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Rigorous and robust first principles-based Homogeneous Surface Diffusion Model (HSDM) is demonstrated for
numerical simulation and estimation of surface diffusivities for single, binary and ternary systems involving
dyes and pharmaceutical molecules. The current work's novelty lies in proposing a fast, reliable and efficient Ar-
tificial Neural Network (ANN) surrogate to themechanisticHSDM. Repeatednumerical integration of themodel's
partial differential equations during parameter estimation from batch adsorption kinetics data is highly time-
consuming and is not required for theproposed approach. This ANNwas trained by a small numberofHSDMsim-
ulations and limited experimental batch kinetics data with different combinations of surface diffusivity (DS)
values. ANNswere developed and tested against the experimentally obtained batch kinetics data for various sys-
tems. The trained ANNwas able to capture the kinetics thatwas rigorously predicted usingHSDM. A 99.9%, 98.6%
and 99.3% similarity could be achieved between DS values estimated using HSDM and ANN for single, binary and
ternary systems respectively. Similarly, the batch kinetics data was almost identically tracked by ANN. The com-
putational time required for this novel ANN per simulation reduced spectacularly and was about 14 times lesser
while the total parameter estimation timewas about 17 times lesser thanHSDM. The ANNdeveloped for estimat-
ing parameters could be operated in reverse aswell for simulating themulticomponent batch adsorption kinetics
and tracking the increase in percentage removal of the soluteswith time at different process conditions. Irrespec-
tive of number of components, the ANNsperformanceswere consistent. The ratio of neurons and their total num-
ber in the hidden layers had a significant impact on the performance. Hence optimization of network parameters
is essential to realize the benefits of ANN. The shortcomings of empirical kinetic models viz. Pseudo First Order
model (PFO) and Pseudo Second Ordermodel (PSO)were also demonstrated. Thiswork demonstrates the utility
of ANNS in rigorousmulticomponent adsorption kinetics applications and has considerable potential in real time
optimization and operation of wastewater treatment plants.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Dye contaminated water discharge into water bodies by various in-
dustries is one of the major contributors to water pollution. Dye mole-
cules are not only harmful to humans but the entire ecosystem [1].
Dye concertation of as low as 0.1 mg/L in water makes it undrinkable
[2]. Another class of emerging contaminants is Pharmaceutically Active
Compounds (PhAC)whose presence inwater bodies is subject to exten-
sive research in recent times [3–7].
Adsorption is the most employed technique in removal of these
compounds owing to its ease of operation, ability to remove even low
levels of pollutants and absence of any hazardous by-product [8–11].
Adsorption is a complex interfacial phenomenon and has applications
in technological, biological and environmental processes viz wastewa-
ter treatment, catalysis, bio-implants, cooling systems to name few
[12–19]. Adsorption systems are relatively easy and inexpensive to op-
erate [20].

The percentage removal of solutes from the fluid is the primary
parameter in adsorption processes as it determines the design of
the associated separation units. Percentage removal is related to
the main input parameters such as initial concentration (Co), pH,
temperature (T) and adsorbent type, in a highly sophisticated man-
ner. The evolution of percentage removal with time is indicative of
transportation rates and represents the kinetics of the adsorption
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system. It is critical to know the kinetics of adsorption at various
input conditions to design and operate the system at optimum con-
ditions. While isotherms signify the capacity of the treatment, it is
the kinetics that determines the size and/operating time of the ad-
sorption unit. The kinetic data or the associated parameters are not
available at many of the process conditions due to expensive exper-
imental testing and time requirements [21]. In such situations, ki-
netic models may serve as useful predictive tools and different
approaches have been adopted to fit kinetic data and later use
them in process simulation, prediction and optimization [22,23].

Pseudo First Order model (PFO) and Pseudo Second Order model
(PSO) (equations (1) and (2)) are extensively used empirical adsorption
kineticmodels in adsorption [24–31]. These have also been used inmul-
ticomponent systems [32–34].

q tð Þ ¼ qe 1−e−k1t
� �

ð1Þ

q tð Þ ¼ q2
e

k2t
1þ k2qet

ð2Þ

These empirical models do not explicitly reflect the kinetic and
equilibrium mechanisms involved in the bulk fluid phase, interface
and within the adsorbent. Plazinski et al. [35] observed that the sim-
ple expression given by the PFO does not distinguish between the
diffusional resistance and the resistance to adsorption/desorption
on active sites. Any theoretical interpretations made from PFO and
PSO are specific to the chosen system and applicable only for a nar-
row range of operating conditions. Recently Guo and Wang [36] ob-
served that the specific theoretical meanings and application
conditions of the PFO and PSO models have not been systematically
evaluated. Hence they developed amixed order kinetic model for de-
scribing the adsorption at any stage and at any arbitrary initial solute
concentration.

