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ABSTRACT

The indistinguishability of ciphertext under the chosen ciphertext attack (IND-CCA2) is often considered to offer the
strongest security notion for a public key encryption system. Nowadays, because of the availability of powerful malwares,
an adversary is able to obtain “more” information than what he could obtain in the CCA2 security model. In order to
realistically model the threats posed by such malwares, we need to empower the adversary to obtain additional information.
This paper initiates a research to counter malwares such as RAM scrapers and extend the CCA2 model with oracles
providing additional information to capture the effect of RAM scrapers precisely. We call this more stronger security
notion as glass box decryption. After discussing the new kind of attack/threat and the related oracle, we show that almost
all CCA2 secure systems are vulnerable to this kind of attack. We then propose a new system that offers security against
glass box decryption and provide the formal security proof for the new system in the standard model. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The security notions for public key encryption systems
have witnessed tremendous depth in their understanding
over the past three decades. Currently, it is commonly
agreed that an encryption scheme producing ciphertexts
that are indistinguishable even to an adversary who carries
an adaptive chosen ciphertext attack (IND-CCA2) gives
the best protection for the confidentiality of the encrypted
message. The adversary who carries out the CCA2 attack
has black box access to the decryption oracle. However,
in real life, an adversary could obtain additional related
information like some bits of the secret key or the values
of ephemeral keys through other sources/channels. This
additional information might help the adversary to com-
pletely break the security system. The side channel attacks,

� Part of work done while the author was a student at IIT-
Madras.

for example, enables an adversary to break the system
if he is in physical proximity of the device performing
decryption/key generation. Although cryptosystems may
be proved secure in the “traditional” sense, leakage of
such information to the adversary would render them com-
pletely insecure. Thus, it is important to extend the existing
models to capture this additional information leakage to
accurately model a real-world adversary.

This paper addresses one such important extension to
the CCA2 security model and accounts for additional infor-
mation that an adversary would obtain. Our model is
inspired by the following threat.

1.1. RAM scraper

RAM scraper is a malware created to grab data residing in a
system’s volatile memory. RAM scrapers can be deployed
to capture selective data than to effect bulk data grabs,
thus avoiding dramatic increase in data traffic that could
potentially raise illicit traffic flag. This is the key reason
why operations of RAM scrapers never get noticed and the

1650 Copyright © 2016 John Wiley & Sons, Ltd.



S. V. Sivanandam SCN-SI- 059

threats posed by RAM scrapers were added to the list of
Top Data Breach Attacks by Verizon Business [1].

Because all the standards for secure communication of
sensitive data require end-to-end encryption while being
transmitted, received, or stored, the unencrypted infor-
mation or the ephemeral values residing in RAM during
decryption provide an easy target for the adversary. For this
specific reason, RAM scrapers could be used with a devas-
tating effect by adversaries against encryption systems.

1.2. Hybrid computing environment

A traditional computing system typically consists of a pro-
grammable general purpose computing device. But nowa-
days, there are several hardware products (called as trusted
hardware machines or secure co-processors) that are par-
ticularly designed (like IBM crypto cards) to provide
enhanced security for cryptographic applications. These
trusted machines usually come with a small memory and
limited computing power. Therefore, it is highly imprac-
tical to perform the entire computation on these trusted
hardware products.

We consider a “hybrid” computation model where the
computation is divided between a trusted machine and a
normal computing machine. The secret keys are stored in
the trusted machine. Figure 1 shows such a computing
model. Cryptographic algorithms, specifically the decryp-
tion algorithm, can be broken into two parts. The part
involving computations with the secret key can be exe-
cuted in Trusted Platform Module (TPM), while the other
part (that does not use secret keys directly) can be carried
out in a less trusted environment that is outside the TPM.
This approach is often used to increase the throughput
and lower the latency while still protecting the secret keys
inside TPM. This approach is similar to the Partitioned
Computational Model with secure co-processor [2]. Ever
since the TPM has become a practical reality, breaking a
functionality between trusted and untrusted platforms in a
hybrid environment has become an active area of research.
Some of the recent results [3] have implemented a hybrid
computation model in practice.

Figure 1. A hybrid system with trusted platform module
deployed.

1.3. Glass box decryption

The key question that we consider in this work is
How to model RAM scraper like-attacks in the hybrid

computation model?
In order to address the aforementioned question, in the

context of public key encryption, we equip our adversary
with a glass box decryption oracle rather than with the
traditional black box decryption oracle. Specifically, we
assume that, when the adversary makes a glass box decryp-
tion oracle query, he obtains, besides the output of the
oracle, all the computed values available outside the TPM
during the execution of the decryption algorithm. We make
the realistic assumption that the adversary does not obtain
the private key directly through any glass box decryption
oracle query.

In a hybrid environment, we need to specify explic-
itly which part of the system executes a particular step
of a program. Specifically, we label the steps executed in
the TPM by secure world computation (SC) and all the
steps done outside TPM by normal world computation
(NC). Glass-Box-Decsk(c) would return all the values
generated by NC during the execution of the decryption
algorithm on c, besides the values that are sent for NC
by TPM. If the decryption algorithm is aborted, whatever
values generated/available in NC until the abortion will
be returned.

Remark 1. In a public key encryption system, the sender
(or the encrypter) may be physically located far off from
the intended receiver, and the sender’s credentials are com-
pletely hidden. This is precisely the reason that we do not
consider a glass box oracle for the encryption algorithm as
it is unrealistic to consider a real-world scenario where the
attacker has access to the RAM of the sender.

Remark 2. We assume that the entire decryption algo-
rithm is not executed in TPM and some part of the com-
putation would be done outside. Note that if the entire
decryption algorithm is executed completely in TPM, then
the effect of glass box decryption oracle is identical to
black box decryption oracle. Hence, the values returned by
glass box decryption oracle depends on the implementation
and, specifically, on the way the hybrid system partitions
and carries out the execution of the decryption algorithm.

