic

oscillations. In other words, the appearance of scattered

points in the return maps [Fig. 4(d-III) and 4(e-III)] is indica-

tive of breaking of the two-torus structure observed during

FIG. 4. (I) The temporal variation

of instantaneous phase difference

between p0 and _q 0 exhibiting quasiperi-

odic oscillations is shown for (I-a)

xf¼ 15.1 cm (fp1 ¼ fq1 ¼ 366.8Hz;

fp2 ¼ fq2 ¼ 571.3Hz), (I-b) xf¼ 15.3 cm

(fp1¼ fq1¼368.2Hz; fp2¼ fq2¼571Hz),

(I-c) xf¼15.6cm (fp1¼ fq1¼370Hz;

fp2¼ fq2 ¼573.7Hz), (I-d) xf¼16.1cm

(fp1¼fq1¼371.7Hz; fp2¼fq2¼570.5Hz),

and (I-e) xf¼16.3cm (fp1¼fq1¼373.1Hz;

fp2¼fq2¼572.2Hz). (II) and (III) are the

first return maps drawn for both p0 and _q 0

oscillations, respectively. We observe a

(I-a) perfectly phase-locked, (I-b) an inter-

mittently phase-locked, (I-c) a phase drift-

ing, (I-d) an intermittently phase-locked,

and (I-e) a perfectly phase-locked state of

the quasiperiodic oscillations.
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a quasiperiodic state. Although the frequencies of both oscil-

lators vary slightly due to change in the flame location (xf),

we find that the frequencies are always perfectly locked for

both p0 and _q0. In such a situation, where the dominant fre-

quencies of a system of coupled oscillators are perfectly

locked, the plot of instantaneous relative phase aids in deter-

mining the temporal interaction between the signals of these

oscillators.

At xf¼ 15.1 cm [Fig. 4(I-a)], we notice the bounded fluc-

tuations in the relative phases of p0 and _q0 indicating the

phase locking (or synchronization) of these coupled subsys-

tems during the quasiperiodic state. The bounded fluctua-

tions in the relative phase are also referred to as phase

trapping. The fluctuations in the relative phase are periodic

with a dominant frequency same as the beating frequency of

the quasiperiodic signals. The relative phases between p0 and

_q0 remain in the region of �p/2 to p/2 [Fig. 4(a-I)] leading to

the persistence of periodic oscillations. With further increase

in xf [15.3 cm, Fig. 4(b-I)], the instantaneous relative phase

between p0 and _q0 shows transition to a state of the intermit-

tently phase locked regime. In this state, the instantaneous

phases of p0 and _q0 are locked for short durations of time and

the epochs of the consecutive phase locked oscillations are

separated by the phase slips, which occur as integer multi-

ples of 2p radians [inset of Fig. 4(b-I)]. As xf is further

increased [Fig. 4(c-I), xf¼15.6 cm], we notice an increase in

the occurrence of phase slips, which finally end up into a

continuous drift in the relative phase. A continuous drift in

the relative phase between p0 and _q0 is an indication of

desynchronization of two coupled quasiperiodic oscillations

observed in a thermoacoustic system. As the flame location

is further increased in the quasiperiodic regime, we notice a

transition of the system dynamics to a state of phase-locking

[Fig. 4(e-I)] through a state of intermittent phase-locking

[Fig. 4(d-I)].

The transition from a state of phase locking to a state of

phase drifting happens through intermittent or imperfect

phase locking with occasional slips. This happens due to the

phase jumps in any one of the signals (individual phase

dynamics are provided in the supplementary material, sec-

tion S-A, Fig. S1). We find phase jumps either in _q0 [for the

case of Fig. 4(b-I), see S1] or in p0 [for the case of Fig. 4(d-I),

not shown]. Therefore, even though phase portraits and first

return maps indicate the quasiperiodic nature of oscillations

[Figs. 2(b-II), 4(II), and 4(III)], the phase jumps show imper-

fectness in quasiperiodic oscillations. A similar kind of imper-

fect phase locking was also observed in quasiperiodically

forced coupled chaotic systems.44

C. Quantitative characterization of synchronization

behaviour

We further utilize different quantitative measures of

synchronization such as phase locking value (PLV), correla-

tion coefficient (r), and relative mean frequency (Dx). These

measures help in detecting transitions between the different

regimes of synchronization of coupled oscillators observed

in the thermoacoustic system.