The mechanistic Homogeneous Surface Diffusion Model (HSDM)
accounts for bulk convection in the fluid phase and surface diffusion
through the interior of the adsorbent, with equilibrium prevailing at
Table 1
Batch adsorption system details.
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the interface [19]. Hence, HSDM is more rigorous in describing ad-
sorption kinetics [19,37]. However, HSDM is complex relative to
the empirical models and has to be solved numerically owing to
the nonlinear nature of the adsorption equilibria, coupled partial dif-
ferential equations and the possibility of an integro-partial differen-
tial equation as a boundary condition. These generally preclude an
analytical solution. Further, the governing partial differential equa-
tions are stiff and very fine resolution of space and time are required
to solve them accurately. Hence, solving HSDM numerically is com-
putationally taxing.

When, the external mass transfer resistance in the bulk fluid
phase is minimized by sufficient mechanical agitation, HSDM re-
quires only the estimate of surface diffusion coefficient (Ds) parame-
ter in order to solve the model equations and generate the
composition profiles of the solute in the fluid and solid phases
[19,37]. Ds estimates are usually unavailable owing to the unique-
ness of the adsorbent and the system under study. Hence, they
need to be found by fitting the HSDM to the batch kinetics experi-
mental data.

Computational intelligence models are more adaptable and effi-
cient for complex systems with nonlinearities or insufficient data
[38]. Artificial Neural Network (ANN) is a computational intelligence
model inspired by the biological nervous system [38]. ANN may di-
rectly learn from experimental data without enforcing any assump-
tions on the data for modelling [21]. A comprehensive review on
applications of ANN has been given by Ghaedi and Vafaei [21] and
also by Madan et al. [39], which shows that ANN has been exten-
sively used in modelling adsorption systems. The majority of work
on ANN for adsorption system concerns with percentage removal
and/or equilibrium isotherm modelling [39–47]. These are both re-
lated to the equilibrium loading on the adsorbent under different
conditions. There have been limited studies on modelling adsorption
kinetics using ANN trained by pseudo second-order kinetic models
[48]. The present work examines the kinetics modelling of single, bi-
nary and ternary component systems through different approaches.
It elaborates on the shortcomings of PFO and PSO. We demonstrate
how ANNs may also be gainfully implemented to shed physical
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insight into adsorption processes, rather than function solely as a
black box model, relating a particular set of inputs to outputs. In
this context, a system of artificial neural networks trained using
HSDM model is proposed as a replacement for the rigorous albeit
computationally expensive HSDM.

ANNs capturing the kinetic trends with fidelity and also estimating
physically significant parameters for different operating conditions
will be highly useful at different process conditions. The trained ANN
may subsequently be used to obtain Ds values with new kinetic data
without taking recourse to the HSDM model equations. Using ANN,
the dramatic reduction in time and efforts required without
compromising on the estimation and prediction accuracies are
highlighted. Also, the ANN operating in a reverse direction will be able
to predict the kinetics based on known/estimated Ds values almost
instantaneously.
2. Materials and methods

2.1. Experimental details

Experimental equilibrium and kinetics data for single, binary and ternary component
batch adsorption process using activated carbon were obtained from in-house
Fig. 1.ANN architecturewith 3 hidden layers, each ith layer having different number of neurons
bias in ith hidden layer respectively.
experiments [8,49]. The details of the single, binary and ternary systems along with the
chemical structure of the solutes are given in Table 1.

In the study involving single component and binary mixtures, the same type
of carbon (labelled as AC-I) procured from Active Char Products Pvt. Ltd., Edyar,
Kerala was used [49]. The concentrations of the acid orange and acid blue dye so-
lutions were measured using Jasco V-730 spectrophotometer at 477.5 nm and
610 nm. For analyses of the binary mixture of dyes, the method provided by
Ewing was adopted [50]. In the study with the ternary system, activated carbon
(labelled as AC-II) was sourced from Indo Carbon Ltd., Cochin. AC-II was further
acid treated to give the modified activated carbon (MAC-II). The isocratic HPLC
procedure utilized by Mirzajani and Kardani [51] was applied to detect the
three compounds simultaneously using Jasco 230 system. The solutes were ob-
served at 260 nm using photodiode array detector after being separated by
HQsil C18 column of KyaTech (Japan). The mobile phase used was 0.01 M
KH2PO4 at pH 3 with acetonitrile in 80:20 v/v ratio at 0.8 mL/min.

The Freundlich adsorption isothermmodel, equation (3), bestfitted the single compo-
nent equilibrium data (for acid orange 10 dye). Both the binary and ternary systems were
fitted with the extended Sips isotherm, equation (4).

qe ¼ kfC
nf
e ð3Þ

qe;i ¼
Qm;iC

nS;i

e;i

1þ∑3
j¼1ks;jC

nS;j

e;j

ð4Þ

The parameters required for the isotherms for various conditions given in Table 1
were found by fitting the differentmodels to experimental equilibrium data. The isotherm
(Mi), for anN-component batch adsorption system.nj
i andbi correspond to jth neuron and



Table 2
Experimental conditions used for testing the ANN.