1.4. Related work

Leakage-resilient cryptography [4] is a well-studied cryp-
tographic primitive, which was introduced to model adver-
saries who might be able to obtain some non-black box
information due to close physical presence to a device per-
forming decryption (side-channel attacks). In such models,
the adversary is allowed to obtain a bounded number of
bits of the secret key in an adaptive way. The threat model,
which we consider in this work, differs from that of leak-
age resilience in two important ways. Firstly, side-channel
attacks require close physical proximity to the computing
device in some form of sensors measuring the computation
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time or other parameters like energy dissipated. On the
other hand, RAM scraper can be deployed remotely, and
the adversary would continuously be getting feedback on
the contents of the RAM memory. Secondly, we consider
a situation where all the bits of the secret key are com-
pletely hidden from the adversary and only the temporary
values computed outside the TPM during decryption are
made available. Leakage-resilient models consider a sce-
nario where some bits of the secret key are made available
but no other information regarding the ephemeral val-
ues are given out. Given the aforementioned differences,
leakage-resilient models do not seem to exactly capture
the threat due to malwares such as RAM scraper, and
hence, we propose a new model to capture such scenar-
ios. It would be an interesting future work to consider
situations that combine both leakage resilience as well as
glass box decryption where the adversary obtains some
bits of the secret key as well as some of the intermediat
computation values.

In order to counter the adversary who has access to
the full decryption algorithm, researchers have explored
the idea of obfuscation in the past few years. Obfuscation
of a program involves creating a functionally equivalent
but “unintelligible” program so that observing the execu-
tion of the program gives the adversary no information
about the internal states. The notion of program obfus-
cation was formalized in the seminal work of Barak et
al. in 2001 [5]. They also showed a negative result that
the strongest notion of obfuscation considered by them is
impossible to achieve for arbitrary functionalities. How-
ever, candidate construction of obfuscation systems satis-
fying milder security notions have been proposed in the
seminal work by Garg et al. in [6]. Obfuscations are, in
general, extremely difficult to achieve even for extremely
trivial functions. Several weaker variations and heuristics
are proposed in the literature, but none of them are found
to be practical. An extensive experimental study reported
in [7] clearly exposes the impracticality of obfuscation.
Thus, we completely rule out the possibilities of using
obfuscation to counter the RAM scrapers like adversaries.
As noted earlier, the models for side-channel attacks and
leakage models are not appropriate for studying RAM
scraper like malware because those models are defined for
exposure of some bounded amount of bits of secret keys,
whereas RAM scrapers obtain all bits (complete values) of
the values in RAM and obtains no bits of the secret keys.

1.5. Our contribution

Our contributions can be summarized as follows:

1.5.1. Glass box decryption.

We extend the security notion of IND-CCA2 to cap-
ture RAM scraper-like attacks. In particular, we replace
the black box decryption oracle provided in the CCA2
definition with a glass box decryption oracle. The glass
box decryption oracle query on a ciphertext, denoted by
Glass-Box-Dec(c), returns the following:

� If the decryption algorithm is properly terminated
with an output, then the output and all the values avail-
able/computed outside the TPM during the execution
of the decryption algorithm will be returned.

� If the decryption algorithm is terminated with an
ABORT , then the values available/computed outside
the TPM up to that point will be returned.

� The private key values will not be returned.

1.5.2. Vulnerability with existing adaptive

chosen ciphertext Secure systems.

We show that a “natural” implementation (in the hybrid
computing system) of the popular method of converting a
chosen plaintext attack secure encryption to a CCA secure
encryption proposed by Fujisaki and Okamoto in [8] when
applied to the ElGamal encryption system is insecure when
given access to the glass box decryption oracle. We note
that even if “most” of the computations are performed in
the TPM, Fujisaki–Okamoto transformation applied on the
ElGamal system is insecure in the glass box decryption
model. Further, we show that “natural” implementations of
Cramer–Shoup [9] and Klitz–Malone Lee transformation
are insecure.

1.5.3. A glass box secure system.

We then propose a new encryption scheme, which is
adaptive chosen ciphertext secure even in the presence of
glass box decryption oracle access. We prove the security
of the system in the standard model under the decisional
bilinear Diffie–Hellman (DBDH) assumption. We show
the security of our system even for an implementation
that carries out minimal computation in TPM and bulk
of remaining computations done in insecure normal world
that is outside TPM.

2. PRELIMINARIES

A function �(�) : N ! R+ is said to be negligible if for
every positive polynomial p(�), there exists an N such that
for all n � N, �(n) < 1/p(n). If X is a finite set, we denote
x 2R X the process of sampling an element x uniformly at
random from X. PPT machines refer to Probabilistic Poly-
nomial Time Turing machines. All PPT machines run in
time polynomial in the security parameter denoted by �.

We first define the notion of computational indistin-
guishability of two distribution ensembles.

Definition 1. {Xn}n2N and {Yn}n2N are computation-

ally indistinguishable, denoted by {Xn}n
c
� {Yn}n, if

for all PPT machines (distinguishers) D, there exists a
negligible function �(�) such that for all n 2 N,

ˇ̌
Pr[b D(Xn) : b = 1] – Pr[b D(Yn) : b = 1]

ˇ̌
� �(n)

The quantity
ˇ̌
Pr[b D(Xn) : b = 1] – Pr[b D(Yn) :

b = 1]
ˇ̌

is termed as the advantage the distinguisher D has
in distinguishing Xn from Yn.
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We now recall the definition of pseudorandom generator
from [10].

