
1. Introduction

Inverse problems often occur in many branches of engi-

neering and mathematics where the values of some phys-

ical model parameter(s) must be deduced from observed

data. System identification comes under the category of

inverse problems. It is the process of determining the

parameters of a system based on the observed input and
_______________________________________

*Corresponding author’s email: skris@iitm.ac.in

output (I/O) of  the  system.  In structural engineering, sys

tem identification is used to determine unknown parame-

ters such as mass, stiffness and damping properties of a

structure.  Structural identification methods can be classi-

fied under various categories, eg. frequency domain and

time domain, parametric and nonparametric methods.

Inverse problems can be solved using classical and non-

classical methods.
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1.1 Classical Methods

The least square method is perhaps the simplest classi-

cal methods for structural identification.  It estimates the

unknown parameters of structural system by minimizing

the sum of squared errors between the predicted outputs

and the measured outputs. Many other classical methods

such as maximum likelihood method, instrument variable

method and extended Kalman filter method have been

developed. Koh et al. (1991) used the Kalman filter

method for identification of stiffness and damping coeffi-

cients from measurement of dynamic responses in the

time domain. Detailed information about classical meth-

ods and non-linear identification are presented in the

review paper by (Gaetan et al. 2006). Some classical opti-

mization methods such as gradient methods (typically

variations of Cauchy, Newton and Levenburg-Marquardt

methods) need a good initial guess of the parameters to

converge fast and accurately.  Some studies have been

conducted to supply good initial values using non-tradi-

tional  methods such as GA which would sample the

search domain efficiently. Thus certain classical methods

such as Levensburg-Marquardt were hybridized with GA

to identify system parameters with less computational

time and improved accuracy (Kishore et al. 2007 and

Friswell et al. 1998).

1.2 Evolutionary   Algorithms  and  Behaviourally 

Inspired Algorithms

Evolutionary algorithms are robust optimization algo-

rithms based on the heuristic concept of natural selection

and genetic operations.  Optimization algorithms find the

minima or maxima of functions in a given function

domain. Over the past few decades the area of genetic

algorithm (GA) has been widely developed and applied

for structural identification. Unlike classical methods,

there is no requirement for calculation of gradients and

second derivatives which frequently lead to numerical

instability. GA applications in system identification such

the identification of elastic properties of composite plates

from dynamic test data is presented in (Jesiel et al. 1999;

Chakraborthy  and Mukhopadhyaya 2002). Recently

efforts have been made to alter the architecture of GA and

to incorporate local search algorithms to further improve

its performance, see for example see (Koh et al. 2003  and

Perry et al. 2004). 

Behaviorally inspired optimization algorithms have

been developed out of attempts to model the natural

behavior of  a flock of birds or a colony of ants. Social

insects have diverse foraging systems that reflect the enor-

mous range of ecological conditions in which they oper-

ate. Ant colony optimization (ACO) and Particle swarm

optimization (PSO) techniques are inspired by real ant

colonies and flock of birds respectively. 

2.   Ant Colony Optimization (ACO)

Ant colonies continually adjust foraging effort to

changing conditions. Individuals use local information in

foraging decisions and colonies can tune foraging effort to

the location, quality and abundance of food. ACO is a gen-

eral purpose Combinatorial Optimization (CO) technique.

CO optimization is one of the youngest and most active

areas of discrete mathematics. As the name suggest CO

deals with finding optimal combination of available prob-

lem components. Hence, it is required that the problem is

portioned into a finite set of components and CO algo-

rithm attempts to find the optimal combination. 

ACO, a meta-heuristic which is based on the Ant

System introduced in the early nineties by (Dorigo 1992

and Dorigo et al. 1996).  It has been used to solve a vari-

ety of combinatorial optimization problems, eg. the vehi-

cle routing problem by (Bullnheimer et al. 1999)  the trav-

eling salesman problem  by (Dorigo et al. 1997) and the

industrial layout problems studied by (Hami et al. 2007;

Corry and Kozan 2004 and Rajamani and Adil 1996).

Abbospour et al.  (2001) proposed the ACO-IM (Inverse

Modeling) method for estimating soil hydraulic parame-

ters. They compared results of ACO-IM with Levenberg-

Marquardt (LM) method and finally complimented ACO

and LM to obtain final solution which was better than pure

ACO itself. Some extensions and variants of ACO are pre-

sented in the review paper by (Blum 2005).

