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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Electrical discharge machining (EDM) finds its application 

for manufacturing difficult-to-machine with high accuracy like 

aerospace components, dies, diesel injectors, nozzles, and 

many more. The stochastic nature of EDM makes it 

challenging to predict the deviation of the machined profile 

causing low precision in machining. With die-sinking EDM, 

geometric inaccuracies like tapered holes, overcut, undercut 

are inevitable and difficult to predict. Attempts were made to 

address the precision of a similar process (wire-EDM) by 

prediction models developed through various machine learning 

techniques[1–3]. In these studies, prediction of the features 

with support vector machine regression (SVR) has been 

proven.  

In the present work, the prediction of geometric features of 

the components machined with Die-sinking EDM machining is 

studied. The geometric features like “machined area”, “profile 

radius” and “undercut” were extracted from the images of the 

machined profiles. These features are predicted by developing 

respective SVR models from the input and the conditional 

(signal) features of the experiments. The discharge signals 

acquired during the experiments were processed to extract the 

signal features. The SVR models were validated and tested by 

simulating unknown prediction conditions.  

2. Experiment and Methodology 

2.1. Experiments 

The Experiments were performed in a Die-sinking EDM 

machine for 200µm depth. The machine inputs and the 

experimental conditions are given in table 1. A total of forty 

experiments were performed by varying voltage and the peak 

current as inputs. The tool was positive, and the workpiece was 

negative throughout the experiments. All the experiments were 

performed in a submerged condition and a medium flushing 

pressure of the dielectric fluid. 

The overall experimental setup and the methodology is 

shown in Fig. 1. The current and the voltage data of the 

discharge pulses were captured by a Keysight DSO 2024A 

oscilloscope during the experiments. The captured pulse data 

were post-processed to extract the features for the predictors of 

the SVR models.  
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Table 1. Experimental conditions and input parameters 

Input parameters Values 

Voltage (V) 5,10,15,20,25 

Peak Current (A) 0.5,1,1.5,5,10,15,20,25 

Pulse on time (µs) 100 

Pulse off time (µs) 10 

Depth of cut (µm) 200 

Material (workpiece) Cr-Steel 

Material (tool) Cu 

Tool diameter (mm) 10 

Dielectric EDM oil 

Machine Type Die sinking submerged 

Machine model Electronica ZNC 

After machining is performed, the images of the workpiece 

were taken with 18 megapixel digital camera. The images were 

post-processed to extract the geometrical and shape features for 

every experiment. The captured images were imported using 

ImageJ software and processed to identify the boundary of the 

machined profile. The shape and the geometric features were 

extracted from the processed images by using MATLAB 

software. The extracted features were used as the predictors and 

the targets for building the SVR models. 

2.2. Data Acquisition and Signal Features Extraction 

The pulse train data were captured at random for each 

experiment. The gap voltage data during the discharge were 

captured directly with the 300 MHz passive voltage probe. Gap 

voltage was measured directly between the tool and workpiece. 

The current data were acquired using the shunt method. 

Voltage-drop was measured to estimate the current across a 

resistor of 0.1Ω that was connected in parallel to the tool-gap. 

The signals were imported in MATLAB software for post-

processing.  

A typical discharge pulse in EDM has three phases. First, 

the charge accumulates between the electrodes and the voltage 

rises for some time. This phase is called “rise time” of the 
discharge pulse. Second, as the charge saturates and leaks 

through the electrodes, the voltage stabilizes in this region. The 

phase is called the “ignition delay time”. The dielectric is about 
to breakdown in the region. Finally, as the dielectric breaks 

down, the charge gushes towards the opposite electrodes and 

the electrode gap voltage falls. The phase is called the 

“breakdown time”. Thus, a gradient based pulse discrimination 

method was used to classify the signals into four pulse 

categories, viz. “Open”, “Normal”, “Arc” and “Short” pulses. 
The pulses were classified by calculating the discharge 

duration of each detected pulse based on the gradient of the 

voltage. A voltage gradient grater than +3.75V/µs was taken to 

calculate the “rise time” of the pulse. For the gradient values 

between zero and +3.75V/µs the “ignition delay” time was 
calculated and for a negative gradient, the “breakdown time” 
was computed. Typical discharge duration of 10 µs was taken 

as “Normal” category. The rise time, ignition delay time and 

the breakdown durations were added to determine single pulse  

 

Fig. 1. Experimental setup. 

machining (SP mach.) time and compared with the typical 

discharge duration for classification. 