Definition 2. A pseudorandom generator G is a deter-
ministic polynomial time algorithm satisfying the following
two conditions:

(1) Expansion: There exists a function l : N ! N such
that l(�) > � for all � 2 N and |G(s)| = l(|s|) for all
s 2 {0, 1}*.

(2) Pseudorandomness: {G(U�)}�
c
� {Ul(�)}� where

Un denotes the uniform distribution on {0, 1}n.

The function l is called as the expansion factor.

2.1. Decisional bilinear Diffie–Hellman
problem

Let Gen be an algorithm that takes 1� as input and ran-
domly generates the parameters (p,G1,G2, R, e) where p
is a � bit prime, G1 is a additive group of order p , R is a

generator for G1, G2 is a multiplicative group of order p,
and e is a bi-linear map from G1 �G1 ! G2.

Definition 3. The DBDH assumption states that the fol-
lowing distribution ensembles are computationally indis-
tinguishable:

8̂<
:̂

(p,G1,G2, R, e) Gen(1� );

a, b, c
$
 Z*

p :
(R, aR, bR, cR, e(R, R)abc)

9>=
>;
�

c
�

8̂<
:̂

(p,G1,G2, R, e) Gen(1� );

a, b, c, d
$
 Z*

p :
(R, aR, bR, cR, e(R, R)d)

9>=
>;
�

2.2. Indistinguishable encryptions under
adaptive chosen ciphertext attack
security notion

Definition 4. Let E = (KeyGen,Enc,Dec) be a pub-
lic key encryption system. Let us define the following
experiment.

We say that E is IND-CCA2 if for all probabilistic poly-
nomial time adversaries A = (A1,A2) where A2 does not
query c* to Decsk(.)

.|Pr[IND – CCA2(E ,A, �) = 1] – 1/2| � negl(�)
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2.3. Indistinguishable encryptions under
adaptive chosen ciphertext attack security
with glass box decryption

This model is identical to IND-CCA2 game, except that
Glass-Box-Dec oracle will be used by the adversary
(instead of the regular black box decryption oracle).

The Glass-Box-Dec Oracle I  Glass-Box-
Decsk(c) denotes all the values computed/used in RAM
(outside TPM) until ABORT/termination of the execution
of decryption algorithm on the ciphertext c. If the execu-
tion does not ABORT , then the decrypted message is also
included in I.

Definition 5. Let E = (KeyGen,Enc,Dec) be a public
key encryption system. Let us define the following
experiment.
We say that E has IND-CCA2 in the glass box model
if for all probabilistic polynomial time adversaries A =
(A1,A2) where A2 does not query c* to Glass-Box-
Decsk(.),:

2.|Pr[IND – CCA2GB(E ,A, �) = 1] – 1/2| � negl(�)

3. VULNERABILITY IN AN
IMPLEMENTATION OF AN
ADAPTIVE CHOSEN CIPHERTEXT
ATTACK SECURE SCHEME

The ElGamal encryption scheme [11] over a cyclic group
G of prime order p works as follows. The public key con-
sists of a generator g 2R G and h = gx, where x 2R Zp is
the secret key sk. The public key pk = hg, hi. Encryption
defines the ciphertext as c=hc1, c2i=hg

r, hr ˚ mi, where
r 2R Zp. Decryption reconstructs the message by comput-
ing m = c2˚csk

1 . The following is a specification of CCA2
secure system obtained after transforming the basic cho-
sen plaintext attack secure ElGamal encryption scheme by
Fujisaki–Okamoto transformation [8]:

� EL.Gen: The private key and public key pair of a
user is (sk, pk) = (x, gx).

� EL.Enc: Choose � randomly from {0, 1}lm . Com-
pute r = F(� , m), c1 = gr, c2 = � ˚ H(pkr), c3 =
m˚ G(� ) and the ciphertext is c = hc1, c2, c3i. F, H,
G are cryptographic hash functions.

� EL.Dec: To decrypt, compute � = c2 ˚ H(csk
1 ), m =

c3 ˚ G(� ) and accept m if c1
?
= gF(� ,m).

The aforementioned specification of decryption assumes
that the decryption algorithm is executed in a single exe-
cution module (without a TPM). We now specify an
implementation of the decryption algorithm in a system
that has TPM. We assume that TPM is a very compact
module with resource constraints and that we get the min-
imal computations done in TPM. As mentioned earlier,

all steps computed inside TPM will be labeled by SC
and all other steps will be labeled by NC. The glass box
decryption oracle will return all values computed in steps
labeled NC.

The description of the decryption algorithm follows:
EL.Dec: TPM!RAM represents the data transfer from
TPM to RAM and RAM!TPM represents the data trans-
fer from RAM to TPM. To decrypt the ciphertext:

� SC: Compute temp1 = csk
1

� TPM!RAM: temp1
� NC: Compute H(temp1)
� NC: Compute � = c2 ˚ H(temp1)
� NC: Compute G(� )
� NC: Compute m = c3 ˚ G(� )
� NC: Compute F(� , m)

� NC: Accept m if c1
?
= gF(� ,m)

Remark 3. When the glass box decryption oracle is
queried on a ciphertext c, the value in the computation
labeled NC, namely, I = htemp1, H(temp1), � , G(� ), m,
F(� , m)i is returned as response.

Attack using glass box decryption: The following attack
can be mounted on the above implementation of Fujisaki–
Okamoto transformation.

� The adversary A1 chooses two messages m0 and m1.
� A random bit ı 2 {0, 1} is chosen, and the challenge

ciphertext c* on the message mı is given to A2.
� Now, A2 finds ı as follows:

– Let the challenge ciphertext generated be c* =
hc*

1, c*
2, c*

3i, where c*
1 = gr, c*

2 = �* ˚ H(pkr)

and c*
3 = mı ˚ G(�*), where r = F(�*, mı ).

