
Chaos 30, 033121 (2020); https://doi.org/10.1063/1.5134821 30, 033121

© 2020 Author(s).

Synchronization transition from chaos
to limit cycle oscillations when a locally
coupled chaotic oscillator grid is coupled
globally to another chaotic oscillator
Cite as: Chaos 30, 033121 (2020); https://doi.org/10.1063/1.5134821
Submitted: 02 November 2019 . Accepted: 24 February 2020 . Published Online: 12 March 2020

Vedasri Godavarthi, Praveen Kasthuri, Sirshendu Mondal , R. I. Sujith , Nobert Marwan , and Jürgen

Kurths 



Chaos ARTICLE scitation.org/journal/cha

Synchronization transition from chaos to limit
cycle oscillations when a locally coupled chaotic
oscillator grid is coupled globally to another
chaotic oscillator

Cite as: Chaos 30, 033121 (2020); doi: 10.1063/1.5134821

Submitted: 2 November 2019 · Accepted: 24 February 2020 ·
Published Online: 12March 2020 View Online Export Citation CrossMark

Vedasri Godavarthi,1 Praveen Kasthuri,1 Sirshendu Mondal,2 R. I. Sujith,1,a) Nobert Marwan,3

and Jürgen Kurths3,4,5

AFFILIATIONS
1Department of Aerospace Engineering, Indian Institute of Technology Madras, 600036 Chennai, India
2Department of Mechanical Engineering, National Institute of Technology Durgapur, 713209 Durgapur, India
3Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany
4Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany
5Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB243UE, United Kingdom

a)Author to whom correspondence should be addressed: sujith@iitm.ac.in

ABSTRACT

Some physical systems with interacting chaotic subunits, when synchronized, exhibit a dynamical transition from chaos to limit cycle oscilla-
tions via intermittency such as during the onset of oscillatory instabilities that occur due to feedback between various subsystems in turbulent
flows. We depict such a transition from chaos to limit cycle oscillations via intermittency when a grid of chaotic oscillators is coupled diffu-
sively with a dissimilar chaotic oscillator. Toward this purpose, we demonstrate the occurrence of such a transition to limit cycle oscillations
in a grid of locally coupled non-identical Rössler oscillators bidirectionally coupled with a chaotic Van der Pol oscillator. Further, we report
the existence of symmetry breaking phenomena such as chimera states and solitary states during this transition from desynchronized chaos
to synchronized periodicity. We also identify the temporal route for such a synchronization transition from desynchronized chaos to gener-
alized synchronization via intermittent phase synchronization followed by chaotic synchronization and phase synchronization. Further, we
report the loss of multifractality and loss of scale-free behavior in the time series of the chaotic Van der Pol oscillator and the mean field
time series of the Rössler system. Such behavior has been observed during the onset of oscillatory instabilities in thermoacoustic, aeroelastic,
and aeroacoustic systems. This model can be used to perform inexpensive numerical control experiments to suppress synchronization and
thereby to mitigate unwanted oscillations in physical systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134821

During the onset of oscillatory instabilities that occur due to
feedback between various subsystems in turbulent systems, we
observe a transition from chaos to order. Examples for these
are the occurrence of oscillatory instabilities in thermoacoustic,
aeroelastic, and aeroacoustic systems. The onset of the oscilla-
tory instabilities in such systems is shown as a transition from
chaos to limit cycle oscillations via intermittency.1–3 Further,
the synchronization framework has been applied to describe the
onset of thermoacoustic and aeroelastic instabilities. The onset
of thermoacoustic instabilities is described as the occurrence of

synchronization between the acoustic field and the global heat
release rate in a turbulent combustor.4 The onset of aeroelastic
instability in a pitch-plunge aeroelastic system is described as
the onset of synchronization between the pitch and the plunge
modes.5 Further, a spatiotemporal transition from disorder to
order via a chimera-like state is detected.6,7 Such systems with
many interacting subunits are generally modeled using a grid of
oscillators. However, the transition in the dynamics from chaos
to limit cycle oscillations among chaotic oscillators has been
observed only with conjugate coupling or time delay coupling.
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Here, we show that this transition to limit cycle oscillations is also
possible when different chaotic oscillators are coupled. We show
an alternate route wherein a transition from chaos to limit cycle
oscillations occurs when a grid of locally coupled Rössler oscilla-
tors is bidirectionally coupled with a chaotic Van der Pol (VDP)
oscillator. We explore the temporal and spatiotemporal synchro-
nization route to limit cycle oscillations. We further draw some
analogies between the model in our study with the experimen-
tal results from thermoacoustic and aeroelastic systems. Models
such as ours can be used to perform inexpensive numerical con-
trol experiments to suppress the limit cycle oscillations having
ruinously large amplitudes observed during the occurrence of
oscillatory instabilities in such systems.