Recently ACO has been applied to structural optimiza-

tion and topology optimization. The goal of truss opti-

mization is to optimally utilize the geometry and material

of the proposed design elements to result in the lightest

structure satisfying all the design, manufacturing con-

straints and other physical constraints. Since ACO is a dis-

crete CO problem, several studies using it to optimize

steel trusses for minimum weight using discrete cross sec-

tional areas and other parameters were conducted, see

(Camp et al. 2004; Camp et al. 2005 and Serra et al.

2006). These studies mapped the length of the tour of the

ant to the weight of the truss and represented the volume

of the element as virtual paths in ACO model for truss

design. 

A biomechanical application of PSO  is presented by

(Jaco et al. 2005) where ankle joint model parameters

were identified and compared with gradient methods such

as sequential quadratic programming, quasi-Newton algo-

rithm and GA. The PSO algorithm was found insensitive

to design variable scaling and gradient methods are high-

ly sensitive. The parameters of Lorenz chaotic system are

estimated using PSO in reference (Qie et al. 2007).  It was

found that PSO converges to exact value with high popu-

lation size and more effective than GA.  A 10-dof structur-

al dynamic model was identified using frequency

response function by GA and PSO in  (Mouser and Dunn

2005), without using hybrids. PSO was found more likely

than GA to produce  better parametric  models. A PSO-GA

hybrid was used to successfully identify faults in the water

supply system in Japanese cities by (Furuta and Yasui

2005).  However only a single case is studied, and com-

parisons with pure GA and PSO are not shown for that

case study, but only for benchmark equations. Recently

PSO has been successfully applied in many research and

application areas such as pattern recognition (Peng-Yeng

et al. 2006), scheduling (Binghui et al. (2007)), layout
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optimization (Zhang et al. (2007), and the design opti-

mization of Unmanned Aerial Vehicle (UAV) with respect

to flight loads (Hu et al. 2004).

2.1 The ACO Algorithm

The inspiration for ACO is the foraging behavior of

ants, particularly how they find the shortest paths between

food sources and their nest. While searching for food, ants

initially explore the area surrounding their nest randomly.

When ants move they leave a chemical pheromone trail on

the ground. When choosing their way, ants tend to favor

paths marked by strong pheromone concentrations. As

soon as an ant finds a food source, it evaluates the quanti-

ty and the quality of the food and carries some of it back

to the nest. During the return trip, the quantity of

pheromone that an ant leaves on the ground may depend

on the quantity and quality of the food. The pheromone

trails will guide other ants to the food source. 

ACO model consists of graph G = (V, E) (Blum et al.

(2005)) where V consists of two nodes, namely vs (nest)

and vd (food source). E consists of two links e1 and e2

between vs and vd and corresponding length are l1 and l2

as shown in Fig. 1. 

Path e1 represents the short path between vs and vd , and

e2 represents the long path. Real ants deposit pheromone

on the paths on which they move. Thus, the chemical

pheromone trails are modeled as follows.

(1)

where  pi is the probability of an ant choosing the ith path,

τi is artificial pheromone value  for each of the two links

ei , i = 1, 2.  Obviously, if τ1 > τ2, the probability of choos-

ing e1 is higher, and vice versa. For returning from vd to vs

, an ant uses the same path as it chose to reach vd and it

changes the artificial pheromone value associated to the

used edge. After all the ants have returned to the nest, the

pheromone information is updated using Eq. (2) 

(2)

wher p ε  (0,1] is evaporation rate, Q is a constant, Lk is

length of the path traversed kth ant and na is number ants

in the colony.  The aim of pheromone update is to increase

the pheromone value associated with good or promising

paths. Pheromone evaporation is needed to avoid too rapid

convergence of the algorithm.

Implementing the discrete ACO algorithm for a contin-

uous problem requires substantial modifications.  The

physical problems need to be represented in a graphical

from as shown in Fig. 2 and Fig  3.  The elemental stiff-

ness value is divided in to 'np' different values randomly

with in the specified range.  Each of these values can be

represented as local path between the two levels and each

of which leads to global path as shown in Fig. 2b and 3b.

As mentioned earlier, ACO algorithm requires finite set of

components, i.e. resolution of the local paths, so each

stiffness value is divided in 'np' different paths (stiffness)

in the given range. ACO algorithm has to find shortest

path out of npnv (nv- number of parameters to be identi-

fied) available combinations. In real ant colony initially

ants take random paths and deposit pheromone. As the

iteration proceeds, all the ants in colony take the shortest

path and there by increasing the intensity of pheromone

trail on the shortest path. The main goal in structural iden-

tification is minimizing the objective function, which in

turn decides the amount of pheromone deposition.