– A2 constructs c01 = c*
1, c02 = c*

2 and chooses
c03 randomly from the range of the hash func-
tion G(.) and forms a new ciphertext c0 =
hc01, c02, c03i.

– Now, A2 queries Glass-Box-Dec(c0).
– While running the glass box decryption of c0,

I = htemp1, H(temp1), � 0,
G(� 0), m0, F(� 0, m0)i is generated for some m0.

– I is sent out as response to glass box decryp-
tion of c0. (Note that the oracle may accept or
reject m0, which is immaterial for the attack).

– Since c01 = c*
1 and c02 = c*

2 it is clear that � 0 =

�*. Hence, A2 can recover mı by computing
mı = c*

3 ˚ G(� 0)
– Thus, A2 identifies the bit ı always.

Remark 4. It may appear as though the attack is possi-
ble because a lot of computations are done outside TPM.
However, it is easy to see that even if the only step per-
formed outside the TPM is the last step, this would enable
A to break the system. The appendix has similar case stud-
ies on implementation of the Cramer–Shoup cryptosystem
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and another transformation reported in [12] under minimal
computation done outside TPM. It is also easy to real-
ize this attack on an implementation of the transformation
in [13]. Thus, we arrive at an important conclusion that
the entire decryption algorithm must be executed inside
TPM to safeguard against RAM scraper-like attacks. How-
ever, this may be infeasible if TPM has memory and
computational constraints.

In Appendix A and B, we show that “natural” imple-
mentations of the Cramer–Shoup system and Klitz–
Malone Lee transformations are not glass box secure,
respectively.

4. CONFRONTING THE RAM
SCRAPER ATTACK

It can be noted from the previous section that “natu-
ral” implementations of well known CCA2 systems did
not withstand RAM scraper attack. It is clear from the
description of the attacks that in the decryption process,
the private key of the receiver is used to derive a message
from the ciphertext and then the validity of the mes-
sage is checked using some verification step. The attacker
who has access to the glass box decryption oracle gets
the advantage of the computations done using the private
keys of the receiver during the decryption. The motivation
behind our scheme is to thwart the attacker from obtain-
ing any useful information during glass box decryption.
One way to do this is to carry out the ciphertext verifi-
cation before decryption, and hence, the attacker cannot
manipulate the ciphertext in a meaningful way to pass the
ciphertext verification test. Thus, any manipulated cipher-
text gets rejected in the first level of verification itself
without any further computations. Even if the ciphertext is
tweaked in such a way that the ciphertext verification test
passes, the decryption rejects the ciphertext and the values
computed outside the TPM obtained through the glass box
decryption oracle should be designed in such a way that
they are of no use to the adversary. Based on the afore-
mentioned intuition, we propose a new system that offers
security against glass box decryption oracle. We prove
the security of the system under the decisional bilinear
Diffie–Hellman assumption.

4.1. The encryption scheme (EncryptIGB):

In this section, we propose a new public key encryption
scheme EncryptIGB and formally prove the IND-CCA2
security with glass box decryption in the standard model.
The details of the construction follows:

� SetupGB: Let (p,G1,G2, P, e)  Gen(1� ). The
scheme uses a pseudorandom generator H1 : G2 !

{0, 1}lm and two cryptographic hash functions defined
as: H2 : G1 � {0, 1}lm ! Zq and H3 : G1 ! Zq.

H3 is additionally target collision resistant hash. Here
lm > log q is the size of the message.

� KeyGenGB: The private key and public key pair of a
user are generated as follows:

� EncGB: Encryption is done as follows:
� DecGB: We describe the implementation of the

decryption algorithm in conventional system and
hybrid system. To decrypt the ciphertext C = hC1, C2,
C3, C4i, perform the following:

Remark 5. A glass box decryption oracle would expose
all the values computed and used in the NC, namely,
I = hOh, U, V , h, e(C1, Q), e(C1, Q)s, H1(e(C1, Q)s), mi to
the adversary.

Remark 6. In the hybrid system, TPM performs only
two group exponentiation operations: one in G1 and
another in G2. The RAM performs two group exponenti-
ation operations in G1, two group additions in G1, three
hash function evaluations, three bilinear map computa-
tions, and one XOR.

4.2. Correctness

To show that the decryption works properly, we have to
show that

(1) U + V = r(OhP + tX).
(2) If C = hC1, C2, C3, C4i is properly constructed, then

e(C3, P)
?
= e(hY + Z, C1).

(3) e(C1, Q)s = ˛r, where C1 = rP.

Assume that for some r 2 Zq,

C1 = rP (1)

With respect to the same r,

C3 = r(hY + Z) (2)

Hence, it should be true that

e(C3, P)
?
= e(hY + Z, C1) (3)

This proves the second assertion. Now,

U+V = OhC1+C4xC1 = OhrP+txrP = r(OhP+txP) = r(OhP+tX)

Thus,

U + V = r(OhP + tX) (4)

This shows that h = H3(U + V) correctly recovers the
h computed in the encryption algorithm. This proves the
first claim. For the third claim, we note that e(C1, Q)s =
e(rP, Q)s = [e(P, Q)s]r = ˛r, Therefore,

e(C1, Q)s = ˛r (5)

Security Comm. Networks 2016; 9:1650–1662 © 2016 John Wiley & Sons, Ltd. 1655
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This completes the proof that the decryption correctly
recovers the message.

4.3. Security

Theorem 1. The encryption scheme EncryptIGB is
IND-CCA2 secure with glass box decryption, if the DBDH
assumption holds.