I. INTRODUCTION

The emergence of collective behavior through synchrony
among coupled subunits of individual components is observed in
many biological,8–10 physical,11 chemical,12–14 and engineering15,16

systems. Such systems can be modeled using a network of oscilla-
tors and the dynamics exhibited depends on the type of oscillators,
the topology over which the oscillators are arranged, the type of
coupling, and the number of oscillators.17,18 Quite generally, as the
coupling strength among the oscillators is increased, the system
transitions from an asynchronous state to a synchronous state.19

During this transition, the existence of symmetry breaking states
such as chimera states20 and solitary states21 received a lot of atten-
tion due to their applications in physical and biological systems.
The co-existence of phase synchronous and asynchronous regions
is referred to as a chimera state.20 In contrast, for a solitary state, one
or more oscillators oscillate with different mean frequencies than the
other oscillators.21

Despite a large number of studies on network of oscillators,
very few studies focused on the transition from chaos to limit
cycle oscillations via intermittency. The transition from chaos to
limit cycle oscillations in the case of chaotic oscillators is generally
observed when time delay coupling is introduced22 or when cou-
pled conjugatively.23 Karnatak et al.23 reported the route to chaos
suppression among dissimilarly coupled Rössler oscillators as a tran-
sition from desynchronization to generalized synchronization (GS)
via phase synchronization (PS). Chaurasia and Sinha24 also reported
the suppression of chaos when nonidentical chaotic oscillators are
coupled. They observed the transition from chaos to a stable fixed
state when a grid of Rössler oscillators is coupled with the Lorenz
oscillator and this transition is not seen when identical chaotic
oscillators are coupled. In this study, we demonstrate the transi-
tion from chaos to limit cycle oscillations via intermittency when
two dissimilar chaotic oscillators are coupled. Further, we report
the existence of both intermittent phase synchronization and phase
synchronization during the transition from desynchronization to
generalized synchronization when two different types of chaotic
oscillators are coupled without incorporating time delay or conju-
gate coupling. We further report the presence of various symmetry
breaking phenomena during this transition.

A transition from chaotic oscillations to limit cycle oscilla-
tions via intermittency is observed among physical systems mainly

during the self-organization of turbulent flows in plasma turbulence
and transitions to oscillatory instabilities such as thermoacoustic,25

aeroelastic,26 and aeroacoustic instabilities in turbulent systems.
Thermoacoustic instability, a serious problem faced by gas turbine
engines and rocket motors,27 occurs due to the positive feedback
between the acoustic field in the confinement and the unsteady heat
release rate in combustors. Similarly, aeroelastic flutter occurs due
to the feedback between the fluctuations in the fluid flow and the
structural modes. This fluid–structure interaction is observed when
the aerodynamic forces overcome the elastic and inertial forces of an
elastic structure in the flow field.28 Thermoacoustic and aeroelastic
instabilities are comprised of self-excited large amplitude periodic
oscillations which are detrimental to the structural integrity of the
engine27 and aircraft wings,5,26 respectively. Such transitions are due
to synchronization between two different chaotic subsystems of
the respective turbulent systems. In the case of a thermoacoustic
system,4 the acoustic field and the unsteady heat release rate syn-
chronize, whereas in the case of a aeroelastic system consisting of an
airfoil with pitch-plunge degrees of freedom,5 the pitch and plunge
modes synchronize. Both these studies reported the synchronization
transition as a transition from desynchronized chaos to synchro-
nized periodicity via intermittent phase synchronization and phase
synchronization. Further, Mondal et al.6 reported a spatiotemporal
transition from desynchronized disorder to synchronized order via
chimera-like states during the transition to thermoacoustic instabil-
ity. Recently, Dutta et al.29 proposed a Kuramoto model to capture
the dynamics in a swirl stabilized combustor en route to thermoa-
coustic instability. They modeled each flamelet in a swirl combustor
as a Kuramoto oscillator. They increased the coupling between the
oscillators, which is analogous to the coupling between the flamelets
in a combustor, thereby obtaining similar dynamics as that of a swirl
stabilized combustor. However, it is important to capture the tem-
poral and spatiotemporal synchronization route to thermoacoustic
instability, which occurs due to the mutual synchronization between
two different oscillators, i.e., the acoustic field and the turbulent
reactive flow in a combustor.