The measure, PLV45 (¼ N�1j
PN

t¼1 expðiDhtÞj, where

Dht represents the instantaneous relative phase at the t
th time

instant) computes the mean variability of instantaneous rela-

tive phases between p0 and _q0. PLV lies close to 1 for a per-

fectly synchronized state, whereas, it lies close to 0 for a

perfectly desynchronized state of oscillations. In the case of

intermittent synchronization, its value appears between 0

and 1. During limit cycle oscillations, PLV stays close to one

[Fig. 5(a)] confirming the perfect phase locking of the acous-

tic pressure and the heat release rate oscillations in the sys-

tem. As the system dynamics enters into a quasiperiodic

regime of oscillations, PLV shows a drop from the value

observed during the limit cycle state. The reduction in PLV

further continues till 0.3, after which, it shows an increase to

a value close to 0.8, observed for the final state of quasiperi-

odic oscillations in the system. Although the oscillations of

p0 and _q0 are phase locked during the quasiperiodic state

[Fig. 5(a-I)], the value of PLV shows a decrease in this

region, which is manifested as an increased amplitude of the

bounded oscillations of the relative phase (time series of rel-

ative phase with different amplitudes and corresponding

PLV are provided in the supplementary material, section

S-B, Fig. S2). A further decrease in PLV agrees with the

transition of system dynamics from a state of phase-locked

oscillations [Fig. 5(a-I)] to a state of phase drift oscillations

[Fig. 5(a-III)] that happens through a regime of intermittent

phase locking [Fig. 5(a-II)]. Subsequently, the increase in

PLV depicts the transition of the system dynamics back to

the phase locking state [Fig. 5(a-V)] via a realm of intermit-

tent phase locking [Fig. 5(a-IV)]. Further, in the chaotic state

of oscillations, PLV drops from a value close to 0.75 to a

value close to 0.5 during the transition from a state of inter-

mittent phase locking to a state of phase drifting [Fig. 5(a)].

Figure 5(b) shows the variation of linear correlation

coefficient (r) between p0 and _q0 with the location of flame

inside the duct. During limit cycle oscillations, the value of

r remains close to 1 indicating the presence of a strong posi-

tive correlation between p0 and _q0. However, in the quasiperi-

odic state of oscillations, we observe a continuous fall in the

values of r from the regions shown in Figs. 5(b-I)–5(b-V),

in which, r changes its value from positive to negative in

the desynchronization region as shown in Fig. 5(b-III). As the

values of r approaches zero, the system dynamics during the

quasiperiodic state starts regaining its initial state of phase

locked oscillations. This change in the sign of r, during the

quasiperiodic state, maybe due to the phase shift which hap-

pens primarily in the heat release rate oscillations when the

flame location crosses the acoustic velocity node of the stand-

ing wave. Such a phase shift due to crossing a node is

explained by Lieuwen46 for a single frequency standing wave.

As the system dynamics enters into a chaotic state of oscilla-

tions, the value of r suddenly becomes more negative and it

shows a small change during the chaotic region. Furthermore,

a sudden change in the slope of variation of r dr
dxf

� �

from neg-

ative to positive is discernible as the dynamics changes from

quasiperiodic to chaotic.

Figure 5(c) shows the variation in the relative mean fre-

quency computed for the acoustic pressure and the heat release

103119-6 Mondal, Pawar, and Sujith Chaos 27, 103119 (2017)



rate oscillations at different locations of the flame inside

the duct. The relative mean frequency (Dx ¼ jx1 � x2j) is

the difference in the mean frequencies of two signals, where

the mean frequency is an average of the first order time deriva-

tive of the instantaneous phase of the signal (x ¼ hd/=dti).47

The advantage of this parameter over the others [shown in

Figs. 5(a) and 5(b)] is that Dx qualitatively demarcates the

regions of perfectly phase locked states [Figs. 5(c-I) and 5(c-V)]

from the regions of desynchronized [Fig. 5(c-III)] and imper-

fectly synchronized [Figs. 5(c-II) and 5(c-IV)] states. Such

demarcations are not observed in the plots of PLV and r. When

the system is in a state of phase locked oscillations, the value of

Dx becomes zero, whereas, during the state of desynchronized

oscillations, it shows a value higher than zero. In Fig. 5(c), we

see that the values of Dx stay at zero, for the few values of xf in

the quasiperiodic state. This behaviour of synchronization dur-

ing quasiperiodic oscillations is not clearly reflected in the plots

of PLV and r as shown in Figs. 5(a) and 5(b). The high ampli-

tude oscillations observed in the relative phase during the phase

locking state [Fig. 4(a-I)] result in lower values of PLV and r.

However, the oscillations in the relative phase get averaged out

in themean frequency (x ¼ hd/=dti). In the regime of quasipe-

riodic oscillations, as we move from synchronization (phase

locking) to desynchronization (phase drifting) through imper-

fect synchronization (intermittent phase locking), the values of

Dx increase to its maximum. As the system dynamics conse-

quently regains the state of perfectly phase-locked quasiperiodic

oscillations at higher values of xf, the value of Dx falls to zero.

However, phase drift in the chaotic regime is observed with

much lower Dx. This might be due to the broadband spectrum

in the chaotic regime unlike the quasiperiodic regime.

We further notice that, for all states during the quasiperi-

odicity route to chaos presented in Fig. 4, the dominant fre-

quencies of both p0 and _q0 oscillations always remain locked

(shown in the supplementary material, section S-C, Fig. S6).

