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Abstract

Monte-Carlo simulations of the failure of unidirectional fibre composites in a plane transverse

to the fibre direction are performed on much larger patches than in previous works, assuming a

realistic load redistribution scheme from broken to intact fibres. Computational effort involved

in these simulations is substantially reduced using a novel algorithm based on the quadtree data

structure. The empirical strength distribution obtained from the simulations has a weak-link

character, regardless of the variability in fibre strengths. The empirical strength distribution is

well-captured by a probabilistic model based on the growth of a tight cluster of fibre breaks. It

is also well-captured by regarding composite patch failure as the failure of the weakest equal load

sharing bundle of a certain size, following W. A. Curtin, Phys. Rev. Lett. 80, 1445 (1998).

The approximate coincidence of these two predictions identifies the dominant failure mechanism

underlying Curtin’s empirical scaling relationship.
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I. INTRODUCTION

I.1. Fibre strength distribution

The strength of a chain of links connected in series equals the strength of the weakest link.

Let the chain be comprised of nlink links, whose random strengths Σi, i ∈ {1, 2, . . . , nlink}

are independent and identically distributed following the power law, Pr{Σi ≤ σ} = (σ/σ0)ρ,

for σ ≤ σ0, a reference link strength. The strength of the chain is then distributed as

F (σ) = Pr

{
min

i∈{1,2,...,n}
Σi ≤ σ

}
= 1− exp

(
−nlink

(
σ

σ0

)ρ)
. (1)

Weibull [1] showed that the distribution function F (σ) fits a number of empirically distri-

butions very well, sometimes even when there was no obvious physical basis resembling the

chain of links argument. The Weibull distribution, Eq. (1), is commonly used to describe

fibre strength [2].

The case of links arranged in parallel and collectively sustaining the applied load proves

to be considerably more complex [3]. In this case, the load sharing, i.e., the pattern of

load redistribution from broken to intact fibres, becomes important. Two extremes of load

sharing can be immediately identified: equal load sharing (ELS), and local load sharing

(LLS).

I.2. Equal load sharing

In equal load sharing (ELS), the load dropped by a broken fibre is equally distributed

amongst the intact fibres in that cross-section. Thus, in a parallel system comprised of N

fibres, if Nb fibres were broken, the stress concentration in the remaining N−Nb intact fibres

would be

Kels = N/(N −Nb). (2)

Equal load sharing applies to a loose bundle of threads, not embedded in a matrix. The

strength distribution of such bundles was studied by Daniels [4], who showed that the bundle

strength of an equal load sharing system is Gaussian distributed in the limit N → ∞. Let

σ be the stress per fibre in a bundle, i.e., the total applied load divided by NAf , where Af

denotes the fibre cross-sectional area. Let GELS(σ) denote the probability that the bundle
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strength per fibre is no greater than σ. Then,

GELS(σ) = Φ(σ;µ, sN) =
1

sN
√

2π

∫ σ

−∞
exp

{
−(t− µ)2

2s2
N

}
dt, where, (3a)

µ = στ [1− F (στ )], and s2
N = σ2

τF (στ )[1− F (στ )]/N. (3b)

Here, στ = maxσ{σ[1−F (σ)]}, and Φ(σ;µ, sN) denotes the Gaussian cumulative distribution

function with mean µ and standard deviation sN [4].

Eq. (3) turns out to be an excellent approximation for bundle strength for about N ≥ 50.

For equal load sharing bundles with smaller N , the following recursive expressions, due to

McCartney and Smith [5], yield a better approximation for bundle strength, GELS(σ;N).

For convenience, the ELS bundle strength obtained recursively is denoted E(N)(σ), and is

expressed as:

E(N)(σ) = {F (σ′N−1)}N −
N−1∑
m=0

(
N

m

)
Π(m){F (σ′N−1)− F (σ′m)}N−m. (4)

In Eq. (4), F (·) is given by Eq. (1),

Π(m) = {F (σ′m−1)}m −
m−1∑
n=0

(
m

n

)
Π(n){F (σ′m−1)− F (σ′n)}m−n,

(
m
n

)
= m!/(n!(m− n)!), σ′k = Nσ/(N − k), and Π(0) = 1.

I.3. Local load sharing

In local load sharing (LLS), the load dropped by each broken fibre is distributed amongst

its nearest intact neighbours [6, 7]. This severely localises the overload due to broken fibres.

Let Kl denote the greatest LLS stress concentration ahead of a cluster of l breaks, for

l ∈ {1, 2, . . .}. If the variance in fibre strength is small, as characterised by a large ρ in

Eq. (1), the most overloaded fibre sitting in the perimeter of a cluster of fibre breaks is

highly likely to fail, as F (Klσ) � F (σ). The insight that for large ρ, the probability of

failure of the most overloaded fibre is much greater than that of any other fibre was used by

Smith [6], Smith et al. [7], and Harlow and Phoenix [8, 9] to construct a stochastic model

of failure for 1- and 2-dimensional local load sharing composites. In this model, composite

failure is identified with the occurrence of the weakest of N independent and identically

distributed failure events, each obeying the distribution WLLS(σ), where N is the number of
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fibres. Thus, for large ρ, the using a weakest-link argument similar to that used to derive

Eq. (1), the composite strength distribution is given by

GLLS(σ) = 1− (1−WLLS(σ))N

≈ 1− exp (−NWLLS(σ)) .
(5)

The approximation in Eq. (5) is valid for small WLLS(σ) � 1. It is noticed that Eq. (5)

for a parallel system has the same form as Eq. (1), which applies to a serial system. For this

reason, in the limit ρ → ∞, GLLS(σ) is said to have a weakest-link character described by

the strength distribution of the weakest link, WLLS(σ).