In this work, we attempt to capture the transition from chaos
to limit cycle oscillations in a model problem where a network of
locally coupled Rössler oscillators is bidirectionally coupled with a
dissimilar oscillator, the chaotic Van der Pol (VDP) oscillator. The
intermittency route to limit cycle oscillations is not trivial among
dissipatively coupled chaotic oscillators as they undergo chaotic syn-
chronization. Here, the transition to limit cycle oscillations occurs
as the coupling between the Rössler system and VDP oscillator is
strengthened. In other words, the coupling with the chaotic VDP
oscillator induces the transition from chaos to limit cycle oscilla-
tions. Recently, Meena et al.30 reported the existence of chimera
states in star networks when the hub node and the other nodes are
dissimilar oscillators, i.e., when a system of identical oscillators is
externally coupled with dissimilar oscillators. Since we have a simi-
lar system where the chaotic VDP oscillator is externally coupled to
the Rössler oscillators, we expect the presence of symmetry breaking
states. We also report the existence of symmetry breaking phenom-
ena such as intermittent partial synchronization, chimera states, and
solitary states during this transition. We show similarities in the
dynamics observed in the model with experimental results obtained
during the transition to thermoacoustic1,4,6 and aeroelastic3,5
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instabilities in turbulent systems. We stress the similarity of behav-
ior observed in the transition to oscillatory instability in a complex
thermoacoustic system with that observed when dissimilar chaotic
oscillators are coupled. The findings we discuss are not limited to
Rössler–Van der Pol system but can also be observed with a differ-
ent external oscillator such as a modified Duffing oscillator, which
has a tendency to transition from chaos to limit cycle oscillations
on forcing. We show the intermittency route to limit cycle oscil-
lations in both Rössler–chaotic VDP and Rössler–chaotic Duffing
systems in Appendix B. The model described in this work also
facilitates a new perspective in controlling the oscillatory insta-
bilities. The problem of controlling oscillatory instabilities can be
posed as a disruption of synchronization among the oscillators. This
perspective of viewing the transition to oscillatory instabilities as
coupled interaction of oscillators provides a wide range of tools
to conduct numerical control experiments targeted at disrupting
synchronization.

The rest of the paper is organized as follows. The model consist-
ing of the grid of Rössler oscillators and the chaotic VDP oscillator
is described in Sec. II, followed by results and discussions in Sec. III.
The conclusions are given in Sec. IV.

II. MODEL

The model comprises of a square grid of N Rössler oscillators,
which are diffusively coupled [Eq. (1)] and a chaotic VDP oscillator
[Eq. (2)],

ẋi = −wiyi − zi,

ẏi = wixi + ayi + µvy

(

v − yi

)

+ µyy

∑

j ∈δ(yi)

(yj − yi),

żi = b + zi (xi − c) ,

(1)

u̇ = v,

v̇ = 0.1
(

1 − u2
)

v − u3 + cos t + µyv

N
∑

k=1

(yk − v),
(2)

where a = 0.165, b = 0.2, and c = 10 are the parameters of the
individual Rössler oscillators. δ(yi) represents the nearest neighbor-
hood of the ith Rössler oscillator and N represents the total number
of Rössler oscillators. The ordinates of these oscillators are coupled
to their neighbors within a distance of

√
2 units, with a coupling

strength of µyy (intra-Rössler coupling). The natural frequencies
of individual Rössler oscillators (wi) are assigned randomly from
a Gaussian distribution with a mean of around 0.8 and a stan-
dard deviation of 0.05. Equation (B2) represents a chaotic VDP
oscillator.31 The second coordinates of the Rössler system (y) and the
chaotic VDP oscillator (v) are bidirectionally coupled with strengths
of µvy and µyv, which corresponds to the influence of the VDP
oscillator on a Rössler oscillator and vice versa.

We see the transition from chaotic to limit cycle oscillations
during the onset of oscillatory instabilities in turbulent systems. The
spatiotemporal transition has also been studied extensively during
the transition to thermoacoustic instability in a turbulent combus-
tor. This can be further extended to other oscillatory instabilities

such as aeroelastic and aeroacoustic instabilities that occur during
the self-organization of turbulent flows. We, therefore, compare var-
ious aspects of the model [Eqs. (1) and (2)] with those observed
in a turbulent combustor. We further choose the relations among
the coupling strengths µyy, µyv, and µvy accordingly. Each chaotic
Rössler oscillator is analogous to the local heat release rate oscilla-
tions. The complexities due to the underlying turbulent flow result
in the variation of natural frequencies among these oscillators.
Hence, we chose non-identical Rössler oscillators by incorporating
differences in wi. We hypothesize that the coupling strength µyy

quantifies an interaction analogous to the interaction between the
local heat release rate oscillations, which occurs through the process
of turbulent diffusion during combustion. The chaotic VDP oscilla-
tor is analogous to the global acoustic field and hence is coupled to
each Rössler oscillator. Moreover, in our earlier study, we reported
that the unsteady flame dynamics exerts a stronger influence on
the acoustic field than vice versa.32 Hence, we vary µyv and µvy as
per the relation µyv = 1.2µvy. As the synchronization between the
heat release rate oscillations and the acoustic pressure fluctuations
occurs, there is an emergence of coherent structures in the flow field
which enhances the interaction among the local heat release rate
oscillations. Therefore, we use a proportional relationship between
µvy and µyy as µyy = 0.1µvy. We observe a transition from chaos
to limit cycle oscillations as µvy (hereon denoted as µ for conve-
nience) is increased from 0 to 0.5. Thus, as the coupling strength
(µ) is increased, we observe synchrony among the Rössler oscillators
along with the synchronization between the set of Rössler oscillators
and chaotic VDP oscillator.