Proof. Let h(R, aR, bR, cR) 2 G4
1, � 2 G2i be an instance

of the DBDH problem. Let A = (A1,A2) be an adver-
sary against EncryptIGB scheme in the IND-CCA2 glass
box decryption model with non-negligible advantage � . We
will show how to construct algorithm C that uses A to solve
the DBDH problem in G1 and G2 with non-negligible
advantage.
Setup: C generates the public key as follows:

� Set
P = R (6)

� Set
Q = bR (7)

� Set
˛ = e(aR, bR) (8)

Therefore, ˛ = e(aR, bR) = e(R, bR)a = e(P, Q)a

Thus, the second component of the private key denoted as
s is in fact a (implicitly). Now, choose x 2R Zq and set

X = xP (9)

Thus, the private keys are hx, s = ai.
C chooses Qh, y, Qz 2R Zq and computes

ˇ = Qh(cP) (10)

h* = H3(ˇ) (11)

Y =
1

h*
(Q + yP) (12)

Z = –Q + QzP (13)

The public keys are hP, Q, X, Y , Z,˛i and the private keys
are hx, s = ai.

C now runs A1 with the generated public keys. A
makes several queries to the glass box decryption oracle. C
responds to queries made by A as follows.

OGlass-Box-Dec Oracle: When a request for decryp-
tion of ciphertext C = hC1, C2, C3, C4i is made, C decrypts
it in the following way:

� Computes

Oh = H2(C1, C2) (14)

U = OhC1 (15)

Because C knows the private key x, C can also
compute
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V = C4xC1 (16)

Because the values of U and V are correct, C com-
putes correctly

h = H3(U + V) (17)

If (h = h*), then C aborts.� Because the Y and Z
values are public, C computes correctly the value

hY + Z (18)

�We note that the probability of C aborting is negligible assum-
ing the target collision resistance of H3.

So far, C could do all computations directly as all the
input values are correctly available. So, there is no
difficulty in computing and returning to A the values

hOh, U, V , h, hY + Zi. However, if the check e(C3, P)
?
=

e(hY +Z, C1) passes, C must return the value e(C1, Q)s

as well to A. However, as noted before, C does not
know the value of s. Thus, C has to simulate this value
in terms of other quantities computable by C. Observe
that because P is a generator,

C1 = rP, for some r 2 Zq (19)
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Because e(C3, P) = e(hY + Z, C1), it follows that

C3 = r(hY + Z) (20)

for the same r defined in Equation (19). Now,

e(C1, Q)s = e(rP, Q)s

= e(P, Q)rs

= e(sP, Q)r

= e(aP, rQ), Since (s = a)

C knows the value of aP = aR and value of Q as they
are inputs for the hard problem. However, C does not
know the value of r. Hence, C will compute the value
of rQ indirectly in terms of other values known to C.
From equations (12), (13), and (20),

C3 = r(hY + Z) = r

�
h

h*
(Q + yP) – Q + QzP

�

=

�
h

h*
– 1

�
rQ +

�
h

h*
y + Qz

�
rP

=

�
h

h*
– 1

�
rQ +

�
h

h*
y + Qz

�
rP

Rearranging, we obtain

rQ =

�
h

h*
– 1

�–1 �
C3 –

�
h

h*
y + Qz

�
C1

�
(21)

Observe that all values in the RHS of Equation (21)
is available to C. Thus, e(C1, Q)s = e(aP, rQ) can
be computed even without knowing s. Hence, the
glass box decryption queries can be perfectly answered
by C and return I = hOh, U, V , h, e(C1, Q), e(C1, Q)s,
H1(e(C1, Q)), mi to A. That is, C perfectly simulates the
glass box decryption oracle to A.

Challenge: A1 then outputs two messages m0, m1 of
equal length. C computes the ciphertext C* by performing
the following steps:

� Set

C*
1 = cR = cP (22)

cR is the input to the hard problem.
� Compute

C*
2 = mı ˚ H1(� ) (23)

Here, ı 2 {0, 1} is a random bit and � is an input to
the hard problem

� Compute

C*
3 = yC*

1 + QzC*
1 (24)

� Compute

C*
4 = (Oh – Qh)x–1 (25)

Where, Oh = H2(C*
1, C*

2) and Qh was chosen by C at
setup time. Note that x is one of the private keys
known to C.

� The challenge ciphertext C* = hC*
1, C*

2, C*
3, C*

4i is
given as input to A2.

We first show that the challenge ciphertexts is a
valid ciphertext. Lemma 1 The challenge ciphertext
C* = hC*

1, C*
2, C*

3, C*
4i is a valid and properly formed

ciphertext.

Proof. Because C*
1 = cP, we should show that

C*
3 = c(hY + Z) (26)

Where, h = H3(c(OhP + tX)) and C*
4 = t = (Oh – Qh)x–1. Now,

c(OhP + tX) = c
�
OhP + C*

4X
�

= c(OhP + (Oh – Qh)x–1xP) (from Equation (25)

= c(OhP + OhP – QhP)

= Qh(cP) = ˇ (from Equation (10))

Therefore,

h = H3(c(OhP + tX)) = H3(ˇ) = h* (27)

From Equations (24) and (27), we conclude that
C* = hC*

1, C*
2, C*

3, C*
4i as defined previously will be a

valid/consistent ciphertext if we show C*
3 = c(h*Y + Z).

C*
3 was computed as yC*

1 + QzC*
1 in Equation (24). Thus, we

have to show that

c(h*Y + Z) = yC*
1 + QzC*

1 (28)

In fact,

c(h*Y + Z) = c[Q + yP – Q + QzP] (from Equations (12)

and (13))

= y(cP) + Qz(cP)

= yC*
1 + QzC*

1

This completes the proof that C* = hC*
1, C*

2, C*
3, C*

4i is a
valid/consistent ciphertext.