Generally ACO minimizes the length of the Lk in Eq. 2,

traversed by kth ant. In structural identification, ACO min-

imizes the fitness value, ε Eq. 8, which is analogous to

length of the path Lk in Eq. 2 and the amount of

pheromone deposited depends on the value of ε.

3.  Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population

based continuous optimization technique developed by

(Eberhart and Kennedy 1995), inspired by social behavior

of bird flocking or fish schooling. PSO shares some simi-

larities with evolutionary computation techniques such as

Genetic Algorithms (GA). The system is initialized with a

population of random solutions and searches for optima

by updating generations. However, unlike GA, PSO has

no evolution operators such as crossover and mutation. In

PSO, the potential solutions, called particles, move

through the problem space by following the current opti-

mum particles.  

The basic PSO algorithm consists of the velocity and

position equation of the kth generation:

(3)

(4)

i - particle number

k - iteration number

v - velocity of ith particle

x - position of the ith particle/ present solution

pi -  historically best position/solution found by ith particle

G -  historically  best    position/solution    found  by   all 

particles 

γ1,2 - random number in  the  interval  (0,1) applied to ith

particle

vs e1, l1 vd 

e2, l2 

Figure 1.  The ACO Model
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The frequently used PSO form includes an inertia term

and acceleration constants, hence the velocity equation of

PSO algorithm is modified as:

(5)  

ϕ    - inertia function

α1,2 - acceleration constants

The inertia function is commonly either taken as con-

stant or as a linearly decreasing function from 0.9 to 0.4.

The acceleration constants are most commonly set to both

equal to 2 as in (Shi and Eberhart 1998). The algorithm

starts with initializing the i  particles randomly with ini-

tial zero velocities. PSO then searches for optima by

updating the positions of particle through several genera-

tions. At every generation, the location of each particle is

updated based on  two "best" values defined as follows.

The first  is the historically best solution (fitness) achieved

so far by all particles and stored as gbest. Another "best"

value is the historically best value obtained so far by the

ith particle in the population and is called  pbest. The posi-

tion of each particle is updated by a quantity which

reflects the difference between gbest and pbest (equation

(4) and (5)) and eventually all the particles tend to con-

verge to the global best (gbest) position. The superiority of

PSO over other comparable heuristic algorithms such as

GA could be attributed to the explicit tracking  and updat-

ing of gbest and pbest over the generations.

4.  Genetic Algorithm (GA)

Genetic Algorithms are optimization algorithms based

on the mechanism of natural selection and survival of the

fittest. Over the past few decades GA has been widely

developed and applied for structural identification.  GA

combines the explorative ability of large search domains

as well as reasonable guided search to the global optima

(Michaelwicz 1994).  GA creates an initial random sample

within the specified domain of variables, called  'popula-

tion'. It then ranks them in the order of fitness and con-

ducts crossover operations from among a pool of  'parents'

through the Roulette wheel selection. Parents having high-

er fitness have a greater probability of being selected for

crossovers and their offsprings contribute to the next gen-

eration. These offspring have marginally better fitness

than the parents and over many generations they attain the

global maxima. GA can be programmed in the Binary or

Continuous versions. Here the Continuous (decimal num-

ber) version is used to avoid the computationally intensive

conversion from binary to decimal and vice-versa. It been

indicated in a few studies that continuous GA is superior

to binary GA in computational performance (see

(Michaelwicz 1994 and Haupt 1994) ).  It may be noted

that unlike PSO, GA does not explicitly keep track of the

globally best solution (gbest) and particle best (pbest)

solutions.

5.  Numerical Examples and Discussion 

For structural identification problems it is usually

assumed that the mass of the structure is known and the

identification is limited to structural stiffness and damping

k1 

knv 

m1 

mnv 

knv-1 

mnv-1 

Ants taking different paths  

Local paths  

Global paths  

Figure 2 (a) Multi-DOF physical mode (b) ACO-gra-

physical model

(a)                                             (b)

(a)

(b)

Figure 3 (a) Physical model of truss (b) ACO-model 

of the truss (for brevity only a few paths are

shown

1 1

2 2

( 1) ( ) ( ) [ ( ( ))]

[ ( ( ))]

i i i i i

i i

v k k v k p x k

G x k

ϕ α γ
α γ
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properties. It is assumed that the structure is excited by

known forces and that the responses of the structure in

terms of accelerations, are recorded at some given points.