III. RESULTS

The set of equations, Eqs. (1) and (2), is integrated using the
fourth order Runge–Kutta method with a time step of dt = 10−3.
µ is varied from 0 to 0.5 in steps of 0.001. In this study, the analy-
sis is performed for a 10 × 10 square grid of Rössler oscillators and
thus N = 100. The initial conditions for the set of Rössler equations
are [1, 1, 1] and the initial conditions of the chaotic VDP oscillator
are [0, 0]. We remove an initial transience of 100 time units from
the solution. Here, the mean subtracted ordinate (v′) of the chaotic
VDP oscillator represents the fluctuations in the acoustic field in a
turbulent combustor. The fluctuations in the mean field (ȳ′) of the
ordinate of Rössler system are analogous to the fluctuations in the
global heat release rate in a thermoacoustic system. We character-
ize the temporal synchronization transition using (v′) and (ȳ′). The
results are independent of the grid size for N ≥ 100 (see Fig. 6 in
Appendix A).

A. Analysis of temporal transition from chaos to limit
cycle oscillations

For µ ≤ 0.01, we observe aperiodic fluctuations in v′ and ȳ′

and they appear to oscillate independently [Fig. 1-I(a)]. As µ is
increased from 0.01 to 0.03, short bursts of weakly periodic oscil-
lations appear amid aperiodic oscillations [Fig. 1-I(b)]. This state
is similar to the intermittency state, where bursts of periodic oscil-
lations appear amidst aperiodic epochs at random intervals.1 This
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FIG. 1. I(a)–(d) Time series of v′ and ȳ′ of model obtained at µ = 0.01, 0.03, 0.11, and 0.2. II(a)–(d) Time series of the acoustic pressure (v′) and global heat release
rate (ȳ′) obtained in experiments from a thermoacoustic system, a turbulent combustor, at air flow velocities u = 9.2, 11.9, 12.5, and 17.2 m/s. These data are presented in
Ref. 32. Reproduced with permission from Godavarthi et al., Chaos 28, 113111 (2018). Copyright 2018 AIP Publishing LLC. (e) Variation of rms values of v′ and ȳ′ from the
model with µ. (f) Phase locking value (PLV) of v′ and ȳ′ from the model.

intermittency is in contrast with the general definition of inter-
mittency, where we observe bursts of large amplitude aperiodic
oscillations amidst low amplitude periodic oscillations.33 On fur-
ther increase in µ, the duration and the amplitude of these bursts
increase. As µ approaches 0.11, we observe that both v′ and ȳ′ oscil-
late periodically. We also find amplitude modulation in the signal
[Fig. 1-I(c)]. The presence of amplitude modulation in the pressure
and global heat release rate signals obtained in experiments can be
seen in Pawar et al.4 and Nair et al.1 The reason for the amplitude
modulation is the presence of slow scale oscillations in the system.34

This amplitude modulation in the oscillations disappears for
µ > 0.11 [Fig. 1-I(d)]. In short, the temporal transition occurs from
chaos to large amplitude limit cycle oscillations via intermittency
and a periodic oscillation with amplitude modulation. This transi-
tion is similar to that experimentally observed during the transition

to thermoacoustic, aeroelastic and aeroacoustic instabilities1,2,4,26 and
can be clearly seen in Fig. 1-II(a)–(d).

Further, we observe an increase in root mean square (rms)
values in v′ and ȳ′ with µ [Fig. 1(e)]. The rms of a mean subtracted

signal v′ sampled at M intervals is given by

√

M
∑

i=1

(v′)2

M
. We observe

some fluctuations in the variation of v′
rms, ȳ′

rms until µ = 0.1 due to

the presence of both periodic and aperiodic oscillations. On further

increase in µ, there is a monotonic increase in v′
rms and ȳ′

rms. Beyond
µ = 0.2, ȳ′

rms decreases mildly and saturates after a coupling strength

of µ = 0.4. We next quantify the synchrony between v′ and ȳ′ for

various values of µ using phase locking value (PLV) [Fig. 1(f)].

We denote the instantaneous phases of the two signals v′

and ȳ′ sampled at M instants by φv(t) and φy(t), respectively. The
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instantaneous phases of the signal v′(t) are computed using the
Hilbert transform of the original signal, vH(t).35 Then, the PLV of

the signals v′(t) and ȳ′(t) is given by 1
M

∣

∣

∣

∣

M
∑

i=1

ej(φv(ti)−φy(ti))

∣

∣

∣

∣

, where,

j =
√

−1. PLV takes a value between 0 and 1, where 0 indicates that
the oscillators are desynchronized and 1 indicates that the oscillators
are phase synchronized.35

PLV shows a steep increase until µ = 0.03 [Fig. 1(f)]. This is
reflected as an intermittency state in the v′ and ȳ′ oscillations in
Fig. 1-I(b). PLV attains a value closer to 1 when µ = 0.07, indicat-
ing the onset of phase synchronization between v′ and ȳ′. For further
change in µ, we observe that PLV stays close to 1.