Single Component

Run Activated Carbon T (°C) pH mA/VL (g/L) Co (mg/L)

1 AC-I 25 4 0.8 300
2 AC-I 25 4 0.8 100
3 AC-I 25 4 1.6 300
4 AC-I 25 4 1.6 100
5 AC-I 25 8 0.8 300
6 AC-I 25 8 0.8 100
7 AC-I 25 8 1.6 300
8 AC-I 25 8 1.6 100
9 AC-I 45 4 0.8 300
10 AC-I 45 4 0.8 100
11 AC-I 45 4 1.6 300
12 AC-I 45 4 1.6 100
13 AC-I 45 8 0.8 300
14 AC-I 45 8 0.8 100
15 AC-I 45 8 1.6 300
16 AC-I 45 8 1.6 100

Binary Components
Run T (°C) pH mA/VL (g/L) Co (mg/L)

1 AC-I 35 4 1.6 50, 50
2 AC-I 35 4 1.6 150, 150
3 AC-I 35 6 1.6 100,100
4 AC-I 35 8 1.6 50, 50
5 AC-I 35 8 1.6 150, 150

Ternary Components
Run T (°C) pH mA/VL (g/L) Co (mg/L)

1 AC-II 27 3 2
2 AC-II 27 7 2 100,100,100
3 AC-II 44 3 2 100,100,100
4 AC-II 44 7 2 100,100,100
5 MAC-II 27 3 2 100,100,100
6 MAC-II 27 7 2 100,100,100
7 MAC-II 44 3 2 100,100,100
8 MAC-II 44 7 2 100,100,100

Fig. 2. ANN training data flow diagram.
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models were coded inMATLAB®2019a as a function. The Sum of Square of Errors (SSE) as
given in equation (5), was minimized using Particle Swarm Optimization Algorithm hy-
bridized with fmincon, available inbuilt in MATLAB.

SSE ¼
X
i

qi;Exp−qi;Fit

� �2 ð5Þ

2.2. Homogeneous surface diffusion model (HSDM)

The HSDM for describing the adsorption kinetics of an N solute system on a spherical
adsorbent particle is given by Equation (6).

∂qi

∂t
¼ 1

r2
∂
∂r

r2DS;i
∂qi

∂r
Þ

�
ð6Þ

Equation (6) corresponds to the accumulation of ith species transported radially
within the adsorbent by surface diffusion. Equation (6) needs to be redefined for the lim-
iting condition at r = 0 by using L'Hospital rule which yields

∂qi

∂t
¼ 3DS;i

∂2qi

∂r2
jr¼0 ð7Þ

The resistance tomass transfer in liquid phase is negligible due to the high rate of me-
chanical agitation (400 RPM) and hence, the usual boundary condition involving the con-
vectivemass transfer coefficient is absent. Instead, equation (6) is coupledwith the rate of
decrease of solute concentration in bulk fluid based on instantaneous mass balance and is
given by

∂Ci

∂t
¼ −

3
Rp

mA

VL
DS;i

∂qi

∂r

����� r¼Rp ∀i∈½1;N� ð8Þ

The boundary conditions for equation (6) are given by:

∂qi

∂r

����� r¼0 ¼ 0 ∀i∈½1;N� ð9Þ
qij r¼Rp ¼ f C1;2;::N
� � ð10Þ

Equation (9) is a result of symmetry at r = 0 and equation (10) is based on the as-
sumption that instantaneous equilibrium exists at the solid-liquid interface. f
(C) therefore is given by the isothermmodel used (either Equation (3) or (4) as appropri-
ate). The initial conditions for equations (6) and (8) are:

qi ¼ 0∀r∈½0;Rp�&i∈½1;N� ð11Þ

Ci ¼ Co;i:∀i∈½1;N� ð12Þ

HSDM was coded as a function which solves the partial differential equations,
using the method of lines, for a given set of DS values. MATLAB's built-in ode15s
routine was used to integrate the differential equations. The function returned
SSE between the model predicted percentage removal values and the experimen-
tally obtained removals.

After running the simulations, the average solid loading at any time t, qt; is given by
the material balance equation

mA

VL
qt ¼ Co−Ct ð13Þ

The percentage removal R was calculated as follows.

R ¼ Co−Ct

Co−Ce
� 100 ð14Þ

At equilibrium, the solid loading, qe, may be calculated from Equation (13), using the
equilibrium isothermmodel. It may be noted here that R is defined relative to the equilib-
rium limit Ce and not as an absolute percentage involving the ratio of Ct to Co. This is more
realistic and a practical index as Ct=Co of zero is never achieved due to equilibrium
limitations.

When the HSDM was used to estimate the parameters, viz. DS;i (i = 1, 2 …, N), the
error criteriawas based on the percentage removal of all theN components in themixture
at nD data points as shown in Equation (15), which was minimized using a suitable



Fig. 3. A representative EHO illustration for a binary adsorption system. The elephants (search entities) traverse the domain (DS parameter space) to reach the best watering hole
(minimum SSE).

Fig. 4. A representative EHO illustration for a ternary adsorption system. The elephants (search entities) traverse the domain (DS parameter space) to reach the best watering hole
(minimum SSE).
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Fig. 5. Variation of SSE with neuron ratio in the hidden layers for the single component system. The number of neurons used were lowest multiples of 5.
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optimization algorithm described in section 2.3.5 to obtain the best DS vector.