The dynamic equation of a structural system can be writ-

ten as

(6)

where M, C and K are the mass matrix, damping matrix

and stiffness matrix, respectively, u is the displacement

vector and F is the force vector. Proportional damping is

adopted as follows

(7)

where α and β are two damping constants, which can be

related to the modal damping ratio. In the examples which

follow, experiments are simulated numerically using the

known parameters of the structure ie. the forward analysis

is carried out by numerically solving the dynamic equa-

tion using the  parameter values  (such as in Tables 1 and

4). The acceleration responses in the time domain are

obtained at desired places and they are treated as experi-

mentally obtained values. Noise may be added to them to

be more realistic. The difference between the estimated

acceleration response and measured acceleration response

is used to compute the fitness value (objective function)

as given by the Eq. (8) given below, which has to be min-

imized (see reference Koh et al. 1991).

(8)

The parameters used in GA, PSO and ACO are given

in the Table 2. They were applied to all the numerical

examples. To compare  GA and PSO  they were given the

same population size (200) and  number of generations

(50).  These values are taken from Koh and Shankar

(2003) which dealt with identification of structural sys-

tems similar to this paper.  The crossover rate (40%) and

mutation rate (5%) for GA, and PSO inertia function value

(0.3) and acceleration constant (2) were selected from the

best parameters recommended from standard literature on

these algorithms (Michaelwicz 1994; Haupt 1994;  Shi

and Eberhart 1998).  Comparable ACO parameters were

however more difficult to establish since it is a discrete

approach whereas PSO and GA are continuous with their

resolution decided by the precision of the smallest deci-

mal number - which is by default set to double precision

in MATLAB.  It is impractical to obtain a comparable pre-

cision in ACO by discrete division of the search interval

(ie. number of paths). Thus the crucial ACO parameters

such as number of ants (400), number of paths (100) and

number of iterations (100) were chosen after several trials

as a compromise, which would converge in a reasonably

comparable time as GA, with mean errors which are

acceptable for system identification purposes. Each algo-

rithm has been run ten times separately to minimize the

objective function, ε, for both impulse and random excita-

tion with noise-free and noisy data and the final results

shown is the average.

5.1 Example 1: 10-DOF Lumped Mass System

In the numerical study, a 10-DOF lumped mass system

studied in (Koh et al. 2003) and shown in Fig. 2(a) is con-

sidered. The structural parameters are tabulated in the

Table 1. Impulse and random excitation is applied at the

5th level. The impulse was given as an initial velocity of

10 m/s to the first mass, the displacements and velocities

of all other DOF set to zero. The impulse excitation was

simulated by imposing equivalent initial velocity condi-

tions obtained from impulse momentum relation using the

method followed in  (Hanagud 1985).  The Gaussian ran-

dom force was applied as with a maximum amplitude of

10 N.  Accelerations at alternate levels, ie. levels 2, 4, 6,

8, 10 are assumed to be available for the purpose of struc-

tural identification.  Referring to Eq. 8,  here m=5, and n

the time steps are 500 in the range from 0 to 2 seconds.

Here the objective is to find out the unknown spring stiff-

nesses k1 to k10. In all the problems hereafter the search

limits for unknown parameters are taken as -50% (lower

limit) to +100% (upper limit) of the exact value. In GA

and PSO initial population/particles are generated within

this specified range. In ACO a matrix of size nv × np is

generated within the specified parameter range. ACO has

to choose best combination of paths which minimize the

objective function.

The results for this system are shown in the Fig. 4. GA

and PSO have identified the parameters  more accurately

as shown in Fig. 4 (a) and (b). The accuracy of identified

values by PSO is more than GA which can be noticed in

the almost constant plateau in Fig. 4 (b) as compared to

( ) ( ) ( ) ( )Mu t Cu t Ku t F t+ + =

C M Kα β= +

2

1 1

( , ) ( , )

Minimize: 
*

m n

mea est

i j

u i j u i j

m n
ε = =

−
=

∑ ∑

where ( , )
mea

u i j and ( , )
est

u i j are, respectively the 

measured and estimated responses of i
th

 measurement 

location at j
th time step, m is the number of 

measurement location and n is the number of time 

steps.  The “measured” responses are obtained from 

numerical simulation. The “estimated” responses are 

obtained from the mathematical model  (Eq. 6 and 7) 