1. Characterization of synchronization route to limit
cycle oscillations

We characterize the type of synchronization behavior at vari-
ous values of µ using the plots of the probability of recurrence [P(τ )
as a function of τ in Fig. 2] of v′ and ȳ′. Recurrence is a fundamental
property of any deterministic dynamical system.36 Recurrence is the
tendency of a trajectory in phase space to revisit the same neighbor-
hood after a certain time. P(τ ) measures the probability with which a
trajectory in phase space (Xi) revisits the same neighborhood after a

time lag τ and is given as37 P(τ ) = 1
N−τ

∑N−τ

i=1 2(ǫ − ‖Xi − Xi+τ‖),
where 2 is the Heaviside function. In this study, we use a modi-
fied form of P(τ ) proposed by Goswami et al.38 and consider only
those lags (τ ) which are greater than the lag (τc) at which the auto-
correlation of the signal is lesser than 1/e to exclude effects of
autocorrelation.

At µ = 0.01 [Fig. 2-I(a)], we observe a very low probability
of recurrence P(τ ) of both v′ and ȳ′ since there is no correlation
between them, indicating a desynchronized state when µ = 0.01. At
higher coupling strengths of around 0.07 [Fig. 2-I(b)], we observe
moderate values in P(τ ) of v′ and ȳ′. However, P(τ ) decays for higher
time lags. Nevertheless, the location of the peaks in the plots of P(τ )

coincides, indicating the presence of chaotic phase synchronization
(chaotic PS).37 Figure 2-I(c) shows a probability of recurrence close
to 1 for both v′ and ȳ′ oscillations at µ = 0.1. Further, the loca-
tions of the peaks in the plots of P(τ ) coincide; however, there
is a slight mismatch in the amplitude of the peaks. This indicates
phase synchronization (PS) and the onset of periodicity in v′ and
ȳ′ oscillations.37,39 When µ = 0.2, we observe that both the ampli-
tude and location of the peaks in the plots of P(τ ) of v′ and ȳ′

coincide, indicating a generalized synchronization (GS) state.39 The
peaks in the plot of P(τ ) of two oscillators coincide when they are in
a complete synchronization state; however, since the oscillators in

FIG. 2. I(a)–(d) Probability of recurrence, P(τ ), of v′ and ȳ′ fluctuations atµ = 0.01, 0.07, 0.1, and 0.2, respectively. II(a) Time series during intermittency atµ = 0.03. (b)
P(τ ) plots of v′ and ȳ′ during the aperiodic part of intermittency. (c) P(τ ) plots of v′ and ȳ′ during a periodic epoch of intermittency. The embedding dimension and the time
delay used for phase space reconstruction are 8 and τc = 35 time units. The probability of recurrence, P(τ ), is computed for a window length of 1000 data points, by fixing
the recurrence rate at 0.08.
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FIG. 3. (a) and (b) Logarithmic plots of P(k) and k constructed from v′ during the (a) chaotic and (b) periodic state. We observe that the degree distribution follows a power
law with an exponent of 2.4, indicating the presence of scale-free behavior (µ = 0.01). At higher coupling strengths, when the periodic state is reached (µ = 0.2), we
observe that the degree distribution collapses to a single point.

hand are non-identical (i.e., one is the ordinate of the mean field of
Rössler oscillators and the other is the ordinate of the chaotic VDP
oscillator), they are in the GS state.

During intermittency (µ = 0.03), since the v′ and ȳ′ fluctua-
tions comprise of both bursts of weakly periodic oscillations and
epochs of aperiodic fluctuations, we analyze these two regimes sep-
arately as shown in Fig. 2-II(a)–(c). During an epoch of aperiodic
fluctuations, the plots of P(τ ) show a very low value of around
0.2 [Fig. 2-II(b)]. Further, there is a mismatch in the amplitude
and the location of the peaks in the plots of P(τ ) of both v′ and
ȳ′ indicating asynchrony. During the bursts of periodic oscillations
[Fig. 2-II(c)], we observe that the location of the peaks match but the
amplitudes do not, indicating the presence of phase synchronized
behavior. The existence of asynchrony during the aperiodic part
and the phase synchronized behavior during the periodic bursts are
characteristic features of an intermittent phase synchronized state
(IPS).

In summary, as µ is varied from 0.01 to 0.5, we observe a
transition from desynchronized aperiodicity to IPS to chaotic PS
followed by PS and GS. Pawar et al.4 and Raaj et al.5 reported a sim-
ilar transition from desynchronized state to IPS followed by PS and
GS during the onset of thermoacoustic and aeroelastic instabilities,
respectively.

In Secs. III A 2 and III A 3, we explore the route to this
synchronization transition using visibility graph and multifractal
analysis.

2. Loss of scale-free behavior during synchronization
transition

Lacasa et al.40 developed a methodology of the construction of
a network from time series using visibility graphs. In order to con-
struct a visibility graph from a time series v′(t), we consider the
sequence of peaks hk. Visibility graph is a set of nodes and links,
where each node represents a peak hk in the time series and two
such peaks are connected with a link if they satisfy the visibility cri-
terion. The information related to nodes and links is encoded in an

adjacency matrix Alm. If two nodes l and m are connected, Alm is one;
otherwise Alm is zero. The visibility criterion is given by

Alm =
{

1 if hk < hl +
(

hm − hl

) tk−tl
tm−tl

,

0 otherwise,
(3)

where k is an intermediate node between l and m (i.e., l < k < m)
and hl is the peak value of lth node.