SSE ¼
XN
i¼1

XnD

j¼1

Ri;Exp−Ri;Fit
� �2 ð15Þ

2.3. Artificial neural network (ANN)

2.3.1. ANN specifications
ANN was setup in MATLAB® 2019a. As it is proposed that ANN is to replace HSDM, it

must replicate the HSDM simulations with fidelity. Therefore, a Fitnet, a type of feed for-
ward neural network available in MATLAB for data regression, was chosen. The ANN
used for current work consisted of 5 layers, viz. 1 input layer, 3 hidden layers and 1 output
layer with different number of neurons in each of the hidden layers (Mi) as shown below
in Fig. 1. The transfer function of the output layer is linear (purelin) while those in the hid-
den layers are hyperbolic tangent sigmoid (tansig).

The training was done using MATLAB train function. This function divided training
data in ratio of 90:5:5 for training, testing and validation respectively. LevenbergMarquart
algorithmwas implemented for training. The performance criterion was Sum of Square of
Errors (SSE), defined according to Equation (15). A maximum epoch of 1000 training cy-
cles was set. The data here corresponds to time vs R data at various conditions given in
Table 2.

2.3.2. Identifying the optimum number of neurons in each hidden layer
The number of neurons in each layer was fixed by identifying two parameters viz.

i) ratio of number of neurons in each of thehidden layers i.e.M1 : M2 : … : Mi and ii) num-
ber of neurons in each hidden layer at the optimum neuron ratio in the hidden layers. To
obtain the optimum number of neurons, the ANNwas trained first with different ratios of
neurons in the hidden layers. Once the optimum ratio with corresponding minimum SSE
was identified, the ANN was then trained with varying total number of neurons in all the
hidden layers until the lowest SSE was obtained.

2.3.3. Training data generation
ANN is better at prediction and learning complex relationship patterns if a sizeable set

of training data is made available at different conditions. Performing batch adsorption ex-
periments at various combinations of conditions for training the ANN is unwieldy and
practically difficult. Also, as the objective of the ANN is to replace HSDM simulations, the
training data for ANN may be generated by running HSDM several times under different
representative conditions of initial concentrations, pH, adsorbent dosage and time interval
with realistic DS parameters. By doing so, a large kinetic data set may be generated for
training a system involving a known adsorbent and it's identified isotherm for a given
set of adsorptives under investigation. 100 datasets for each of the single, binary and ter-
nary systems were simulated rigorously using HSDM as per conditions, given in Table 2.
For each condition chosen, the plausible combination of Ds values, falling within the ex-
pected range of orders of magnitude, was input to the HSDM. The aqueous phase equilib-
rium concentration data (Ce), input to the ANN, is also used for computing R (equation
(14)).
2.3.4. ANN training
In the current work, the ANNwas trainedwith HSDM simulated data, which has neg-

ligible numerical noise and free from random errors usually associatedwith experimental
data. Therefore, it was decided to additionally enhance the ANN's training with very lim-
ited actual experimental data. The procedure is as follows.

The ANN was first trained to minimize the SSE of ANN fit (SSEFit) with HSDM simu-
lated data. This ANN was additionally checked to see whether its predictions fitted well
with one randomly chosen experimental kinetic run for each of the systems. In this run,
surface diffusivities had already been estimated using HSDM and the same values were
input to ANN. The error between the experimental data and the ANN prediction is used
to find SSETest. The sum of SSEFit and SSETest viz. SSETotal were then minimized. We term
such an ANN as completely trained. To the best of our knowledge, this approach does
not seem to have been implemented before for ANN studies involving adsorption. The al-
gorithm implemented for training the ANN, is represented in Fig. 2. The ANN is initialized
with randomweights and biases when training iteration count (itr) is less than the max-
imum training iteration count (itrmax) since the SSETotal had changed. The SSETotal, is com-
puted and compared with the best SSE (SSEBest) until the current iteration. If the current
SSETotal is less that the SSEBest the itr is appended by 1 and the ANN is saved or else the
ANN is reinitialized with random weights and process is repeated again until itr reaches
itrmax.
2.3.5. Performance test of HSDM trained ANN with experimental data
The performance of ANN when dealing with experimental kinetics data gathered in-

house and summarized in Table 2 was evaluated next. For the ternary system, perfor-
mances of two different activated carbons (AC-II andMAC-II) were studied. The DS values
estimated from the completely trained ANN acting as surrogate to the rigorous HSDM
were comparedwith those estimatedusing the actual HSDM itself. The same experimental
data sets were used in both cases.

Elephant Herd Optimization (EHO) algorithm was implemented to obtain the vector
of DS parameters for each system. EHO [19] is a new initial guess free optimization algo-
rithm developed in-house and is based on the behaviour of elephants. It utilizes the social
hierarchy of elephants,where theMatriarch takes the herd to the bestwatering hole inher
memory. The other mother elephants follow the matriarch. The calves of the herd follow
their mother as shown in Figs. 3 and 4. The animated versions of the EHO searches for bi-
nary and ternary systems are provided as supplementary information in the form of mp4
file.