The difference in the characteristics of the strength distributions, Eqs. (3) and (5), respec-

tively, corresponding to ELS and LLS with large ρ arises from differences in their respective

failure modes. The failure of an ELS composite patch occurs by global fibre breakage,

whereas the failure of an LLS patch comprised of fibres with large ρ occurs by the growth

of a cluster of breaks. In the nomenclature of Curtin [10], ELS patches are termed ‘tough’,

while large ρ LLS patches are said to be ‘brittle’.

The probability that the most overloaded fibre adjacent to a single break, or adjacent to a

small cluster of l breaks fails, becomes increasingly independent of its stress concentration Kl

as ρ → 0, because limρ→0K
ρ
l = 1, and limρ→0 F (Klσ) = F (σ). Therefore, for small ρ (say,

ρ < 5), a small cluster of breaks is highly unlikely to extend by failing the most overloaded

intact fibre abutting it. However, for any fixed ρ > 0, there must exist a sufficiently large

cluster of L breaks such that F (KLσ) � F (σ). Such a cluster will extend by breaking the

most overloaded intact fibre abutting it with high probability. This qualitative argument

suggests that LLS composites must fail in a brittle manner also for small ρ, provided such

a cluster forms in the first place. Furthermore, it suggests that the minimum size L of a

cluster of breaks capable of propagating as a crack must increase with decreasing ρ.

The conclusion that LLS composite failure has a brittle character has been reached rigor-

ously in several special cases. Through a transition matrix based analysis, in one-dimensional

0-1 composites and fuse-network models, Harlow [11] and Duxbury and Leath [12] demon-

strated the brittle character of composite and network failure, respectively. Mahesh and

Phoenix [13] showed the absence of the brittle ductile transition in a one-dimensional com-

posite model with power-law distributed fibre strengths. Also, Kahng et al. [14] demon-

strated brittle failure for the case of a two-dimensional resistor-fuse network, with fuse
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burn-out voltages following a uniform distribution, in the limit of a large network.

The foregoing arguments prompt the following questions: (i) How does the minimum

cluster size capable of catastrophic propagation, L, scale with ρ, and σ and (ii) What is the

statistically most important mechanism underlying the formation of the L-cluster of breaks

for fixed, but not necessarily large ρ.

In the case of two-dimensional composite patches with Weibull distributed fibre strengths,

Habeeb and Mahesh [15] used Monte-Carlo simulations on large local load sharing composite

patches to answer the foregoing questions. They showed that the strength distribution of

a local load sharing bundle has a weakest-link character for all ρ. They also identified the

dominant failure event for all ρ, and estimated the probability of its occurrence. The most

significant deviation between their stochastic model, and that of Smith et al. [7] lies in the

definition of the elementary failure event. Whereas in Smith et al. [7], the elementary events

in the growth of clusters are the breakages of fibres abutting the cluster, in Habeeb and

Mahesh [15], the elementary failure events are the failure of appropriately sized ELS sub-

bundles. In the limit of large ρ, the stochastic model of Habeeb and Mahesh [15] collapses

into that of Smith et al. [7], as the number of fibres in the ELS sub-bundles approaches one.

I.4. Hedgepeth load sharing

Neither the equal nor the local load sharing models is realistic for a typical polymer

matrix composite [2]. While the load redistribution due a fibre break in these composites

is localised, the localisation is not as severe as in the local load sharing model. In reality,

more distant fibres than just the nearest neighbours experience an overload due to a broken

fibre. A realistic model of load sharing in a cross-sectional plane of unidirectional polymer

matrix composites is due to Hedgepeth [16] and Hedgepeth and Van Dyke [17].

One way to place the Hedgepeth load sharing model (HLS) in between the ELS and LLS

models is to consider the asymptotic rate of decay of the stress overload with distance, r from

a single break, for large r. Asymptotic stress decay in ELS and LLS composites correspond

to r0 and r−∞, respectively. The asymptotic overload decay rate for the HLS model is r−3 in

2-dimensions [18]. The qualitative argument made to show that LLS composites are brittle

also applies to HLS, so that HLS composite failure must also be brittle. Again, the size

scaling of the minimum critical size with ρ and σ and the dominant mechanism of formation

5



of a cluster of this size remain open questions, particularly in the regime of small ρ. As in

LLS, in this regime, small clusters of breaks cannot be expected to extend by failing their

most overloaded intact neighbours.