The degree of a node k is determined by the number of nodes
that are connected to a given node. The fraction of nodes with a
degree k is given by P(k). The type of degree distribution deter-
mines the type of the network. For instance, the degree distribution
of a random network follows a Poisson distribution.41 A power
law degree distribution P(k) = k−γ with 2 < γ < 3 indicates the
presence of scale-free behavior.

We construct a visibility graph using v′. Figure 3(a) shows a
power law degree distribution in the visibility network constructed
from v′ when µ = 0.01. The power law exponent is 2.4, which
indicates the presence of a scale-free (i.e., scale invariance) behav-
ior during the desynchronized state. On increasing the coupling
strength, at µ = 0.2, we observe that the degree distribution col-
lapses to a point from a power law degree distribution, indicating
the presence of periodic behavior in v′ [Fig. 3(b)]. When µ = 0.2,
the degree of all the peaks is 2, indicating that each peak is connected
only to its direct neighbors. Thus, we can describe the transition
from chaos to limit cycle oscillations as a loss of scale-free behavior.
Murugesan and Sujith42 also described the transition to thermoa-
coustic instability as a loss of scale-free behavior. They observed that
the power law exponent is around 2.5–2.7 (±0.1) during combus-
tion noise for different configurations of turbulent combustors, i.e.,
bluff-body stabilized and swirl stabilized combustors.

3. Loss of multifractality during the onset of limit
cycle oscillations

Multifractal description of a signal provides a peek into
characterizing the complexity of the signal. The concept of a
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“fractal” is introduced to describe the objects which exhibit
self-similarity at different scales.43 For fractal objects, one cannot
determine measures such as length and area, as these quantities
depend on the scale of resolution. For example, the dimension of
a straight line is 1, but there is no integer dimension for a coast-
line with wrinkles, as the length of the coastline depends on the
scale of magnification.44 The fractal dimension for fractal curves
varies between 1 and 2. The logarithmic plot of the length of the
fractal curve measured with different scales will be a straight line
with a negative slope, and the magnitude of this slope is the fractal
dimension.

Similar to a fractal object, we observe self-similarity at various
time scales in a fractal time series. In some signals, the scaling behav-
ior is complex where the scaling exponent depends on the amplitude
of fluctuations. These signals are called multifractal signals. Charac-
terizing such signals using a single scaling exponent is not possible.45

The scaling exponent is called the Hurst exponent and we need to
determine multiple generalized Hurst exponents for different orders
of fluctuations. We estimate the generalized Hurst exponents of
a signal by using the multifractal spectrum f(α) vs α (where α is
a singularity exponent) computed with the multifractal detrended
fluctuation analysis (MFDFA). We provide a brief description of
MFDFA in Appendix C.

We observe the presence of multifractal behavior during lower
coupling strengths µ = 0.03 in both v′ and ȳ′ signals. However, the
multifractal spectrum collapses to a point at µ = 0.11. Thus, we
observe a loss of multifractality during the synchronization transi-
tion (Fig. 4). This is in accordance with the description of the onset
of thermoacoustic instability as a loss of multifractality provided by
Nair et al.25 and Unni and Sujith.46

Until now, we analyzed the temporal behavior during the tran-
sition from chaos to limit cycle oscillations. We now investigate the
spatiotemporal behavior during the transition.

B. Analysis of spatiotemporal synchronization
transition

Kuramoto47 introduced an order parameter to quantify the
amount of coherence present among the oscillators in a network

for a given instant. It is given by r(t) = 1
N

∣

∣

∣

∑N
i=1 ejθi(t)

∣

∣

∣
, where N is

the total number of oscillators in the network, θi is the instanta-
neous phase difference between ith Rössler oscillator and the chaotic

VDP oscillator, j =
√

−1. The instantaneous phases are computed
from a time series using the Hilbert transform. If the instanta-
neous phase of the ith Rössler oscillator is φi(t) and that of the
chaotic VDP is φv(t) obtained through the Hilbert transforms of
the respective time series yi(t) and v′, then θi = φi(t) − φv(t). The
order parameter r(t) varies between 0 and 1. A r(t) value of 0 indi-
cates an asynchronous state, whereas a r(t) value of 1 indicates a
completely synchronous state. We observe that the time averaged
order parameter (r) increases with an increase in µ. r attains a
value closer to 1 at µ = 0.2, indicating an almost complete synchro-
nization among all the 100 Rössler oscillators and the chaotic VDP
oscillator (Fig. 5-I).

Chimera states are identified by plotting the mean phase
velocities48 (ωi) and the space–time plots of cos(θi). The mean phase
velocity of ith oscillator (ωi) is computed as ωi = 2πSi

1T
, where Si is the

number of complete rotations around the origin performed by the
ith oscillator in the time interval 1T. When ωi is plotted, the region
of constant ωi corresponds to a synchronous region. The simulta-
neous existence of constant ωi and dispersed values of ωi shows the
presence of a chimera state [similar to the variation shown in Fig. 5-
II(c)]. Similarly, the variation of cos(θi) with time gives a peek into
the temporal variation. A cos(θi) value of 1 indicates a synchroniza-
tion between the Rössler and the chaotic Van der Pol oscillator. A
similar temporal cos(θi) among the oscillators indicates synchrony
in the Rössler system.