where the optimization variables are t he now unknown 

stiffness properties and damping ratio. The values of 

the  variables which minimize Eq.  8 give the required 

structural properties. To excite higher modes for better 

identification the input forces are impulse and random 

excitations (the latte r by means of Gaussian white 

noise). The  dynamic equations are solved using 

Newmark’s constant acceleration method. Two seconds 

of acceleration response is computed with constant time 

step of 0.004s in 500 steps. To investigate the effect of 

noisy data on  identification, the I/O time signals are 

artificially contaminated by zero -mean Gaussian white 

noise. The noise level is defined as the ratio of standard 

deviation of the noise to the root -mean- square value of 

the uncontaminated time history; here it is taken as 

10%.  
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GA (Fig 4(a)) for stiffness levels 6-10.  From Fig. 5 and 6

it is clear that GA and PSO performs better with presence

of noise for both types of excitations (impulse and ran-

dom). But ACO fails to identify the parameters with noisy

data. Table 3 gives maximum and average errors (aver-

aged over 10 runs) in identification of the stiffness param-

eters using impulse and random excitation. The maximum

errors observed for the noisy case are 15.9% for ACO,

9.12% for GA and 4.17% for PSO (using random excita-

tion). The mean errors are 12.34%, 3.47% and 2.88%

respectively (using random excitation). The Table shows

that using impulse excitation gives lesser errors than the

random type. In such as case PSO produces a maximum

error of only 3.02% with a mean error of 1.13%. Thus it is

clear from the Fig. 5, Fig. 6 and Table 3, that the PSO

gives superior results as compared to the other two algo-

rithms for both types of excitations and with noisy data

from the point of view of maximum and mean errors as

well as computational time which is similar for both load

cases.     

5.2 Example 2:  11- Member Planar Truss

In this example an 11-member planar truss is consid-

ered for identification of the axial rigidity (EA) of all the

11 (ie. number of variables, nv = 11) members.

Configuration and structural properties of the truss are

given in Fig. 3(a) and  Table 4, respectively. To implement

ACO, the physical truss has to be represented as a graph-

ical model with axial rigidity (stiffness) of each  member

discretized into 100 units ie. this would correspond to 100

paths per member.  Fig. 3(b) shows schematically this

division of each member into several paths.  For clarity

only 3 paths are shown per member.   

Stiffness (kN/m)  

Level 1-5  350 

Level 6-10 600 

Mass (kg) 

Level 1-5  500 

Level 6-10 300 

Damping 

Critical damping ratio for first 2 modes  5% 

Table 1.  Structural properties of lumped mass system

GA PSO ACO 

Population size  200 No. of particles  200 No. of ants  400 

No. of generations  50 No. of generations 50 No. of iterations  100 

Cross over rate  40% Inertia function  0.3 Evaporation rate  30% 

Mutation rate  5% Acceleration constants  2 No. of paths  100 

        Constant Q 1 

Table 2.  Parameters used in the algorithms

Impulse excitation  Random excitation  

Algorithms with out noise with 10% noise  With out noise  with 10% noise  

Average 

computational 

time (sec)  

  Max Mean Max Mean Max Mean Max Mean   

GA 3 1.77 4.7 1.90 5.4 2.26 9.12 3.47 95 

PSO 0.23 0.06 3.02 1.13 2.51 0.58 4.17 2.88 40 

ACO 4.55 1.45 15.15 7.68 4.39 2.09 15.91 12.34 140 

Table 3.  Absolute percentage error in identification of stiffness - lumped mass system

Axial rigidity (MN)  300 

Cross section area (m
2
) 0.0015 

Density (kg/m 3) 7800 

Critical damping for first 2 modes  5% 

 

Table 4.  Structural properties of truss
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(a)                                                                                        (b)

(c)

Figure 4.  Identified values of the level stiffness v/s no. of runs with noise-free data for impulse excitation

(a) GA (b) PSO  (c) ACO

(a)                                                                                        (b)

(c)

Figure 5.  Identified  values  of  the  level  stiffness  v/s  no. of  runs with noise-free  data  for impulse excitation

(a) GA (b) PSO  (c) ACO
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The truss is excited with impulse and random input at

node 2 in Y-direction and acceleration responses (using

the same excitation and times as the previous case) are

assumed to be available at nodes 1, 2, 3, 4 and 5 in Y-

direction.  Acceleration responses are simulated using

properties given in Table 4, and 10% noise added to the

simulated responses. The truss is modeled using finite ele-

ment method. The same set of algorithm parameters

(Table 2) are used in this example also for minimizing the

objective function ε (Eq. 8). In all the algorithms finite

element model is updated till the error between simulated

acceleration responses and estimated by the algorithms is

minimized. 