Monte Carlo simulations of HLS patches, reported by Mahesh et al. [19], comprised of up

to N = 900 fibres show weakest-link scaling of the empirical strength distribution for ρ ≥ 3:

GHLS(σ) = 1− (1−WHLS(σ))N ≈ 1− exp (−NWHLS(σ)) . (6)

For ρ < 3, however, the weakest-link scaling appears to break down. Instead, the empirical

strength distributions appear to approach the Gaussian distribution given by Eq. (3) with

decreasing ρ. This result suggests a qualitative transition in the character of the composite

strength distribution ‘brittle’ character at large ρ to ‘tough’ character for small ρ. The

observed transition though is an artefact of the limited patch size of the simulations. If the

spatial extent of the weakest-link event were comparable to, or larger than the composite

patch size, the empirical strength distribution will not reflect its true weakest-link character.

Because of this limitation, simulations in Mahesh et al. [19] cannot conclusively answer the

open questions noted in the preceding paragraph.

Curtin [20], on the basis of Monte Carlo simulations of composite patches with up to

N = 2500 fibres, and ρ ≥ 3, found that the strength distribution of HLS bundles has a

weakest-link character. Furthermore, he found that their empirical strength distribution

satisfies

GHLS(σ) = 1−
{

1− Φ(σ;µ′, sN ′c)
}N/N ′c , (7)

where Φ(·) denotes the Gaussian cumulative distribution function of Eq. (3), µ′ is a fitting

parameter, and 1 ≤ N ′c ≤ N is another. Eq. (7) implies that the N -fibre HLS composite

patch may be regarded as a collection of N/N ′c non-overlapping bundles, each comprised of

N ′c fibres. The failure of any of these sub-bundles causes composite failure. The surprising

aspect of this observation is that the bundle strengths are Gaussian distributed, and the

standard deviation, sN ′c coincides with that given in Eq. (3). Unfortunately, a conceptual

explanation of the scaling relation, Eq. (7), is presently unavailable. Eq. (7) has also only

been established empirically for HLS bundles for ρ ≥ 3. It is known [15] that LLS bundles

do not obey the scaling of Eq. (7).
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I.5. Detailed load sharing models

As noted above, the HLS model is more realistic than either the ELS or LLS models

of a polymer matrix composite. However, certain predictions of the HLS model have been

found to be in discord with experimental measurements. For example, HLS predicts the

stress concentration on the intact fibre next to a break to be independent of the inter-fibre

spacing. Experimentally, however, stress concentrations are found to depend on inter-fibre

spacing [21]. This discrepancy between HLS and experiment can be attributed to the matrix

carrying some tensile load in the physical composite, an aspect neglected by the HLS model.

To account for such deviations, more detailed shear lag models have been developed in the

literature, e.g.,[22–25]. These models account more realistically for the tensile load carried

by the elastoplastic matrix, and debonding/sliding fibre matrix interface. The effects of

matrix yielding and cracking, deviations from a regular lattice of fibre placement, staggering

of breaks out of a transverse plane, etc. have also received considerable attention in recent

years, e.g.,[26–29]. The more realistic representation of the composite structure and load

transfer in the aforementioned models comes at a much greater computational cost. Monte

Carlo simulations on these more realistic models must therefore be limited to much smaller

patch sizes than those treated using HLS. Simulations of large patches using these realistic

models is therefore presently infeasible.

Realistic modelling of the matrix and interfacial typically blunts a crack, i.e., distributes

the load dropped by broken fibres over a wider range. The load transfer predicted by HLS

is more localised. For this reason, composite strength predicted assuming the HLS model

can be expected to be conservative. The computational efficiency of the HLS model, and its

conservative overestimation of stress concentrations, make it best suited for computationally

studying the failure of large patches presently.

I.6. Scope of the present work

It is clear from the foregoing survey that Monte Carlo simulations are an important

tool to gain understanding of the statistics of composite patches. It is also clear that

failure simulations of larger composite patches than studied in the literature are needed

in order to capture the weakest-linking characteristics at small ρ. Accordingly, Monte-

7



Carlo simulations are performed in large two-dimensional composite patches with up to

216 = 65536 fibres. Load redistribution from broken to intact fibres at every step of these

simulations is computed using a novel tree based algorithm, which reduces the computational

effort of the simulations by more than an order of magnitude. The novel algorithm is

described in Sec. II.3.

The present simulation results, reported in Sec. III, show that HLS composites fail in a

brittle fashion for all ρ. The dominant failure mode of the composite for all ρ is identified,

and a simple stochastic model, combining elements of the models of Smith et al. [7], Mahesh

et al. [19] and Habeeb and Mahesh [15] is developed in Sec. III.3. The model captures

the empirical weakest-link strength distribution obtained from the Monte Carlo simulations

well. The present empirical strength distributions also obey the scaling relationship, Eq. (7),

due to Curtin [20]. The coincidence of the predictions identifies the dominant failure event

underlying the scaling relationship of Curtin [20].

II. THE MODEL COMPOSITE

II.1. Governing equations and the unit break solution

The greatest volume fraction of identical cylindrical fibres in a unidirectional composite is

obtained by arranging them in a hexagonal lattice. Accordingly, fibre centres are presently

assumed to be located at the points of a hexagonal lattice, as shown in Fig. 1. The cross-

section of the composite patch is itself taken to be rhombus shaped. This cross-section

contains N = ν2 fibres. Two edges of the rhombus define the m, and n coordinate axes. To

avoid edge effects, the following periodicity conditions are imposed: fibers (0, n) and (ν−1, n)

(the left and right edges of the patch) are assumed adjacent for all n ∈ {0, 1, . . . , ν − 1}.