Supplementary video related to this article can be found at https://doi.org/10.1016/j.
molliq.2019.111888

The search entities in EHO are the elephants and the watering hole corre-
sponds to SSE in the current work. The size of watering hole is proportional to
the inverse of SSE and it's coordinates in the N-dimensional space represent the
magnitudes of the vector of estimated parameters (DS). Stall iterations correspond
to the number of successive iterations since the matriarch had found a better
waterhole than the current global best water hole. Higher the stall iterations,
greater is the number of new calves born and wider the search area of new calves
(Figs. 3 and 4). Further details on the efficiency and accuracy of EHO are detailed
in Gopinath and Aravamudan [19]. The required inputs to EHO are the number of
search entities (mother elephants and calves) and limits of the search domain. The
number of search elephants was 6 mother elephants and 5 calves per mother. The

https://doi.org/10.1016/j.molliq.2019.111888
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Fig. 6.ANN performance as a function of the integral multiplierMX for a) single component b) binary component and c) ternary component systemwith optimumneuron ratio as given in
Table 3.
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search domain for DS was set in the range from 10−11 m2/s to 10−15 m2/s based
on values observed in literature [37].
3. Results and discussion

3.1. Effect of ANN parameters

The isotherm parameters are provided as supplementarymaterial in Tables S-1, S-2 &
S-3. The optimum ratio of neurons in hidden layers M1 : M2 : M3ð Þwas found iteratively.
Table 3
Number of neurons per hidden layer for different adsorption systems.

System M1 : M2 : M3 MX SSEFit

Single 2:2:1 8 5.67
Binary 4:3:2 4 5.73
Ternary 5:3:2 4 5.34
The variation of SSE with the neurons ratio for a single component adsorption system is
shown in Fig. 5.

The ratio 2:2:1was observed to give the best SSETotal for the single component system.
The total number of neurons which gave the lowest SSETotal, for the identified optimum
ratio, was found by trial and error. Even though SSETest was at least an order of magnitude
lower than SSEFit for most cases (Fig. 5), it still exerted a sizeable influence on the param-
eter estimation using ANN as will be further discussed below. The variation of SSETotal,
SSEFit and SSEtest with the scaling factor MX is given in Fig. 6.

The optimumMX value is 8 for single component system. It may be observed that the
SSEFit decreases monotonically with increasing number of neurons but SSETest passes
SSETest SSETotal Total Training time (mins)

9.17 14.84 12
16.27 22.00 28
30.66 36.00 55



Fig. 7. Variation of average computational time for estimating parameters and for one simulation using ANN and HSDM for different adsorption systems.
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through a distinctminimumwith increasing number of neurons. Thismay be attributed to
over-parametrization of ANN with increasing number of neurons which seems to retard
the predictive capabilities of ANN. The number of neurons corresponding to minimum
SSETotal is used. At such conditions, it is remarkable to note that the SSETest which is
based on just a single data set has an SSE that is comparable to SSEFit which was based
on 100 data sets. If emphasis had been placed on only the lowest value of the SSEFit and
an inordinately large number of neurons had been chosen, say 11, the computation effort
would have increased, SSETest would suffer and the Ds parameters that were estimated by
ANN would compare only poorly with those obtained from rigorous HSDM estimation.
Three ANNs were trained successfully, for single, binary and ternary adsorption kinetics,
using data simulated by solving HSDM for plausible Ds values for conditions specified in
Table 2. The results are summarized in Table 3.

In addition to the neuron ratio and MX, the SSETotal and total ANN training time are
also reported. The training time includes the time required for generating training data
from HSDM simulations and for complete training of the ANNs developed for single, bi-
nary and ternary adsorption kinetics.

3.2. Computational efficiency of ANN

EHO was able to estimate the parameters rapidly with a smaller number of itera-
tions and computational time. The computational times for execution for the rigorous
HSDM and its ANN surrogate are compared in Fig. 7. The computational time required
for estimating DS values using the completely trained ANN surrogate is on average, 14
times lower per simulation and 16 times lower for overall estimation when compared
to HSDM. Furthermore, it may be seen from Fig. 7, the time requirement for HSDM es-
timation increases almost exponentially with increasing number of components. This
will considerably delay the parameter estimation by HSDM as the number of itera-
tions required will be higher. The completely trained ANN simulation times are sig-
nificantly lower even when the number of components increase. This may be
attributed to the fact that ANN need not solve partial differential equations numeri-
cally as required in HSDM.

Also, once the system is trained, the network does not alterwith every simulation and
hence, the variation in simulation time is smaller when compared to HSDM. During pa-
rameter evaluations involving HSDM if DS values used by the optimizer happen to be far
from the actual DS values, then the system may become stiff and integration would take
a long time. Thus, the duration and variation in parameter estimation times for HSDM
are high.

3.3. Accuracy of ANN predictions

It is not sufficient that the ANN surrogate is faster than the HSDM. It should enjoy
comparable accuracy as well for it to have credible predictive and parameter estimation
capabilities under different operating conditions. Plots of SSE obtained using HSDM and
its completely trained ANN surrogate for the single component (Run 4 of Table 2), binary
(Run 2 of Table 2) and ternary systems (Run 7 of Table 2) are shown in Fig. 8. It may be
seen from Fig. 8, that ANN closely follows HSDM.