C answers A2’s glass box decryption oracle queries in an
identical manner as described earlier.
Guess: Recall that the instance of the hard problem
hR, aR, bR, cR, �i is used by C as P = R, Q = bR, and
˛ = Oe(aR, bR) = e(P, Q)s while setting the system. When
constructing the challenge ciphertext, C*

1 = cR = rP and

C*
2 = mı ˚ H1(� ). If the adversary A guesses the bit ı
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correctly, then the challenger outputs 1. Else, it outputs
0. Now, we calculate the advantage C has in solving the
DBDH problem. Recall that � is the advantage the adver-
sary has against the system. By definition of advantage, the
probability that the adversary correctly guesses the bit that
is encrypted is given by 1/2 + � /2.

If � is a DBDH instance, then the challenge cipher-
text is distributed identically as the original ciphertext, and
hence, the probability that the challenger outputs 1 is equal
to 1/2 + � /2. If � is a random element from G2, then we
show that the advantage the adversary has in distinguish-
ing between ı = 0 and ı = 1 is negligible assuming the
pseudorandomness property of H1.

Claim 1. If Pr[ı = ı0|� = e(R, R)d] = 1/2 + � where d 2R
Zp, then � is negligible assuming H1 to a pseudorandom
generator.

Proof. We now construct an adversary B against the
pseudorandom generator with advantage �. B receives
from the pseudorandom generator challenger a string y,
which is either H1(� ) for a random � or a uniformly cho-
sen string of length lm. B will play the security game
exactly as the challenger described previously except for
the following difference. In the challenge phase, it will set
C*

2 = mı ˚ y. B will output 1 if and only if A outputs
ı0 = ı. If y = H1(� ), then the probability that B outputs 1
is equal to 1/2+�. Otherwise, ı is information theoretically
hidden because y is random. Hence, in this case, probabil-
ity B outputs 1 is equal to 1/2. Therefore, the advantage
B has against the pseudorandom generator is given by �,
which is negligible from the psuedo-randomness property
of H1.

Thus, the advantage of C in solving the DBDH problem
is given by

|Pr[C outp. 1|� = e(R, R)abc] – Pr[C outp. 1|� = e(R, R)d]|

= (1/2 + � /2) – (1/2 + �)

= � /2 – �

Because we have assumed � to be non-negligible and we
have just shown that � is negligible, the advantage of C in
solving the DBDH problem is non-negligible, which is a
contradiction.

5. CONCLUSION

We have initiated the study of security under glass box
decryption. We have shown that some of the most pop-
ular IND-CCA2 schemes are vulnerable to attacks in the
glass box model even when minimal computation is done
outside the TPM. We designed a new system having the
nice property that minimal computations are done on the
TPM and at the same time it is also secure under the glass
box model.

REFERENCES
1. Baker W, et al. Data breach investigations report,

2010. (Available from: http://www.verizonbusiness.
com/resources/reports/rp_2010-data-breach-report_
en_xg.pdf) [accessed Jan 2011].

2. White SR, Comerford L. Abyss: an architecture for
software protection. IEEE Transactions on Software
Engineering 1990: 619–629.

3. Arvind A, Blanas S, Eguro K, Kaushik R, Kossmann
D, Ramamurthy R, Venkatesan R. Orthogonal security
with cipherbase. In CIDR 2013, Sixth Biennial Confer-
ence on Innovative Data Systems. Research, Asilomar:
CA, USA, 2013.

4. Alwen J, Dodis Y, Wichs D. Leakage-resilient public-

key cryptography in the bounded-retrieval model. In

Advances in Cryptology - CRYPTO 2009, vol. 5677,
Lecture Notes in Computer Science. Springer: Santa
Barbara, 2009.

5. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai
A, Vadhan S, Ke Y. On the (im) possibility of obfus-
cating programs. In Advances in CryptologyCRYPTO
2001. Springer: Santa Barbara, 2001; 1–18.

6. Garg S, Gentry C, Halevi S, Raykova M, Sahai A,
Waters B. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In Founda-
tions of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on. IEEE: Berkeley, 2013; 40–49.

7. Apon D, Huang Y, Katz J, Malozemoff AJ.
Implementing cryptographic program obfuscation.
IACR Cryptology ePrint Archive, 2014; 779.

8. Fujisaki E, Okamoto T. Secure integration of
asymmetric and symmetric encryption schemes. In
Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, vol. 1666, Lec-
ture Notes in Computer Science. Springer: Santa Bar-
bara, 1999; 537–554.

9. Cramer R, Shoup V. A practical public key cryptosys-

tem probably secure against adaptive chosen cipher-
text attack. In Advances in Cryptology - CRYPTO
’98, vol. 1462, Lecture Notes in Computer Science.
Springer: Santa Barbara, 1998; 13–25.

10. Goldreich O. The Foundations of Cryptography - Vol-
ume 1, Basic Techniques. Cambridge University Press,
2001.

11. El Gamal T. On computing logarithms over finite
fields. In Advances in Cryptology - CRYPTO 1985,
vol. 218, Lecture Notes in Computer Science.
Springer: Santa Barbara, 1985; 396–402.

12. Kiltz E, Malone-Lee J. A general construction of
IND-CCA2 secure public key encryption. In Cryp-
tography and Coding, 9th IMA International Confer-
ence, vol. 2898, Lecture Notes in Computer Science.
Springer: Cirencester, UK, 2003; 152–166.

Security Comm. Networks 2016; 9:1650–1662 © 2016 John Wiley & Sons, Ltd. 1659
DOI: 10.1002/sec

http://www.verizon business.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf
http://www.verizon business.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf
http://www.verizon business.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf


SCN-SI- 059 S. V. Sivanandam

13. Fujisaki E, Okamoto T. How to enhance the security
of public-key encryption at minimum cost. In Pub-
lic Key Cryptography, Second International Workshop
on Practice and Theory in Public Key Cryptogra-
phy, vol. 1560, Lecture Notes in Computer Science.
Springer, 1999.