Similarly, fibers at the top (n = ν−1) and bottom (n = 0) edges for all m ∈ {0, 1, . . . , ν−1}

are also considered adjacent.

Following Hedgepeth and Van Dyke [17], each fibre is assumed to interact with its six

neighbours. Let ζ be the non-dimensional fibre-wise position, and let um,n(ζ) denote the

normalised displacement of fibre (m,n) in the fibre direction. Then, the equilibrium equation

of fibre (m,n) reads as [17]

d2um,n
dζ2

− 6um,n + um+1,n + um−1,n + um,n+1 + um,n−1 + um+1,n−1 + un−1,m+1 = 0. (8)
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FIG. 1: A rhombus-shaped periodic patch of N = ν × ν fibres arranged in a hexagonal

lattice. A periodic tiling of the plane by such patches is used to represent a cross-section of

the composite. The m–n coordinate system is also shown.

Consider the case of the composite loaded under unit far-field strain, and containing a single

fibre break located at m = 0, n = 0 in the cross-section ζ = 0 under consideration. The

corresponding boundary conditions are:

du0,0

dζ
(ζ = 0) = 0,

um,n(ζ = 0) = 0, for all m 6= 0, n 6= 0;

dum,n
dζ

(ζ = ±∞) = 1, for all m,n.

(9)

The above boundary value problem was formulated with periodic boundary conditions by

Landis et al. [30] and solved for the unknown functions um,n(ζ). Recently, a fast algorithm

for its solution was proposed by Gupta et al. [18]. The periodic boundary conditions endow

the solution with the property of translation invariance. That is, if the single break were

located at (m,n) = (m∗, n∗) instead of at (m,n) = (0, 0), the displacement of the fibre at
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(m,n) would be given by u∆m,∆n(ζ), where

∆m = (m−m∗) mod ν, and

∆n = (n− n∗) mod ν.
(10)

Let the fibre located at (m,n) be identified by the index k = mν + n + 1. The overload

on this fibre due to the broken fibre at (m∗, n∗), identified by the index l = m∗ν + n∗+ 1, is

termed the overload coefficient between fibres k and l. It is defined as

λkl =
du∆m,∆n

dζ
(ζ = 0)− 1. (11)

Eq. (11) indicates that the translation invariance of um,n(ζ) carries over to λkl also. The

overload coefficient is symmetric, i.e., λkl = λlk, and satisfies λkl > 0 if k 6= l. An important

property of λkl, which amounts to demanding equilibrium at the cross-section ζ = 0 is that

N∑
l=1
l 6=k

λkl = 1, for all k. (12)

Two important numerical properties of λkl, used in the sequel are [31]:

min
k∈{1,2,...,N}

λkl = λll = −1, and max
k∈{1,2,...,N}

λkl ≈ 0.1046. (13)

II.2. Interacting multiple breaks

Interactions between multiple breaks in the transverse section ζ = 0 follows the break

influence superposition scheme, developed by Hedgepeth [16], Sastry and Phoenix [32], and

Beyerlein et al. [33]. Suppose that the Nb fibres with indices {k1, k2, . . . , kNb
} are broken

in the plane ζ = 0. Each broken fibre, ki, i ∈ {1, 2, . . . , Nb} is associated with a weight

wki ≥ 1, which physically signifies its normalised opening displacement [33]. The opening

displacements, and hence the weights of intact fibres are identically zero. The condition of

zero traction at all the breaks then requires that [16, 32, 33]

Nb∑
j=1

λkikjwkj = −1, for all i ∈ {1, 2, . . . , Nb}, (14)

or, in matrix notation as:

[λ]{w} = −{1}. (15)
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Here, [λ] is an Nb×Nb square matrix whose ij-th entry is λkikj , and {1} denotes an Nb column

vector of ones. Expressed as a matrix, [λ] has the following useful properties for Nb < N ,

and i, j ∈ {1, 2, . . . , Nb}: (i) negative unit diagonals: λkiki = −1, (ii) positive off-diagonals:

λkikj > 0, for i 6= j, (iii) symmetry: λkikj = λkjki , and (iv) diagonal dominance:

Nb∑
j=1
j 6=i

|λkikj | < |λkiki |, for 1 ≤ i ≤ Nb. (16)

By virtue of these properties, the matrix −[λ] is symmetric positive definite [34, Def. 1.20

and Cor. 1.22]. With the weights of the broken fibres evaluated, the overloads Ωk on all

the fibres, k, whether broken or intact, is given by a weighted superposition of the overload

coefficients as:

Ωk =

Nb∑
j=1

λkkjwkj , for all k ∈ {1, 2, . . . , N}. (17)

Cholesky decomposition is the most efficient direct method for the solution of Eq. (15).

It entails a computational cost of O(N3
b ), and memory requirement of O(N2

b ). The matrix-

vector product in Eq. (17) entails a further computational cost of O(NNb). For large N ,

and Nb, of the order of tens of thousands, these computational expenses become prohibitive.