 The total number of pulses for each pulse categories were 

recorded and their percentages were calculated. It was ensured 

that there were at least five pulse train samples captured during 

an experiment for estimation of the percentages of the pulse 

categories. The average SP mach. time was calculated by 

registering the pulse duration of each category and dividing it 

with total number of pulses. Several datasets for each 

experimental condition was used to extract the signal features 

used for predicting the dimensional features of the machined 

part. 

2.3. Dimensional Features by Image Processing 

The machining was performed with a copper rod of 10mm 

diameter. The tool impression on the workpiece was found to 

have significant amounts of undercut. Thus the desired circular 

profile was not obtained. In order to characterize these 

deviations, three geometric features of the obtained profiles, 

viz. machined area, amount of undercut and radius of the least 

square circle (LSC) fit for the machined profile were taken as 

investigation metrics. All these features were extracted through 

image processing from the workpiece image data. Fig. 2 shows 

the steps of the image processing to find out the dimensional 

features from the machined profile. 

The captured images of the workpiece were calibrated to the 

real coordinates. 42 pixels corresponds to 1mm for all images. 

Each experimental profile was first imported in ImageJ 

software. The RGB picture was first converted to greyscale and 

then converted to a binary image by a greyscale threshold. 

Since the surface textures of the machined profiles for various 

experiments were different, the threshold values for each 

profile was manually selected. The threshold image resulted in 

the selection of the boundaries of the profiles. The coordinates 

of the boundary were extracted from the calibration. The 

identified boundary profile were clustered to form the regions 

(inside and outside) to calculate the inside area. The total 

number of pixels were counted and multiplied with the pixel 

calibration data to extract the “Area” feature. The computation 
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of the area and the extraction of the coordinate was performed 

using MATLAB software. 

The extracted coordinates of the boundary were used to fit 

an LSC to estimate the radius of the machined profile. 

Geometric distance optimization method was used for fitting 

the curve as discussed in the next section. 

 

 

Fig. 2. Extracted Dimensional Features by Image Processing. 

The radius of the LSC is taken as the second geometric feature 

for the investigations. 

As there was undercutting in the machined profile due to a 

very low depth of cut, it was irregular and deviated from the 

desired circular profile. An ellipse was more appropriate fit to 

the machined profile. The ellipse was also fitted using least 

square method and the characteristics were computed. The 

difference between the tool area and area of the obtained ellipse 

was considered as the amount of undercut in the machined 

profile. The amount of undercut was identified as the third 

geometric feature. 

 

2.4. Circle fitting with extracted coordinates 

The most important feature that evaluates the dimensional 

accuracy is the circularity error for the given machined profiles. 

The coordinates were extracted from the processed files where 

the boundaries were estimated. A least square circle (LSC) is 

fitted geometrically through the extracted coordinates [4]. First, 

an equation of a circle is defined by eq. (1) 

 

0a c  T TP P b P   (1) 

Where a and c are scalars, P is a 2×m matrix consisting of 

m set of coordinates extracted from the image data, and b is a 

vector of the coefficients b1 and b2. 

Considering z = (z1, z2)T, the coordinate of the centre, and r, 

the radius of the LSC, the above coefficients are related as 

below. 
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To minimize the geometric distance, the error squared 

distance is given by,  22

i id r  P z ,di denotes the deviation 

of radius corresponding to the ith row of vector P, i.e. the ith 

coordinate. The first term in the parenthesis computes the 

Euclidian distance between the center of LSC and the ith point. 

Let u = ( z1, z2, r)T, the minimization objective function is given 

by 
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The non-linear least squared function, eq. (2), is solved 

iteratively using Gauss-Newton method. Considering h as the 

correction vector, the computer program updates ui+1 = ui + h  

 

Fig. 3. Plot of the convergence of the geometric distance squared. 

 

Fig. 4. Graph of LSC: centre, the outer and inner circles, and deviation (mm). 

and finds the solution u*. Developing the function, 

        1 2, , ,
T

md d dd u u u u    

Using Taylor series to expand the developed function 

around the solution u*, approximated as û+h, the function 

becomes 

     ˆ ˆ ˆ 0J  d u h d u u h   (3) 

Where, J represents the Jacobian matrix. Solving eq. (3) the 

correction vector h is given by 
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The convergence of the square geometric distance is shown 

in Fig. 3. In the figure, the initial value of (z1, z2, r)T for Gauss-

Newton minimization was taken as [3,5,3]T and the 

convergence criterion was ∆d < 0.0001. 