Even if the locked frequencies are the same, the spectral con-

tent may lead to different phase dynamics (a treatment with

synthetic quasiperiodic signals is given in the supplementary

material, S-C). The frequency with a high spectral content

might repeat more in time which is reflected in Dx. In such

situations, the values of Dx of the coupled oscillators seem

to be a better measure in detecting the synchronization states

than the locking of dominant frequencies. We believe that

our findings of the present paper may shed light on the stud-

ies where two coupled subsystems exhibit a quasiperiodic

route to chaos. Further, we note that the results presented in

this paper may not be generalized to all other configurations

of combustion systems, as all thermoacoustic systems do not

show the kind of dynamics presented in our paper. However,

the method to perform the instantaneous interactions of two

signals is universally applicable and is independent of the

configuration of the combustor.

The change of flame location (xf) results in the onset of

different dynamical states such as periodic, quasiperiodic,

and chaotic oscillations in the system and also results in dif-

ferent synchronous behaviours. The power transferred to the

acoustic field from the flame primarily depends on the value

of acoustic admittance (Y ¼ û=p̂) at the flame location.

FIG. 5. (a) The variation of the phase

locking value (PLV), (b) correlation

coefficients (r), and (c) the variation of

relative mean frequency (Dx) between

p0 and _q 0 oscillations are plotted for

different locations of flame (xf) inside

the duct. In the quasiperiodic regime,

the computed values of PLV, r and Dx

for the region of phase locking (I and

V), intermittent phase locking (II and

IV), and phase drifting (III) are sepa-

rately shown. The error bars in (a), (b),

and (c) show the statistical variation of

these parameters around their mean

values obtained for 15 different seg-

ments (each of 2 s) of the entire signals

(30 s). Figs. 4(a)–4(e) show the repre-

sentative plots of phase dynamics and

the first return map of the regions I–V,

respectively.

103119-7 Mondal, Pawar, and Sujith Chaos 27, 103119 (2017)



Therefore, depending upon the location of the heat release

source (or flame) along the combustor length, the acoustic

admittance for a particular mode at the flame varies, thus,

causing a change in the acoustic driving. Therefore, as xf
changes, different acoustic modes of the systems may get

excited. Further, the simultaneous excitation of these modes

may lead the system to exhibit various dynamical states that

have different frequency contents. In the case of such multi-

frequency signals, a mean frequency of the signal is com-

monly used as a quantifying parameter for synchronization.

We observe that with the change in xf, the difference in mean

frequencies of the acoustic pressure and the heat release rate

signals changes, which further results in different synchroni-

zation behaviours such as phase locking, phase trapping,

intermittent phase locking or phase drifting in the system

dynamics. This suggests that the location of flame inside the

duct might have a direct influence in altering the coupling

strength between p0 and _q0. Furthermore, the change in the

energy content of each acoustic mode can also contribute

towards the various synchronization dynamics during the

quasiperiodic state of oscillations (as shown in the supple-

mentary material, S-C). However, further investigations are

needed for more detailed understanding of the importance of

the flame location on different synchronous behaviours

observed.

IV. CONCLUSION

In summary, the interaction between the acoustic field

and the heat release rate fluctuations from the flames located

inside a confinement is investigated in a well-controlled

experiment of a thermoacoustic system. With the variation of

flame location inside a glass duct, rich dynamical states have

been observed in previous studies. The present study deals

with the regime of quasiperiodic route to chaos. The periodic

(or limit cycle) state corresponds to a region of phase-locked

oscillations of acoustic pressure and heat release rate fluctua-

tions. On the other hand, the region of quasiperiodic dynam-

ics depicts the presence of different behaviours of

synchronization of these oscillators such as phase locking (or

phase trapping as the relative phase becomes bounded but

oscillatory), intermittent phase locking, and phase drifting.

Different phase dynamics can be attributed to dissimilar spec-

tral content of two locked frequencies. In the chaotic regime

of oscillations, we notice the state of intermittent phase lock-

ing and subsequent state of phase drifting. Furthermore, we

computed some statistical measures such as the phase locking

value (PLV) and correlation coefficient (r) for quantitative

characterization of the synchronization behaviour observed in

the dynamics of the relative phase. These measures further

aid in detecting the boundaries of different states of synchro-

nization observed during the quasiperiodicity route to chaos.

We find the relative mean frequency to be a better measure

for detecting the phase locking behaviour of coupled oscilla-

tors. This measure would give robust results even for situa-

tions where the dominant frequencies of the signals are

locked; but their relative phase shows a diverse dynamics.

SUPPLEMENTARY MATERIAL

See supplementary material for: (1) the phase jumps in

one of the signals considered and its consequence in the rela-

tive phase between the signals (section S-A), (2) the depen-

dence of amplitude of relative phase oscillations on PLV

(section S-B), and (3) the dependence of phase dynamics on

the spectral contents of two synthetic quasiperiodic signals

(section S-C).
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