It is known that λkl of Eq. (11) decays as the inverse cubic power of the Euclidean distance

between fibre k and the from the broken fibre, l [18, 35]. This rapid rate of decay is exploited

next to substantially reduce the computational effort and computer memory needed to solve

Eq. (15), and to obtain the overloads using Eq. (17).

II.3. Tree method

II.3.1. Quadtree representation of the composite patch

Consider again, the N = ν2 fibre patch of Fig. 1, where log2 ν = log4N is an integer.

Thus, ν ∈ {1, 2, 4, 8, 16, . . .}. A ν = 16 composite patch is shown in Fig. 2. The entire

patch is subdivided into four equal sub-regions, each comprised of (ν/2)2 fibres, as shown

in Fig. 2a. These parts are further sub-divided similarly, until a stage is reached where all

the finest sub-regions are comprised of only one fibre. At this stage, no further sub-division

is possible.
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Level ℓ = 5

Level ℓ = 4

Level ℓ = 3

Root

(a)

Level ℓ = 5

Level ℓ = 4

Level ℓ = 3

Root

(b)

➀

➃

➂

➁
A B

C

(c)

FIG. 2: (a) Hierarchical sub-division of the composite patch into sub-regions, shown to

three levels. The lowest two levels of this tree, ` = 1, 2, are not shown. (b) A quadtree

representation of the subdivision, also limited to ` = 3, 4, and 5. (c) The N = 162 fibre

composite patch showing the subdivision of level ` = 3.

The hierarchical subdivision is best represented by a quadtree data structure [36],

sketched in Fig. 2b. Each sub-region is represented in the quadtree as a node. Nodes

are depicted as circles in Fig. 2b. In the following, nodes are distinguished by enclosing

their identifier within square braces, e.g., node [a]. The symbol [r] is reserved to denote
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the root node. The root node occupies the highest level of the quadtree, and represents

the entire domain of the composite patch. The four children of [r] form the next lower

level. The sixteen children of these nodes occupy the even lower level, and so on. A tree

representing N fibres has L := 1 + log4N levels. These levels are numbered sequentially

from the bottom to the top. Fig. 2 shows only the levels 3, 4, and 5 of the quadtree. The

level of node [a] is denoted `[a].

Consider a typical node [a]. Its four children are denoted [a1], [a2], [a3], and [a4]. The

unique parent of node [a] is denoted [P[a]]. Also, the unique ancestor of node [a] in level `

is defined if ` ≥ `[a]. It is denoted [P
(`)
[a] ]. It is convenient for algorithmic reasons to assume

that [P
(`)
[a] ] = [a], if ` = `[a]. Nodes at the lowest level ` = 1 of the quadtree represent fibres

and are termed leaves. Node numbers of leaf nodes are taken to coincide with the fibre

index. Thus, fibre k is represented in the tree by node [k]. The set of all nodes descended

from node [a], and contained in level ` are denoted D (`)
[a] , e.g., D (1)

[r] is the set of all the leaf

nodes in the quadtree.

II.3.2. Nearby and distant node pairs

The overload experienced by fibre k due to a break at ζ = 0 in fibre l, λkl was defined

in Eq. (11). Presently, an analogous overload coefficient, Λ[a][b], between a pair of nodes [a]

and [b] is developed.

Consider two nodes [a] ∈ D (`)
[r] and [b] ∈ D (`)

[r] , at level `. Let

λ[a][b] = max
{[k′]∈D

(1)
[a]
}

max
{[l′]∈D

(1)
[b]
}
λk′l′ , and

λ[a][b] = min
{[k′]∈D

(1)
[a]
}

min
{[l′]∈D

(1)
[b]
}
λk′l′

(18)

denote the maximum and minimum overloads, respectively, produced by a break amongst

any of the fibres in D (1)
[b] on any of the intact fibres in D (1)

[a] . From the symmetry of λk′l′ , and

from Eq. (18), it follows that λ[a][b] = λ[b][a], and λ[a][b] = λ[b][a].

Nodes [a] and [b] are considered distant if

Θ[a][b] := 1−
{
λ[a][b]

/
λ[a][b]

}
≤ θ, (19)

where θ ∈ [0, 1) is a preset parameter. Otherwise, nodes [a] and [b] are considered nearby.
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If nodes [a] and [b] are distant, and if none of their ancestors are distant, i.e., if

Θ
[P

(`′)
[a]

][P
(`′)
[b]

]
> θ, for all `′ ∈ {`+ 1, `+ 2, . . . , L}, (20)

then nodes [a] and [b] are assigned a non-zero overload coefficient, Λ[a][b]:

Λ[a][b] = f(λ[a][b], λ[a][b]). (21)

f(λ[a][b], λ[a][b]) in Eq. (21) must satisfy the reciprocal relationship

f(λ[a][b], λ[a][b]) = f(λ[b][a], λ[b][a]). (22)

The specific form of f(λ[a][b], λ[a][b]), which is henceforth referred to as the smearing function,

is developed in Appendix A. If either Eq. (19) and/or Eq. (20) is not true, or if `[a] 6= `[b],

Λ[a][b] is set to zero. In summary,

Λ[a][b] =

f(λ[a][b], λ[a][b]), if `[a] = `[b], and if Eqs. (19) and (20) are true,

0, otherwise.
(23)

The matrix [Λ], whose ab-th element is Λ[a][b], is sparse [37]. Its sparsity will be exploited in

the numerical method described in Sec. II.3.5 below.