We observe that for µ = 0.01 [Figs. 5-II(a) and 5-III(a)], the
distribution of ωi and the instantaneous phases are scattered, indi-
cating asynchrony. For µ ≈ 0.09 [Fig. 5-II(b)], the Rössler oscil-
lators with close natural frequencies (wi) have similar ωis. The
behavior in the plot of ωi indicates the presence of clusters which
are synchronized. This can be visualized clearly in space–time
plots. We observe some small cluster-like structures, such as the
one highlighted by a white ellipse during some time intervals
[Fig. 5-III(b)]. We find that a few oscillators alternate between the
synchronized and desynchronized states. Further, there are some
Rössler oscillators which are in-phase synchronized and others
which are anti-phase synchronized with the chaotic VDP oscil-
lator. This indicates the presence of intermittent partial synchro-
nization among the Rössler oscillators. At µ = 0.11 [Figs. 5-II(c)
and 5-III(c)], we observe that most of the Rössler oscillators are syn-
chronized, while some of them have different mean phase velocities.
This indicates the presence of a chimera-like state. As we increase
µ, more oscillators synchronize and at µ = 0.2 [Figs. 5-II(d)

FIG. 4. (a) and (b) f(α) vs α of (a) ȳ′ and (b) v′ at µ = 0.03
and 0.11. We observe that the multifractal spectrum collapses
into a point at the onset of limit cycle oscillations in both v′

and ȳ′.
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FIG. 5. I. Variation of r with µ for different regimes during the synchronization transition from desynchronized chaos to synchronized order. The legend describes the
synchronization state between v′ and ȳ′ followed by the spatiotemporal synchronization state among the Rössler oscillators. II(a)–(d) Mean phase velocities (ωi) for the
100 Rössler oscillators at the coupling strengths µ = 0.01, 0.09, 0.11, and 0.2, respectively. III(a)–(d). Space time plots of cos(θi), where θi represents the instantaneous
phase difference between the ith Rössler oscillator and the chaotic VDP oscillator at µ = 0.01, 0.09, 0.11, and 0.2, respectively. The Rössler oscillators are ordered in the
increasing order of their natural frequencies wi .

and 5-III(d)], we identify a solitary state where two oscillators
[encircled in Fig. 5-II(d)] are not synchronized with the other
98 oscillators. We observe complete synchronization among the
oscillators for µ > 0.3.

We summarize the synchronization route between the chaotic
Van der Pol oscillator (v′) and the mean field of the grid of Rössler
oscillators

(

ȳ′) as the coupling strength is varied in Fig. 5-I. Simulta-
neously, we also describe the spatiotemporal synchronization route
observed among the Rössler oscillators. Regime A corresponds to
desynchronized chaos. Within regime B (0.03 ≤ µ < 0.07), v′ and
ȳ′ are in the IPS state and there is intermittent partial synchrony
among the Rössler oscillators. For higher coupling strengths, in
regime C (0.07 ≤ µ < 0.1), v′ and ȳ′ are in the chaotic PS state and

there is intermittent partial synchrony among the Rössler oscillators.
In regime D (0.1 ≤ µ < 0.2), v′ and ȳ′ are in the PS state and we
observe the presence of chimera-like states among the Rössler oscil-
lators. For higher coupling strengths of 0.2 ≤ µ < 0.3 (in regime E),
v′ and ȳ′ are in the GS state and we observe the presence of solitary
states among the Rössler oscillators. Finally, regime F (µ ≥ 0.3) cor-
responds to the GS state between v′ and ȳ′ and complete synchrony
among the Rössler oscillators. Thus, we uncover a spatiotemporal
transition from desynchronized chaos to synchronized order via
intermittent partial synchronization, chimera, and solitary states. A
similar transition from desynchronized chaos to synchronized order
via breathing chimera was observed in a thermoacoustic system
during the onset of thermoacoustic instability.6,7
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IV. CONCLUSIONS

We reported a synchronization transition between a chaotic
Van der Pol oscillator and the mean field of a Rössler system from
desynchronized chaos followed by intermittent phase synchroniza-
tion, chaotic phase synchronization, phase synchronization, and
then to generalized synchronization. We detected a spatiotemporal
transition from desynchronized chaos to global synchrony among
the Rössler oscillators through the emergence of symmetry break-
ing states such as intermittent partial synchronization, chimera, and
solitary states. The dynamics from the model is similar to those
observed during the transition to oscillatory instabilities such as
thermoacoustic, aeroacoustic, and aeroelastic instabilities in turbu-
lent systems. Hence, simple models, such as the one we proposed,
which exhibit a transition from desynchronized chaos to synchro-
nized periodicity, can be used to depict the dynamics during the
self-organization of turbulent flows. Since such oscillatory instabili-
ties have detrimental consequences to the system, mitigating them is
important. Hence, the model in our study paves the way to perform
inexpensive numerical control experiments to arrive at strategies for
suppressing synchronization, which could prevent such oscillatory
instabilities in turbulent systems.
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APPENDIX A: CONVERGENCE OF DYNAMICS WITH
NUMBER OF RÖSSLER OSCILLATIONS