Figure 7 shows the typical percentage error in identifi-

cation of axial rigidity of the truss members for impulse

excitation with and without 10% noise.  From Fig. 7 it can

be noticed that the error in identification of all the mem-

bers is small in the case of PSO and GA. But ACO appears

to oscillate about zero with significant variation giving

maximum errors of about 20% - 30%. The maximum and

mean errors in identification by all algorithms for both

excitations are tabulated in Table 5. It is seen that when

noise is added to the responses the impulse excitation

gives better identification than random excitation. The

maximum and mean errors and computational time of

PSO is much better than the others in the presence of

noise.  The computational time is roughly same for both

load cases hence only a typical average value of time is

shown to compare between the various algorithms.

5.3 Example 3: Simply Supported Beam

In this example a simply supported beam, Fig. 8, with

linearly varying stiffness from support to the middle is

considered for element wise stiffness identification

(Modulus of Elasticity) in the time domain. Cross section

of the beam is square with an area of 9x10-4 m2 and den-

sity of 7800 kg/m3. The beam is modeled with 2 noded, 11

Euler beam elements with two degrees of freedom per

node, translation and rotation. 

The stiffness variation is 200 GPa at the support to 50

GPa at the center of the beam. Impulse excitation is

applied at node 3 in transverse direction and acceleration

responses are assumed to be available at nodes 1, 4, 7 and

10 for identification. In identification, modulus of elastic-

ity of all eleven elements are considered unknown and

damping ratio of 5% is assumed to be known. Here also

the finite element model is updated as mentioned in the

previous example to minimize the objective function

given in Eq. (8). Results are represented in Fig. 9 for

impulse excitation only. Again it is noted that the perform-

ance of PSO is better than other algorithms. This is seen

in the results where the mean error in identification is

5.8%, 3.1% and 15% for GA, PSO and ACO with noisy

data, respectively. In all the examples thus presented it is

found that ACO cannot identify the parameters with the

same degree of accuracy as PSO and GA. So in order to

combine the advantages of each of these algorithms, a

hybrid approach is next investigated.

(a)                                                                                            (b)

(c)

Figure 6.  Identified  values  of  the  level  stiffness v/s  no. of  runs  with  10%  noise data for random excitation

(a) GA (b) PSO  (c) ACO
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5.4 The Hybrid Approach 

The results of hybrid approach are tabulated in the

Tables 7 to 10.  Table 7a shows the identification results

with known damping for three cases A, B and C which

represent the lumped mass, truss and beam models. The

extensive data in Table 7a is summarized in Table 7b by

averaging  over the three cases. Table 7b data can be stud-

ied from the point of view of  a) average time of solution

: from this point of view  it is seen that GA+PSO hybrid

is clearly superior with only 39.7s, followed by pure PSO

with 66.7s, then ACO+PSO hybrid with 110s and pure GA

at 143s. The worst time performer is pure ACO which

takes 219s.  b) accuracy of solution: we examine the val-

ues for mean and maximum error in identification . Here

also  GA+PSO hybrid gives the smallest mean and maxi-

mum errors (0.72% and 2.47%) followed by pure PSO

(a)                                                                                       (b)

Figure 7.  Percentage  error in  identification   of  axial  rigidities  of  the  members  with   impulse   excivation 

(a) with out noise  (b) with 10% noise

Figure 8.  Simply supported beam

Table 5.  Absolute percentage error in identification of axial rigidity - truss

GA+PSO ACO+PSO ACO+GA 

Algorithm parameters  GA PSO ACO PSO ACO GA 

Population size  100 -- -- -- -- 50 

No. of generations  10 -- -- -- -- 50 

No. of particles  -- 50 -- 50 -- -- 

Iterations -- 50 -- 50 -- -- 

No. of ants  -- -- 200 -- 200 -- 

Iterations -- -- 50 -- 50 -- 

 

Table 6.  Algorithm parameters for hybrids
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(b) 

Figure 9.  Identified stiffness along the length of the beam for impulse excitation  

(a) without noise  (b) with 10% noise

Case 

Description PSO GA ACO GA+PSO ACO+PSO ACO+GA 

Case-A, max error  3.02 4.7 15.15 0.63 3.0 11.86 

Case-A, mean error 1.13 1.71 7.68 0.126 0.75 4.47 

Case-A, time in sec 36 90 137 26 77 89 

Case-B, max error .67 1.52 30.3 0.46 7.25 19.71 

Case-B, mean error .39 .7 12.26 0.25 4.65 7.0 

Case-B, time in sec 88 164 230 34 91 104 

Case-C, max error 7.45 12.66 46.06 6.31 10.09 40.13 

Case-C, mean error 2.7 5.8 12.5 1.78 3.45 11.35 

Case-C, time in sec 76 186 291 59 163 192 

 

Table 7a.  Percentage error of identified values of various cases with known damping and noise added.  (Case-A

is the lumped mass;  Case-B is the truss and Case-C is the beam)
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(1.4% and 3.71%) and then pure GA (2.73% and 6.29%).