Intuitively, if [a] and [b] are distant nodes, it is expected that λ[a][b] ≈ λ[a][b]. Since

λ[a][b] ≤ λk′l′ ≤ λ[a][b], the overload coefficients λk′l′ , for all the fibres k′ and l′ in the sub-

regions represented by the nodes [a] and [b], will be similar in value. In this case, Λ[a][b] of

Eq. (21) represents the smeared overload produced in the fibres of node [a] due to a single

break located amongst the fibres of node [b]:

Λ[a][b] ≈ λk′l′ , for all k′ ∈ D (1)
[a] , and l′ ∈ D (1)

[b] . (24)

However, if [a] and [b] are nearby nodes, such an approximation will be unreasonably erro-

neous. Eq. (23) formalises these intuitive notions.

II.3.3. Smeared overload coefficients, λ̃kl

Consider a pair of fibres, k and l. According to the convention established in Sec. II.3.1,

these are represented in the quadtree by the nodes [k] and [l]. The set{
Λ

[P
(`)
[k]

][P
(`)
[l]

]
: ` ∈ {1, 2, . . . , L}

}
(25)
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contains exactly one non-zero element. All other elements of the set given in Eq. (25) must

be zero, since Eqs. (19) and (20) may be simultaneously satisfied only for a unique level,

say, ` = `∗kl. Define

λ̃kl := Λ[
P

(`∗
kl

)

[k]

][
P

(`∗
kl

)

[l]

] =
L∑
`=1

Λ[
P

(`)
[k]

][
P

(`)
[l]

]. (26)

This definition, together with Eq. (24) then imply:

λkl ≈ λ̃kl. (27)

λ̃kl is uniform-valued over sub-regions represented by the higher nodes of the tree:

λ̃k′l′ = λ̃kl, for all k′ ∈ D (1)[
P

(`∗
kl

)

[k]

] and l′ ∈ D (1)[
P

(`∗
kl

)

[l]

]. (28)

Therefore, λ̃kl may be thought to be a smeared version of λk′l′ . Smearing allows the aggre-

gation of interactions between distant collections of breaks, which will underlie the greater

computational efficiency of the tree method in Sec. II.3.5.

Consider the special case k = l, corresponding to the self-interaction of a fibre k. Clearly,

λkk = λ[k][k] = λ[k][k] and from Eq. (19), Θ[k][k] = 0. The condition of Eq. (19) thus passes

for any θ ∈ [0, 1). Also, for any ` > 1 in Eq. (20), invoking Eq. (13), Θ
[P

(`)
[k]

][P
(`)
[k]

]
= 1 −

(−1/0.1046) > 1 > θ, for any θ ∈ [0, 1). It follows that Λ[k][k] = λkk = −1. The set of

Eq. (25) now becomes {−1, 0, 0, . . . , 0}. Therefore, `∗kk = 1 and

λ̃kk = −1, (29)

according to Eq. (26).

Two fibres, k and l, interact directly if `∗kl = 1, and indirectly if `∗kl > 1. Direct and

indirect interactions are distinguished by defining

Dkl =

λ̃kl, if `∗kl = 1, and

0, if `∗kl > 1,
(30)

and

Hkl =

0, if `∗kl = 1, and

λ̃kl, if `∗kl > 1.
(31)
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II.3.4. Interaction between fibre breaks

Consider again, a set of interacting breaks, {k1, k2, . . . , kNb
}, as in Sec. II.2. Recalling [λ]

from Eq. (15), approximating λkikj ≈ λ̃kikj , and writing λ̃kikj = Dkikj +Hkikj results in

[λ] ≈ [λ̃] = [D] + [H], (32)

where, [λ̃], [D] and [H] are Nb × Nb square matrices whose ij-th elements are λ̃kikj , Dkikj

and Hkikj , respectively.

The decomposition, Eq. (32), is illustrated for the composite patch depicted in Fig. 2c.

Four fibres, say À, Á, Â, and Ã, are shown broken. The corresponding leaf nodes are denoted

[À], [Á], [Â], and [Ã]. The division of the composite patch into sub-regions of level ` = 3 is

also shown. Nodes [A], [B], and [C] contain the fibre breaks; [P
(3)
[À] ] = [A], [P

(3)
[Á] ] = [B], and

[P
(3)
[Â] ] = [P

(3)
[Ã] ] = [C].