APPENDIX A: CRAMER–SHOUP
CRYPTOSYSTEM

We now show how the well known Cramer-Shoup sys-
tem which is CCA2 secure can be broken if the black
box decryption oracle is replaced with a glass box decryp-
tion oracle. We review the Cramer-Shoup encryption [9]
scheme.

� CS.Gen: The private key and public key of a user
are sk = (x1, x2, y1, y2, z1, z2) and public key pk =
(g1, g2, c, d, h), where c = gx1

1 gx2
2 , d = gy1

1 gy2
2 and

h = gz1
1 gz2

2 .
� CS.Enc: Compute u1 = gr

1, u2 = gr
2, e = hrm, ˛ =

H(u1, u2, e) and v = crdr˛ . C = hu1, u2, e, vi.
� CS.Dec: We explain the implementation of the

decryption algorithm using a s module and using TPM
separately. We stress that there may be an imple-
mentation of the Cramer-Shoup encryption scheme,
where all the steps of decryption algorithm are com-
puted in the TPM, which gives no greater advan-
tage to the glass box decryption than the black box
decryption oracle. In the TPM based implementa-
tion under our consideration, we do not perform
any computation which involves the secret key out-
side the TPM. Still we are able to mount glass
box attack on the implementation. On receiving a
ciphertext C = hu1, u2, e, vi decryption is done
as follows:

Consider the glass box execution of Decryption oracle on
a ciphertext (u1, u2, e, v),

(a) Since all these are input parameters, these are visi-
ble/available to the adversary.

(b) In the evaluation of the expression ˛ = H(u1, u2, e)
all values will be available to the adversary.

(c) However, the expression V = ux1
1 ux2

2 (uy1
1 uy2

2 )˛ is
evaluated using the TPM because this involves secret
keys x1, x2, y1, y2. Thus, u1, u2 and ˛ are sent to
the TPM and the value V = ux1

1 ux2
2 (uy1

1 uy2
2 )˛ is sent

to the normal world and hence V is available to
the adversary.

(d) The check (v
?
= V) is done outside the TPM. If this

fails the algorithm is aborted and adversary gets no
further values. If (v = V) is true, then the TPM is used
to obtain the value of Z = uz1

1 uz2
2 and Z is sent outside

the TPM. Now, the adversary obtains the values Z
and m = e/Z as well.

(e) Therefore the set I = h˛, V , Z, mi.

We will now show how an adversary having access
to glass box decryption can distinguish challenge mes-
sages. During the challenge phase A selects two messages
{m0, m1} and sends them to C. Now, C constructs the
challenge ciphertext C* as C* = hu*

1, u*
2, e*, v*i = hu1,

u2, (u1)z1 (u2)z2 mı , (u1)x1 (u2)x2 ((u1)y1 (u2)y2 )˛i, where
ı is a random bit 2 {0, 1} and ˛ = H(u*

1, u*
2, e*).

The challenger sends C* to A and asks him to find
the mı hidden in C*. At this point the second phase
of the training begins and C must respond to all
legal queries raised by A. This is what A asks to
find mı .

� A chooses s1 2R Z*
q and constructs a ciphertext C0 =

hu01, u02, e0, v0i = h(u*
1)s1 , (u*

2)s1 , e*, v*), where u*
1 and

u*
2 are the first two components of C*. In other words

C0 is nothing but C* with the first two components,
namely u*

1 and u*
2 exponentiated with s1.

� Now, A queries Glass-Box-Dec(C0). Note that it
is legal to ask the decryption of C0.

� As C knows all the private keys, it would faithfully
execute the CS.Dec on C0.

� C will reject the ciphertext C0 because v0 ¤
(u01)x1 (u02)x2 ((u01)y1 (u02)y2 )˛1 .

Conventional System:

� Compute ˛ = H(u1, u2, e).

� Compute V = ux1
1 ux2

2 (uy1
1 uy2

2 )˛ .

� If (v = V) then,

– Compute Z = uz1
1 uz2

2 .

– Compute m = e/Z and return m.

Else ABORT

Hybrid System:

� NC: Compute ˛ = H(u1, u2, e).
� RAM!TPM: h˛, u1, u2i
� SC: Compute V = ux1

1 ux2
2 (uy1

1 uy2
2 )˛ .

� TPM!RAM: V
� NC: If (v = V) then,

– SC: Compute Z = uz1
1 uz2

2 .
– TPM!RAM: Z
– NC: Compute m = e/Z and return m.

Else ABORT
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� Now, I=h˛1, V1, Z, mi = hH(u01, u02, e0), (u*
1)s1x1

(u*
2)s1x2 ((u*

1)s1y1 (u*
2)s1y2 )˛1 , –, –i.

� Similarly, A constructs another ciphertext C00 by
choosing s2 2R Z*

q, computing u001 = (u*
1)s2 , u002 =

(u*
2)s2 , e00 = e* and v00 = v*. The newly formed

ciphertext is C00 = hu001 , u002 , e00, v00i A queries Glass
-Box-Dec(C00).

� C will reject C00 because it is invalid.
� Here, I=h˛2, V2, Z, mi = hH(u001 , u002 , e00), (u*

1)s2x1

(u*
2)s2x2 ((u*

1)s2y1 (u*
2)s2y2 )˛2 , –, –i.

We will now show that with the values V1 and V2, A
performs the following and obtains mı :

� Computes X1 = V
s–1
1

1 = (u*
1)x1 (u*

2)x2 ((u*
1)y1 (u*

2)y2 )˛1

and X2 = V
s–1
2

2 = (u*
1)x1 (u*

2)x2 ((u*
1)y1 (u*

2)y2 )˛2 .

� Computes Y = X1
X2

= ((u*
1)y1 (u*

2)y2 )˛1–˛2 .