The LSC radius is taken as the feature radius for the given 

data set. As shown in Fig. 4, the LSC for one of the data sets is 

plotted in continuous red line. The centre of the LSC is shown 

in the blue cross mark at (5.8147, 5.7425) and its radius is 4.68 

mm. The maximum deviation of 0.87 mm. 

 

3. Theory and Modelling 

3.1. Support Vector Machine Regression 

Support vector machine regression (SVR) is a non-

parametric regression model where the regression hyperplane 

is determined by optimizing the distances from the nearby data 

points known as support vectors. Non-linear SVR formulation 

is obtained by considering kernel-functions that considers the 

predictor interactions. The polynomial kernel-function is given 

by 

 , ( , ) (1 ) , 2,3,T q

i j i j i jg q   G x x x x   

Where, gi,j is the entry in the Gram’s matrix, G is the 

polynomial kernel-function, xi, xj are the predictor variables, 

and q is the degree of the polynomial function. The solution is 

obtained by minimizing the predictor coefficients α 
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Here e is a vector of ones, C is the upper bound and y 

denotes the target variable classes for m number of predictors. 

The minimization for the cost function f is performed by 

sequential minimal optimization method [5]. 

3.2. Data preparation, model predictors and targets 

The master dataset having the input conditions, the extracted 

signal parameters and the values of the extracted dimensional 

features were prepared and imported in the MATLAB 

software. Principal component analysis (PCA) was performed 

on the master dataset to understand the significance of each 

variable. The Pareto chart, as shown in Fig.5, identifies the 

significant variables that explain 95% variance in the master 

dataset. The Pareto chart demarcates the predictors of the 

dataset. Table 2. shows the final predictors and targets of for 

building the SVR models. 

Three different datasets were extracted from the master 

dataset, each containing one of the target features. Each column 

in the data sets of the predictors as well as targets, was 

normalized. The normalization eliminates the influence of the 

magnitude of the data on the training of the model. In the 

columns of the datasets like “open per cent”, “normal per cent” 

are fractions while the targets such as “radius” or “area” are ten 

to hundred times more than these predictor columns. The 

columns were normalized by re-scaling its mean to zero and the 

standard deviation to one.  

 

Fig. 5. Pareto chart showing significant predictors. 

Table 2. Inputs predictors and target variables for the model 

Predictors Target 

Current Area (Image process) 

Voltage Undercut (Curve fit) 

Open Pulse percent Radius of LSC (Circle fit) 

Normal Pulse Percent  

Arc Pulse percent  

Short Pulse percent  

SP mach. time (average)  

This process also ensures that the shape properties of the 

distribution of the original data for the variable is conserved. 

Each of the three datasets, formed to predict the respective 

targets, was partitioned to hold out twenty per cent data used as 

test points at random. The rest of the data was used to build the 

model. As the test point data were avoided for building the SVR 

models, it was used to evaluate the performance of the model 

for unknown conditions. 

4. Results and Discussion 

4.1. Model Performance 

After the data-partition, described in section 3.2, the 

remainder dataset for the model was again partitioned to form 

a training set with seventy per cent of the data and remaining 

for validation. The dataset was used to build the model with 5-

fold cross-validation. This process generates 5 of training data 
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from the dataset with various combinations of training and 

validation data-points selected at random. The model was 

trained and validated five times with the generated data sets, 

and the k-fold loss is calculated as the average root mean square 

error (RMSE) in the five-fold validation of the model. 

The overall performance index with the 5-fold cross-

validation for each SVR models given in Table 3. As shown in 

the table, three separate models were developed for predicting 

“Area”, “Radius” and “Undercut”. The model parameters like 

“Kernel-function” and “Regularization” were adjusted until 

minimum RMSE value was obtained. The “Kernel-function”, 

the parameter which determines the order of the predictors, 

were varied as “linear”, “quadratic”, “cubic” and “Gaussian”. 

Higher orders for the “kernel-function” were ignored to avoid 

overfitting for the dataset. “Regularization”, a penalty term was 

also used for each model and increased in steps of 0.3 for each 

training model, to ensure generalization. 