Taking θ = 0.7, it is found that Eqs. (19) and (20) are satisfied only for the interactions

between the distinct node pairs ([À], [Á]), ([Â], [Ã]), ([A], [C]) and ([B], [C]). Interactions

between other higher level nodes do not occur, as they violate Eqs. (19) and/or (20). In

terms of the interactions between higher nodes, the approximate coefficient matrix, [λ̃] is
λ̃[À][À] λ̃[À][Á] λ̃[À][Â] λ̃[À][Ã]

λ̃[Á][À] λ̃[Á][Á] λ̃[Á][Â] λ̃[Á][Ã]

λ̃[Â][À] λ̃[Â][Á] λ̃[Â][Â] λ̃[Â][Ã]

λ̃[Ã][À] λ̃[Ã][Á] λ̃[Ã][Â] λ̃[Ã][Ã]

 =


Λ[À][À] Λ[À][Á] Λ[A][C] Λ[A][C]

Λ[Á][À] Λ[Á][Á] Λ[B][C] Λ[B][C]

Λ[C][A] Λ[C][B] Λ[Â][Â] Λ[Â][Ã]

Λ[C][A] Λ[C][B] Λ[Ã][Â] Λ[Ã][Ã]

 . (33)

The left side of Eq. (33) shows the interaction matrix of all four breaks with each other.

The right side can be split as
Λ[À][À] Λ[À][Á] Λ[A][C] Λ[A][C]

Λ[Á][À] Λ[Á][Á] Λ[B][C] Λ[B][C]

Λ[C][A] Λ[C][B] Λ[Â][Â] Λ[Â][Ã]

Λ[C][A] Λ[C][B] Λ[Ã][Â] Λ[Ã][Ã]

 =


Λ[À][À] Λ[À][Á] 0 0

Λ[Á][À] Λ[Á][Á] 0 0

0 0 Λ[Â][Â] Λ[Â][Ã]

0 0 Λ[Ã][Â] Λ[Ã][Ã]



+


0 0 Λ[A][C] Λ[A][C]

0 0 Λ[B][C] Λ[B][C]

Λ[C][A] Λ[C][B] 0 0

Λ[C][A] Λ[C][B] 0 0

 ,

=[D] + [H].

(34)
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All interactions between nearby fibre breaks feature in [D], while those between distant fibre

breaks appear in [H].

II.3.5. Iterative numerical method

Writing Eq. (14), using Eq. (32) as

−[λ]{w} ≈ − ([D] + [H]) {w} = {1}, (35)

suggests the following iterative scheme:

−[D]{w}ι = {1}+ [H]{w}ι−1, (36)

where ι is the iteration counter. Iterations are initialised by taking {w}ι=0 = {1}. By

construction, −[D] is diagonal dominant with positive diagonal entries. Therefore, it is

positive definite. By construction, [−D] is also a sparse matrix, as all indirect interactions

are not represented in −[D]. Therefore, {w}ι can be computed by conducting one iteration

of the conjugate gradient algorithm [37, 38], exploiting the sparsity of −[D]. Prior to the

next iteration, ι+1, it is necessary to update the overloads on all broken fibres due to distant

breaks. This overload is given by
∑Nb

j=1Hkikjw
ι
kj

, for all i ∈ {1, 2, . . . , Nb}.

Fortunately, it is neither necessary to store [H] in computer memory, nor to perform

a computationally expensive matrix vector multiplication for this purpose. Instead, the

weights of all higher nodes (` > 1) of the quadtree are simply set to the sum of the weights

of their four children:

wι[a] = wι[a1] + wι[a2] + wι[a3] + wι[a4]. (37)

Recursively performing this update starting from the root node [39] sets the weights, wι[a],

for all quadtree nodes, [a] ∈ ∪L`=2D
(`)
[r] . Eq. (37) involves the transfer of node weights up the

quadtree from the fibres to the root. Using wι[a], the overloads due to distant breaks on the

node [b], Ωι,H
[b] , can be recursively computed as:

Ωι,H
[b] =


Ωι,H

[P[b]]
+
∑
{[a]∈D

`[b]
[r]
}

Λ[b][a]w
ι
[a], if `[b] > 1,

Ωι,H

[P[b]]
, if `[b] = 1.

(38)

The first case of Eq. (38) accounts for the overload on a non-leaf node [b], as the sum

of contributions from still higher nodes, and contributions from other nodes at level `[b].

17



Overloads engendered by direct interactions between fibres are not from distant breaks.

The second case of Eq. (38), therefore, excludes such contributions on leaf nodes [b]. With

Ωι,H
[b] defined as in Eq. (38),

Nb∑
j=1

Hkikjw
ι
kj

= Ωι,H
[ki]
. (39)

The residual at the ι-th iteration is given by

{R}ι = −[D]{w}ι+1 − [H]{w}ι+1 − {1}. (40)

The iterations are terminated when ‖{R}ι‖/‖{1}‖ < ε, a preset tolerance. The matrix

splitting [λ] ≈ ([D] + [H]) is a regular splitting in the terminology of Varga [34]. This

property guarantees convergence of the iterative scheme of Eq. (36) provided −([D] + [H])

is symmetric and positive definite [34, Th.3.31]. The latter condition has been ensured by

construction.