� Computes Z2 = Y(˛1–˛2)–1
= (u*

1)y1 (u*
2)y2 .

� Computes Z1 = X1

Z
˛1
2

= (u*
1)x1 (u*

2)x2 .

� Generates a fresh ciphertext by computing Ou1 = u*
1,

Ou2 = u*
2, e = e* Om and Ov = Z1Z Ǫ2 , where Om is an

arbitrary message chosen by A and Ǫ = H(Ou1, Ou2, e).
� Now, OC = hOu1, Ou2, e, Ovi is a valid encryption on mes-

sage mı Om (Due to Lemma 2) and different from C*.
Thus A can legally query Glass-Box-Dec( OC).

� C returns (u*
1)x1 (u*

2)x2 ((u*
1)y1 (u*

2)y2 ) Ǫ and mı Om as the
output (Due to Lemma 2).

� Since A knows the value Om, A can easily obtain the
message mı from (mı Om).

� Thus, A identifies the bit ı almost always.

Lemma 2. The ciphertext OC = hOu1, Ou2, e, Ovi is a valid
ciphertext and the glass box decryption returns I=h Ǫ , V ,
Z, mi = h Ǫ , (u*

1)x1 (u*
2)x2 ((u*

1)y1 (u*
2)y2 ) Ǫ , Ouz1

1 Ou
z2
2 , mı Omi as

the output.

Proof. The ciphertext OC = hOu1, Ou2, e, Ovi = hu*
1, u*

2, e* Om,

Z1Z Ǫ2 i. C checks whether OC is valid by performing the

check Ov
?
= (Ou1)x1 (Ou2)x2 ((Ou1)y1 (Ou2)y2 ) Ǫ , where Ǫ =

H(Ou1, Ou2, e). Below we show that OC passes this verification:

RHS = (Ou1)x1 (Ou2)x2
��
Ou1
	y1 (Ou2)y2

	 Ǫ
= (u*

1)x1 (u*
2)x2

��
u*

1

�y1
(u*

2)y2
� Ǫ

= Z1(Z2) Ǫ

= Ov = LHS

Since the above check returns true, C performs the decryp-
tion by computing e/(Ou1)z1 (Ou2)z2 ). We show that this
computation outputs Ommı :

e

(Ou1)z1 (Ou2)z2
=

e* Om

(Ou1)z1 (Ou2)z2
=

(u1)z1 (u2)z2 mı Om

(Ou1)z1 (Ou2)z2

=
(u*

1)z1 (u*
2)z2 mı Om

(u*
1)z1 (u*

2)z2
= mı Om

Since u*
1 = Ou1 = u1 and u*

2 = Ou2 = u2

Remark 7. Notice that only one step is computed outside
TPM but the value exposed due to that is sufficient for the
adversary to break the system.

APPENDIX B: KILTZ-MALONE LEE
TRANSFORMATION

We review the Kiltz-Malone Lee transform given in [12]
and show the glass box attack of the same here. Given
a weak symmetric key encryption scheme Encsym (Weak
in the sense that, the adversary cannot distinguish the
encryption of two messages m1 and m2 without access to
encryption or decryption oracle), where K is the key for
the symmetric key encryption scheme and M is the mes-
sage to be encrypted), it is possible to construct a CCA2
secure encryption scheme by choosing a random r from the
appropriate space and computing h = H(mkr). Now, the
encryption of a message m is:

EncCCA2pk (m) = c = hc1, c2i = h(f1(h),Encsym
G(f2(h))(mkr))i

Where,

� The functions f1(.) and f2(.) are functions such that
given h, finding f1(h) and f2(h) are easy but given f1(h)
alone, finding f2(h) is intractable. Named as the Y –
Computational problem in [12].

� H(.) and G(.) are two hash functions with appropri-
ate domain and co-domains, considered as random
oracles.

� Enc
sym
G(f2(h))(mkr) is the symmetric key encryption of

mkr with the hash of f2(h) as the key.

Decryption is done as follows:

� Compute k = G(t(c1)), m0||r0 = Dec
sym
k (c2) and h0 =

H(m0kr0).
� Accept m0 only if c1 = f1(h0))

Where, t is a function which satisfies t(f1(x)) = f2(x).

B.1 Glass Box Attack on Kiltz-Malone Lee

Transformation:

Let 	CCA2 be a CCA2 secure encryption scheme instan-
tiated by using the Kiltz-Malone Lee Transformation. Let
C be the challenger simulating the instance 	CCA2 using
glass box decryption oracle and A be the adversary who

Security Comm. Networks 2016; 9:1650–1662 © 2016 John Wiley & Sons, Ltd. 1661
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is assumed to break the confidentiality of 	CCA2. A can
distinguish the ciphertext as follows:

� After the training phase, A sends two messages
(m0, m1) to C.

� C sends back the challenge ciphertext c* = hc*
1, c*

2i =
h(f1(h),Encsym

G(f2(h))(mıkr))i, where ı 2R {0, 1} to A.

� A cooks up a new ciphertext c0 = hc01, c02i, where

c01 = c*
1 and c02 2R Range(Encsym), i.e. a random ele-

ment in the range of the output of the symmetric key
encryption scheme.

� A queries Glass-Box-Dec(c0).

� C returns I = hG(t(c01)), m0||r0, h0i = hG(t(c*
1)),

Dec
sym
k (c2), H(m0kr0)i as the values computed out-

side the TPM, but rejects the ciphertext because the

check c1
?
= f1(h0)) will fail (since the ciphertext

component c02 formed by A is not meaningful).

� A makes use of k0 which is same as the k* used
for generating the challenge ciphertext and computes
mı = DecSymG(k0)(c

*
2).

Thus, an adversary who has access to the glass box
decryption oracle can break the indistinguishability of
Kiltz-Malone Lee Transformation.
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