The ACO+PSO hybrid has marginally less accuracy than

pure GA although speed wise it is better. The worst accu-

racy is shown by ACO. The discrete nature of ACO and its

lack of resolution compared to GA and PSO are obvious

handicaps. 

Next, the same structural cases are studied, but damp-

ing is considered as an additional unknown. Tables 8, 9

and 10 deal with these cases. In each table the  values of

all unknown parameters are presented in detail, in addition

to mean error, maximum error and time taken. The accu-

racy of identification of the unknown damping ratio by the

algorithms is also an important parameter considered here.  

In Table. 8 it is seen that the GA+PSO hybrid is the

fastest (ie. with least time of 23s) and next is PSO (34s)

followed closely by ACO+PSO (78s) and GA (80s) and

the worst is pure ACO(145s). The time trend is the same

as in Table. 7.  Damping parameter has been identified

most accurately by GA+PSO (-1.21% error) and pure PSO

(-1.05%)  followed by ACO+PSO and GA. Pure ACO

gives the worst value here(16%). Regarding the overall

accuracy (including damping as well as stiffness) it is seen

that GA+PSO has identified fairly accurately with a small

mean and maximum error of 1.47% and 4.67% followed

by ACO+PSO (1.7%, 4.89%) , PSO (1.85%, 7.2%) and

GA (2.01% and 5.41%). Thus there are some small devia-

tions in the trend of accuracy when compared to Table 7.

In Table. 9 it is also seen that GA+PSO is the fastest

(60s) followed by PSO (82s) then ACO+PSO (105s) and

GA (107s). Accuracy-wise the best performer is GA+PSO

hybrid (mean 0.44% and maximum error 1.05%) followed

by PSO(2.9%, 5.68%), then GA(3.9%, 6.62%). The accu-

racy of ACO+PSO in this case is quite insufficient com-

pared to GA(11.6%, 23.77%). As expected pure ACO per-

formed worst in time and accuracy factors.

In Table.10 the same general trends are observed with

respect to time .i.e., GA+PSO is the fastest (104s) fol-

lowed by PSO(138s) then ACO+PSO (175s) . The accura-

cy of GA+PSO is the best (mean error 2.3%, maximum

error 6.39%), then PSO(4.8%, 11.07%), followed by

ACO+PSO (7.6%,21.04%) and GA(11.6%, 28.35%). Pure

ACO performed worst in both time and accuracy factors.

Summary of observations: The general trend shown in

Tables 7 to 10 is as follows. From the point of view of

speed (minimum computation time) GA+PSO is the best,

followed by pure PSO, then ACO+PSO and pure GA. In

some cases GA is nearly comparable to ACO+PSO in

speed. Pure ACO is the worst performer. From the point of

Average 

over case A, B and 

C 

PSO GA ACO GA+PSO ACO+PSO ACO+GA 

Max error   3.71 6.29 30.5 2.47 6.78       23.9 

Mean error 1.4 2.73 10.8 0.72 2.95 7.6 

Time in sec      66.7 143   219.3      39.7      110.3     128.3 

Table 7b.  Average vbalues obtained from case A, B and C

Exact (kN/m) PSO GA ACO GA+PSO ACO+PSO ACO+GA 

350 2.81 2.26 -5.65 0.20 0.87 -0.21 

350 1.54 1.10 -1.63 1.52 1.2 1.91 

350 0.32 0.49 4.70 0.23 0.59 5.18 

350 -2.99 -2.28 10.1 -2.81 -2.72 -3.71 

350 0.86 -0.41 -3.90 1.23 -0.55 -0.98 

600 -0.21 0.86 7.58 0.25 -1.62 3.27 

600 -1.46 -5.41 6.42 -0.53 -2.89 -0.86 

600 -0.45 1.48 -9.20 -0.81 -0.5 19.22 

600 7.21 -0.25 15.90 4.69 -0.57 14.71 

600 -1.41 3.47 19.7 -2.78 4.87 -10.11 

Damping 0.05 -1.05 4.05 16 -1.21 -2.46 5.4 

Abs. max. error 7.21 5.41 19.7 4.69 4.89 19.22 

Abs. mean error 1.85 2.01 9.14 1.47 1.7 5.96 

Computational time 

in seconds 34 80 145 23 78 90 

 

Table 8.  Percentage error in identified value of 10-DOF lumped mass system with unknown damping and noise
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view of accuracy, again GA+PSO is the best performer

followed by pure PSO. Then follows GA and ACO+PSO

-  their relative superiority in accuracy varies from case to

case. Even in these circumstances  pure GA would still be

preferred as it is simpler to program than the hybrid. The

ACO+GA hybrid and pure ACO was not found promising

in speed or accuracy. The observations from this compre-

hensive numerical study would be useful in future work,

such as damage detection of structural members using

these algorithms.