The parity plot between DS values estimated using ANN and HSDM is shown in
Fig. 9(a). The estimations made by ANN shows fidelity with HSDM estimations as
evidenced from the parity plot. This suggests that the completely trained ANN
surrogate for HSDM is competent to estimate the parameters of the new experi-
mental kinetics data sets at different operating conditions and the estimated DS

values are very close to those estimated by using HSDM, estimated parameters
are given in Table S-4 of the supplementary material. It is emphasized that the
ANN had not been trained a priori with these new experimental data sets. We
also decided to check what would have happened if ANN was not completely
trained i.e. was not tested with experimental data (section 2.3.4). The DS values
from incompletely trained ANN were significantly different from the values esti-
mated from HSDM as shown in Fig. 9(b).
3.4. Performance of ANN at untrained process conditions

The completely trained ANN, trained for conditions given in Table 2, was used
to estimate parameters for a completely new run. The conditions for this run
(single component system at 35 °C, pH 6, mA/VL of 1.2 g/L and Co of 200 mg/L)
was within the bounds of process conditions detailed in Table 2. ANN was not
trained using any of these conditions. The fit predicted by the ANN surrogate to
the experimental kinetic data is given in Fig. 10. ANN was able to fit reasonably
well with the experimental data. Moreover, the DS values estimated using ANN
was similar to the DS estimated using HSDM. This indicates that ANN surrogate,
once completely trained, is reliable to predict adsorber performance at intermedi-
ate conditions where experimental data are not available. This may translate into
reliable process optimization, removing the necessity of time consuming and ex-
pensive additional experimentation thereby entailing considerable saving of
resources.

ANN, acting as a surrogate to the HSDM, could capture the kinetics with its
estimated diffusivity parameters. The objective of tuning the ANN was to identify
the best combination which can not only fit the training data but also the testing
data. Each neuron consists of a transfer function which transforms the input sig-
nal to an output signal. Hidden layers consist of collection of neurons in each
layer, which resolve the input signal to identify more complex features of the
input data. In the current work, the hidden layer identifies the features in data
due to pH, T, Co, dosage, Ce, Ds and time. Due to multiple hidden layers the fea-
tures exhibited by these parameters on the percentage removal of adsorptive is
captured more accurately. This feature of ANN enables it to give due importance
to each and every input variable and effect of all the parameters could be
observed.
3.5. Comparison OF PFO, PSO, HSDM and ANN

For comparison with HSDM, the pseudo first and second order models were fit
to the percentage removals as a function of time. The test conditions are given in
Table 4.

Thefits are shown in Fig. 11. Theequilibriumvalue Ce required for computingpercent-
age removal (equation (14)) is obtained from the material balance relation (equation
(13)). In case of PSO and PFO (equations (1) and (2)) qe values were estimated by fitting
the PFO and PSO models to the experimental C versus t data. The model parameters esti-
mated are the kinetic constants k1 or k2 and qe values. In the case of HSDM and ANN, Ce



Fig. 8. DS vs SSE obtained by ANN and HSDM for a) Single component System b) binary and c-e) ternary system.
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Fig. 9. Comparison of ANN estimated Ds values and HSDM Estimated Ds values using ANNs trained a) with testing and b) without testing using an experimental dataset.
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values were computed by solving equation (13) using the isotherm relation between qe
and Ce. The parameters estimated by different models are summarized in Table 5.

It may be seen that HSDM and its ANN surrogate capture the percentage removal
trends accurately, reaffirming that the completely trained ANN captures the HSDM
accurately. These two approaches are based on actual equilibrium data which were
represented with appropriate isotherm fits (equations (3) & (4)). However, PFO
and PSO only estimated the equilibrium loadings (qe) values directly from the kinet-
ics data and these are quite different from actual equilibrium values (Table 5). Inter-
esting trend is visible from the Fig. 11. The pseudo-order models, especially the PSO
tends closer to the HSDM predictions under conditions where the adsorption kinetics
was rapid. This may be observed at initial times for all systems. For AB74 in the binary
system, and for BTA and CAF for the ternary systems, where the kinetics are relatively
faster than the other components, the corresponding PSO predictions are closer to the
HSDM fits. It may be inferred that the estimation of qe by the PSO is relatively more
accurate when the kinetics are fast thereby enabling the concentration data at later
times to be closer to actual equilibrium. During initial times, the internal diffusion ef-
fect is not yet manifest and only external transport limitations come into play. How-
ever, the applicability of PFO and PSO may not be generalized at all times and to all
Fig. 10. ANN Fit with single component experimental data at untrained p
species. These indicate that internal diffusion may act as a key mechanism in adsorp-
tion kinetics which should not be overlooked when multicomponent mixtures in-
volving different types of species are analysed.

3.6. Mechanisms associated with adsorption kinetics

3.6.1. A. single component adsorption
Guo andWang [36] applied the Langmuir adsorption kinetics rate expression and de-

duced conditions for applicability of the PFO and PSO models. PFO model was applicable at
initial times, negligible active sites occupation on the adsorbent and high feed concentration
Co in the fluid phase. Under these conditions, they showed that the PSO transformed into the
PFOmodel. PSOmodelwas shown to be applicable atfinal stages of adsorption, low feed con-
centration and nearly complete active sites occupation. They concluded that when only few
active sites are present, transport factors rather than kinetic ones dominate the adsorption
process. The mechanistic discussion on the transport within the adsorbent is given below.