Table 3.  Performance and properties of the SVR models 

Sl. No. Model Properties Values 

1 Area model  

 Kernel function Cubic 

 Regularization 6.6 
 Validation 5 fold Cross-Validation 

 RMSE 7.1956 mm2 

2 Radius model  
 Kernel function Quadratic 

 Regularization 4.0 

 Validation 5 fold Cross-Validation 
 RMSE 0.8136 mm 

3 Undercut model  

 Kernel function Cubic 
 Regularization 2.3 

 Validation 5 fold Cross-Validation 
 RMSE 5.6709 mm2 

 

Fig. 6. Predictions and true responses of model validation for two predictors. 

 

The validation response plots for each SVR model with 

“current” and “voltage” predictors are shown in Fig. 6. The 

variations in the predictions due to the 5-fold validation are 

shown as boxes and the mean value of the responses given by 

the horizontal line inside the respective box. The plots show 

that the variation of the target variables are large for current 

values between 0.5A to 1.5A, where the validation predictions 

drift from true responses. For other values of current, all the 

models perform with good accuracy of prediction. The 

validation responses for the voltage is also shown.  

 

Fig. 7. Validation residuals of current and voltages for respective SVR models. 

 

Fig. 8. Validation response for (a) Area, (b) Radius (c) Undercut SVR models. 

It can be seen that the mean values of the validation predictions 

match the true responses. Thus, the voltage has a more 
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significant influence for predicting the dimensional features of 

the machined profile. It can be seen from Fig. 7 that the 

residuals of the current feature for predicting the dimensional 

feature is drifted and the mean values are away from zero. On 

the other hand, the voltage residuals for validation prediction 

have their mean values close to zero. Hence, the reliability of 

the dimensional feature prediction with voltage is better.   

The overall performance of the validation prediction and 

true responses are shown in Fig 8. Fig. 8a shows the response 

tally for “area”. It can be seen that most of the predictions are 

very near to the observations.  

 

Fig. 9. Predicted responses with test point data for respective SVR models. 

Table 4. Root mean square error of the test point data 

Root Mean Square Error Values 

  

Area model 3.9389 mm2 

(Lower than validation) 
Radius model 0.1776 mm 

(Lower than validation) 

Undercut model 3.6781 mm2 
(Lower than validation) 

Fig. 8b shows the prediction for “radius”. The predictions are 

not as good as area, but near to the observation. It implies that 

the validation of radius model has performed satisfactorily. Fig. 

8c shows the response tally for “undercut” prediction and the 

model has also performed with reasonable accuracy. 

4.2. Test performance of the Models 

The held-out test points were used to simulate model 

prediction for unknown conditions. The test points were fed to 

each model to predict the dimensional features, respectively. 

The output of these models was recorded. RMSE was 

computed with the predicted and the true responses of the test 

point data. 

The model performances, evaluated by the closeness of the 

predicted and true responses are shown in Fig. 9. The RMSE of 

each model for the test scenario is given in table 4. It can be 

seen that for all the dimensional feature prediction models, the 

RMSE values with test point data are less than the models’ 5-

fold cross-validation error, as given in table 3. Thus the 

developed model has performed better in unknown conditions. 

Thus, the developed SVR models can be used for predicting the 

dimensional features of the machined profiles reliably. 

5. Conclusion 

The present work had attempted to predict the dimensional 

features like, machined area, undercut, and radius of Die-

sinking EDM machined part by formulating support vector 

regression (SVR) models. The models were constructed by 

identifying machine inputs (current and voltage) as well as 

conditional parameters (percentage of ‘open’, ‘normal’, ‘arc’, 

‘short’ and average ‘SPmach. time’) as the predictors, and 

extracted dimensional features (machined area, undercut and 

machined radius) as targets. The predictor features were 

extracted through signal processing of the captured pulse data 

during the experiments. The target features were extracted from 

the workpiece images by identifying the machined boundary 

through threshold technique. The coordinate data were 

extracted from the boundary to fit the least square circle (LSC) 

by geometric distance optimization method.  

Twenty per cent of the dataset were held-out for testing. 

Three exclusive SVR models for predicting machined area, 

undercut as well as the radius of the fitted LSC respectively 

were developed with the training set. For validation, Five-fold 

cross-validation method was used. Regularization on each 

model was also used to fit cubic-kernel functions for the area 

and undercut predictions, as well as to fit quadratic-kernel 

function for predicting the radius. The models have performed 

satisfactorily as the root mean square errors with the test dataset 

were found lower than validation errors for all cases. 

The present work will be extended to also predict the surface 

integrity features of the machined components in future. 
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