6.  Conclusions 

The paper studies the application of behaviorally

inspired algorithms and their hybrids for structural para-

metric identification in the time domain. The stiffness and

Exact (MN) PSO GA ACO GA+PSO ACO+PSO ACO+GA 

300 -1.61 0.15 27.27 -0.4 17.27 18.67 

300 5.68 -5.59 45.11 -1.05 -15.28 -24.25 

300 3.43 4.92 -13.03 0.64 -17.75 -9.73 

300 0.09 3.65 -15.15 -0.44 -10.30 20.25 

300 2.73 -4.64 -1.52 0.4 -8.73 -16.38 

300 -2.7 6.62 -31.21 0.37 3.12 1.14 

300 5.37 -5.31 -11.52 -0.5 -2.27 5.03 

300 -5.07 -6.2 3.7 -0.32 20.35 -17.72 

300 -5.40 2.11 39.0 0.62 23.77 -6.41 

300 1.56 -1.99 -24.1 0.42 -16.9 17.35 

Damping 0.05 0.87 5.61 25.67 -0.12 3.54 7.35 

Abs. max. error 5.68 6.62 45.11 1.05 23.77 24.25 

Abs. mean error 2.9 3.9 19.7 0.44 11.6 12.0 

Computational time 

in seconds 82 107 166 60 105 137 

Table 9.  Percentage error in identified value of 11-member planar truss with unknown damping and noise

Exact (GPa) PSO GA ACO GA+PSO ACO+PSO ACO+GA 

200.00 -3.33 11.14 -20.15 0.54 0.32 10.97 

170.00 -3.58 -2.22 -3.74 -2.96 -3.45 -26.92 

140.00 11.07 -5.21 -28.44 -0.43 0.32 -19.7 

110.00 4.67 -3.05 -26.45 -1.87 -1.43 -33.61 

80.00 6.30 -11.29 25.0 2.52 4.89 1.14 

50.00 6.77 7.94 14.55 1.36 9.24 23.72 

80.00 -6.25 6.71 25.76 -6.39 -9.98 -13.64 

110.00 -5.73 18.04 24.44 -0.81 -13.99 -30.03 

140.00 6.39 -17.03 -32.21 5.09 -5.84 -5.63 

170.00 -1.18 -28.35 -38.56 -1.13 -21.04 -17.65 

200.00 -2.23 27.03 17.28 4.46 19.66 35.70 

Damping 0.05 0.84 0.91 3.30 0.47 1.45 20.00 

Abs. max. error 11.07 28.35 38.56 6.39  21.04 35.70 

Abs. mean error 4.80 11.60 21.67 2.30 7.60 20.0 

Computational time in 

seconds 138 279 343 104 175 225 

Table 10.  Prcentage error in identified value of simply supported beam with unknown damping and noise
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damping parameters are predicted from the time domain

acceleration responses. Impulse and random excitations

cases are studied. Particle Swarm Optimization (continu-

ous), Genetic Algorithm (continuous) and classical Ant

Colony Optimization (discrete) are used here. Three dif-

ferent hybridizations of GA, PSO and ACO have been

investigated using three numerical models i.e., a lumped

mass model, a truss and a non-uniform beam. Comparing

the performance between pure GA and PSO it is found

that the latter consistently outperforms the former in com-

putational time and mean error, especially in the presence

of noise. The computational implementation of PSO is

also simpler than GA. Unlike GA, PSO keeps track of the

global best and particle best solution from iteration to iter-

ation which explains its superiority over GA and fast con-

vergence. Regarding the performance of hybrid algo-

rithms, the GA+PSO has shown its superiority over all the

other algorithms in both speed and accuracy. The next best

performer is pure PSO followed by pure GA.  The per-

formance of pure GA is however comparable to

ACO+PSO hybrid in a few cases. However pure GA

would be preferred as it is simpler to program than the

hybrid. Pure ACO performed worst in all cases as expect-

ed because of its discrete nature.  
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