Dimensionless concentration profiles (Figs. 12a and 13a) and fluxes of adsorbates
(Figs. 12b and 13b) are given for single component system for runs 12 and 4 (Table 2).
These are influenced by the equilibrium loading at the interface and the surface diffusivity.
rocess conditions i.e. 35 °C, pH 6,
mA

VL
of 1.2 g/L and CO of 200 mg/L.



Table 4
Conditions of comparison of PFO, PSO, HSDM and ANN.

System Carbon T; °C pH mA

VL
; g=L

Single AC 25 4 1.6
Binary AC 35 4 1.6
Ternary MAC 44 3 2
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Adsorbate fluxes (Figs. 12b and 13b) near the surface tend to be higher as the interfacial
loading is the highest (concentration effect). The adsorbate concentrations (Figs. 12a
and 13a) decline rapidly from the interface and hence the flux increases (concentration
gradient effect). The loci of radial distances inside the adsorbentwhere thefluxes aremax-
imum are shown in the figures.

As the radial distance inside the solid interface increases, adsorbate concentra-
tion values become smaller and they decrease more gradually. These contribute to a
distinct decrease in the concentration gradients. Hence, the flux declines after pass-
ing through a maximum. Further, if the diffusivity of the adsorbate is high, it pene-
trates faster causing the adsorbate profiles to broaden thereby reducing the fluxes
(solute diffusion effect). With increasing time, the liquid concentration decreases at
the interface and so does the equilibrium adsorbent loading. Hence the fluxes also de-
cline with time.
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Fig. 11. % Removal vs Time fits for PSO, PFO, HSDM
Temperature increases the surface diffusivity in run 12 by around 30% when com-
pared to run 4 (Table S-3). Hence there is more penetration of the adsorbate in run 12
than in run 4 (Figs. 12(a) and 13(a)). However, this increase in diffusivity is not high
enough for the profile to spread considerably into the adsorbent in run 12. Additionally,
there is a higher equilibrium loading of the dye at the interface in this run and these con-
tribute to higher fluxes than run 4.

3.6.2. B. binary adsorption
PFO and PSO models are applicable for systems which do not exhibit com-

petitive adsorption. Hong et al. [52] have stated that it is doubtful whether
the pseudo kinetic models that have been proposed for single component ad-
sorption may also be extended to competitive multicomponent adsorption ki-
netics. Applying PFO and PSO to multicomponent systems may not provide
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and ANN for various systems given in Table 4.



Table 5
Estimated parameters of different kinetic models for runs given in Table 4.

System PFO PSO HSDM ANN qe Isotherm, mg/g

k1 � 104 1/min qe mg/g k2 � 104 g/mg-min qe mg/g DS � 1015 m2/s DS � 1015 m2/s

Single 44.11 45.02 0.97 53.00 2.28 2.28 61.16
Binary 106.44 20.59 4.99 23.77 1.64 1.98 28.78

31.94 19.06 2.06 21.65 0.79 0.83 30.19
Ternary 379.67 33.32 14.67 32.808 198.60 187.58 46.33

422.23 38.85 12.53 40.679 270.75 262.25 47.38
306.07 49.78 8.00 47.481 169.33 170.74 48.91
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accurate estimates of equilibrium adsorbent loading for all the components in
the mixture and the kinetic constants would be implicit in the competitive ef-
fects. Rather, it is better to use the multicomponent isotherm to estimate the
adsorbent equilibrium loading at the interface and use the mechanistic multi-
component HSDM.
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Dimensionless concentration profiles and fluxes of adsorbates are given in Figs. 14–15
corresponding to runs 1 and 4 (binary system, Table 2). Here, competition sets in between
solutes vying for available active sites and a consequent noticeable decline in fluxes and
penetration may be observed, when compared to the single component system. In run
1, acid blue has both faster kinetics and interfacial loading due to more favourable
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isotherm than acid orange. As the diffusion coefficient for acid blue is nearly twice that of
acid orange (Table S-4) there is considerable penetration of acid blue (Fig. 14(a)) when
compared to acid orange (Fig. 14(b)). This however causes considerable spreading of
the concentration profiles for acid blue when compared to acid orange, as shown in
these figures. Hence, the fluxes are lower for acid blue (Fig. 14(c) relative to acid orange
(Fig. 14(d)).

In run 4, the penetration of acid blue (Fig. 15(a)) into the adsorbent is greater, but at
the cost of reducedfluxes (Fig. 15(c))when compared to the penetrations (Fig. 15(b)) and
fluxes of acid orange Fig. 15(d)). The diffusivity of acid blue dye is almost thrice as that of
acid orange dye (Table S-4 binary system) and has higher surface loading as well. As the
solute diffuses faster within the adsorbent, it's peak adsorbate flux value will be found
deeper within the adsorbent and the flux profile will be broader as well.