We considered 100 Rössler oscillators in the model for anal-
ysis. In order to show convergence of results with respect to the
number of oscillators, we study the variation of r with µ for 100,
225, and 400 Rössler oscillators (Fig. 6). We observe a similar syn-
chronization route and the onset of global synchrony at a coupling
strength around µ = 0.2. The slight differences can be attributed
to the change in frequencies among the oscillators since they are
assigned randomly from a Gaussian distribution with a mean of
around 0.8 and a standard deviation of 0.05.

APPENDIX B: MODEL WITH THE GRID OF RÖSSLER
OSCILLATORS BIDIRECTIONALLY COUPLED WITH
CHAOTIC DUFFING OSCILLATOR

We show the generality of our findings which are valid
for different pairs of dissimilar oscillators but not limited to
Rössler–chaotic VDP system. We consider another model with
the grid of 100 diffusively coupled Rössler oscillators bidirection-
ally coupled with a chaotic Duffing oscillator. The Rössler–chaotic

FIG. 6. Variation of r with µ for N = 100, 225, and 400 Rössler oscillators. We
observe a similar variation in r for various grid sizes.

Duffing system is given by Eqs. (B1) and (B2),

ẋi = −wiyi − zi,

ẏi = wixi + ayi + µny

(

n − yi

)

+ µyy

∑

j ∈δ(yi)

(yj − yi),

żi = b + zi (xi − c) ,

(B1)

ṁ = n,

ṅ = m
(

1 − m2
)

− 0.3n + 0.5 cos 1.2t + µyn

N
∑

k=1

(yk − n),
(B2)

where a = 0.165, b = 0.2, and c = 10 are the parameters of indi-
vidual Rössler oscillator. δ(yi) represents the nearest neighborhood
of the ith Rössler oscillator and N represents the total number of
Rössler oscillators. The ordinates of these oscillators are coupled
to their neighbors within a distance of

√
2 units, with a coupling

strength of µyy (intra-Rössler coupling). The natural frequencies
of individual Rössler oscillators (wi) are assigned randomly from
a Gaussian distribution with a mean of around 0.8 and a stan-
dard deviation of 0.05. Equation (B2) represents the chaotic Duffing
oscillator. The second coordinates of the Rössler system (ȳ′) and
the chaotic Duffing oscillator (n′) are bidirectionally coupled with
strengths of µny and µyn, which corresponds to the influence of the
Duffing oscillator on a Rössler oscillator and vice versa. We vary µyn

and µny as per the relation µyn = 1.2µny. We use a proportional
relationship between µny and µyy as µyy = 0.1µny. We observe a
transition from chaos to limit cycle oscillations via intermittency as
µny is increased from 0 to 0.5.

Figure 7 shows a similar route of synchronization transition
from desynchronized chaos to synchronized periodicity via inter-
mittency in both the Rössler–chaotic Duffing and Rössler–chaotic
VDP systems.

APPENDIX C: MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

If the signal is p(t) and N is the length of the signal, a mean
subtracted cumulative signal is computed from p(t).
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FIG. 7. I(a)–(c) Time series of the ordinate of chaotic VDP oscillator (v′) and the mean field of the ordinate of the Rössler oscillators (ȳ′) of the Rössler–VDP system
obtained at µ = 0.03, 0.11, and 0.2. II(a)–(c) Time series of the ordinate of chaotic Duffing oscillator (n′) and the mean field of the ordinate of the Rössler oscillators (ȳ′) of
the Rössler–Duffing system obtained at µ = 0.03, 0.11, and 0.2. We observe a similar transition in both the systems.

The new signal is then partitioned into Ns non-overlapping
windows of equal size s. The local trends are detrended using a lin-
ear fit p. To account for the scaling of fluctuations at multiple scales
in the signal, a structure function (Fw

s ) of order w and span s is
defined as

Fw
s =





1

Ns

Ns
∑

i=1

(

1

s

s
∑

i=1

(

pi − p
)2

)
w
2





1
w

. (C1)

The slope of the linear regime in the logarithmic plot of Fw
s vs

various span sizes (s) gives the generalized Hurst exponent Hw of
order w. The Hurst exponent corresponding to the correlation of
the signal is the generalized Hurst exponent of order 2 (H2). These
generalized Hurst exponents can be represented using a spectrum
of singularity exponents f(α) using the Legendre transformation,
where α is a singularity exponent. The Legendre transform to obtain
the singularity spectrum is given as49

τw = wHw − 1,

α =
∂τw

∂w
,

f(α) = wα − τw.

The multifractal spectrum is represented as the plot between f(α)

and α. The width and skewness of the multifractal spectrum encode
the information pertaining to the complexity of the signal.
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