4. Conclusions

HSDM trained ANN was successfully able to capture the kinetics of
single, binary and ternary batch adsorption systems. HSDM based
ANN estimated HSDM parameters accurately and precisely with 14
times lesser computational time on average. The ANN was also able to
simulate the kinetics, given the DS parameters, with 99% similarity
with HSDM simulations. Training data corresponding to only 100 simu-
lations of HSDM augmented with just one experimental kinetic data set
were sufficient enough to train the ANN of presented accuracy.

It was observed that even when the fits to experimental data are
good, PFO and PSO are not able to capture the kinetics of the system ac-
curately. Based on fits of PFO and PSO the time required for a particular
percentage removal is significantly different from what is experimen-
tally observed. PFO and PSO predicts the qe values inaccurately for
data which are far away from the equilibrium. Internal diffusion is a
key mechanism in adsorption kinetics which should not be overlooked.

ANN trained by HSDMwould be able to capture the effects of alter-
ation in diffusional mass transfer in an adsorbent which would be



(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9 1

Y 
(-)

r/Rp(-)

150 300 450
600 750 900
1050 1200 Y_MaxFlux

Acid Blue Dye

(b)

Acid Orange Dye

0.0

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9 1

Y 
(-)

 

r/Rp (-)

150 300 450
600 750 900
1050 1200 Y at max flux

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.5 0.6 0.7 0.8 0.9

Fl
ux

 x
 1

08 
(k

g/
m

2 /
s)

r/Rp (-)

150 300 450
600 750 900
1050 1200 Max_Flux

Acid Blue DyeAcid Blue Dye

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.5 0.6 0.7 0.8 0.9

Fl
ux

 x
 1

08 
(k

g/
m

2 .s
)

r/Rp (-)

150 300 450
600 750 900
1050 1200 Max Flux

Acid Orange Dye

Fig. 14.Dimensionless adsorbate concentration profiles for (a)acid blue (b) acid orange and flux profiles for (c) acid blue and (d) acid orange at different times (inminutes) corresponding
to Co,AB = 50 mg/L, Co,AO = 50 mg/L, mA/VL = 1.6 g/L, pH = 4, T = 35 °C, Ds, AB = 16.5 × 10−15 m2/s, Ds,AO=8.1 × 10−15 m2/s.
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missed by ANNs trained with PFOM or PSOM. Therefore, the ANN
trained by HSDMwill give amore fundamental understanding of the ki-
netics. ANNwould not be devoid of any physical meaning as it would be
relating the process parameters with transport parameters as well. The
author strongly recommends using HSDM or similar more rigorous
diffusion-based models for capturing the adsorption kinetics and train-
ing of the any ANN surrogates.

More input parameters like point of zero charge, pH and different
carbons may be used to extend the range of applicability of ANN.
Owing to the significantly lower computational time in estimating
parameters, HSDM based ANN may be deployed in continuous col-
umn kinetic analysis in a rigorous manner. In continuous columns
the variation in process variables occur as a functions of column
height, adsorbent radius and time. Solving the HSDM repeatedly
would be computationally challenging.

The completely trained ANN is able to capture the effect of process
parameters accurately. Hence, it may be deployed in industries that typ-
ically handle fluctuating inlet compositions and operating conditions,
for the optimum operation of adsorption-based systems.

Acknowledgements

This work was carried out as regular academic research and no
external funding agencies were involved.

Notations

AB Acid Blue.−
AO Acid Orange. −
bi Bias of ith hidden layer. −
Co Initial solute concentration in liquid. mg
L

C solute concentration in liquid. mg
L

Ce Equilibrium solute concentration in liquid. mg
L

DS Surface diffusion coefficient. m2

s
Qm Extended sips isotherm parameter. mg

g
q Solid loading. mg

g
q Average solid loading. mg

g
qe Equilibrium solid loading. mg

g
qExp Experimentally obtained solid loading. mg

g
qFit Model predicted solid loading. mg

g
nf Freundlich isotherm parameter.−
kS Extended sips isotherm parameter. L

mg

� � 1
nS

nS Extended sips isotherm parameter. −
Mi Number of neurons in ith hidden layer. −
MX Least number of neurons in any hidden layer. −
mA Mass of adsorbent. g
N Number of components. −
nj
i jth Neuron in ith hidden layer. −

VL Volume of liquid. L
R % Removal. −
RP Particle radius. m
r Radial vector. m
T Temperature. °C
t Time. s
k1 PFO rate constant. 1s
k2 PSO rate constant. g

mg
1
s

kf Freundlich isotherm parameter. L
mg

� � 1
nf
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.molliq.2019.111888.
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Fig. 15.Dimensionless adsorbate concentration profiles for (a) acid blue (b) acid orange and fluxprofiles for (c) acid blue and (d) acid orange at different times (inminutes) corresponding
to Co,AB = 50 mg/L, Co,AO = 50 mg/L, mA/VL = 1.6 g/L, pH = 8, T = 35 °C, Ds, AB = 29.7 × 10−15 m2/s, Ds,AO = 10.2 × 10−15 m2/s.
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