Finally, attention is turned to computing the overloads in intact fibres due to an arbitrary

distribution of breaks, with known weights, wki , i ∈ {1, 2, . . . , Nb}. Recursively applying

Eq. (38) on all the nodes of the quadtree beginning with the root, [r], yields the overloads

due to distant nodes in all the fibres, broken, or otherwise [39]. The overload at a leaf node

[k] representing fibre k is the sum of overloads produced by distant and nearby fibre breaks:

Ωι
[k] = Ωι,H

[k] +
∑

{[l]∈D
(1)
[r]
}

Λ[k][l]w
ι
[l]. (41)

Let a typical fibre directly interact with N ′ fibres. Typically for large patches, N ′ � N . The

second term in Eq. (41) then involves N ′Nb non-zero products, which is considerably smaller

than the cost of evaluating the overloads using Eq. (17) directly. Sparsity of [Λ], noted

previously in Sec. II.3.3 is used in evaluating Eq. (41) in the present implementation [38].

III. RESULTS

III.1. Penny-shaped fibre break clusters

The accuracy and efficiency of the tree algorithm of Sec. II.3 is first evaluated, using

penny-shaped clusters of breaks in a large periodic composite patch as test cases. In the

tests, the patch is comprised of N = 216 = 65536 fibres. Accuracy is evaluated by comparing
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the tree predicted overloads ahead of the penny-shaped clusters, with those predicted by the

exact calculation of Sec. II.2. Computational efficiency is measured by comparing the CPU

times needed for the two computations.
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FIG. 3: Stress overloads, Ω(r), predicted ahead of a single fibre break in a patch comprised

of N = 216 fibres. r is the Euclidean distance from the broken fibre. Predictions obtained

from three calculations are shown: (I) Exact overload computation using Eq. (17); (II)

Approximate overload computation using the tree method of Sec. II.3, taking θ = 0.5; and

(III) Overloads obtained by neglecting interactions between distant nodes. Distant node

pairs are determined using Eq. (19) with θ = 0.5.

Fig. 3 compares the stress overloads predicted both exactly, and using the tree method,

ahead of a single break in a periodic patch comprised of N = 216 fibres. In this figure,

r denotes the Euclidian distance of intact fibres from the single break, normalised by the

centre-to-centre spacing between neighbouring fibres. Since there are no interacting breaks,

the weight of the single broken fibre is unity. It is seen that the two methods predict similar

overloads, although Ω(r) predicted using the tree method, shows more scatter. This is to

be expected since the influence of the break is smeared uniformly (Sec. II.3.3) across nodes,

representing many fibres in the tree method.
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Fig. 3 also shows the overloads obtained by entirely neglecting interactions between dis-

tant nodes, by setting [H] = [0] in Eq. (32). Since the boundary between nearby and distant

nodes is located at r ≈ 15, the overloads for r > 15 obtained by neglecting distant nodes

are zero.
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FIG. 4: Stress overloads, Ω(r), predicted ahead of a cluster of fibre breaks of radius R = 26

in a patch comprised of N = 216. r is the Euclidean distance from the cluster tip.

Predictions obtained from three calculations are shown: (I) Direct solution of weights from

Eq. (14) and overload computation using Eq. (17); (II) Solution using the tree method of

Sec. II.3, taking θ = 0.5; and (III) Direct solutions of weights neglecting all interactions

between distant nodes. Distant node pairs are determined using Eq. (19) with θ = 0.5.

Next, the stress overloads due to a large penny-shaped cluster of breaks, of normalised

radius R = 26 is considered, as shown inset in Fig. 4. The number of fibre breaks in the

penny-shaped cluster is Nb = 14865; more than a quarter of all fibres in the patch are broken.

Let R+r denote the Euclidean distance from the centre of the cluster to each intact fibre. In

other words, subtracting R from the Euclidian distance of each intact fibre from the centre

of the penny-shaped cluster yields the distance of the fibre from the crack tip, r. R+ r, and

r will usually not be integer-valued. For a number of intact fibres neighbouring the cluster

of breaks, r < 1.
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Fig. 4 compares the variation of the predicted stress overloads with r using both exact and

tree methods. The overloads predicted by the two methods are found to agree reasonably well

for all r; the greatest deviation occurs at R+ r ≈ ν, i.e., near the boundary of the periodic

patch. The tree method underestimates these overloads. The scatter in the overload levels

for a given r is greater in the tree predictions than in the exact calculation, again on account

of the smearing described in Sec. II.3.3, which is intrinsic to the tree approximation. Also

shown in Fig. 4 are the overload predictions obtained by cutting off the influence of distant

nodes, for θ = 0.5. Doing so results in grossly underestimation of the overloads, especially

at large r. This result emphatically shows that the influence of distant breaks should not

be neglected.
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FIG. 5: Variation with θ of stress overloads predicted ahead of a penny shaped crack of

radius, R = 26 in a composite patch with N = 216 fibres.

Fig. 5 shows the effect of increasing θ on the stress overloads ahead of an R = 26 cluster

of breaks in an N = 216 patch. Increasing θ increases the scatter in the overload profiles.

This is because with increasing θ, interactions between fibres becomes increasingly smeared

over ever larger numbers of fibres. The scattered overloads predicted by θ = 0.5, 0.75, and

0.90 overlap for about r ≤ 5. At larger distances, the overloads predicted by θ = 0.9 are

systematically smaller than those predicted by the smaller θ. The effect of the patch edges
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FIG. 6: CPU time required for calculating weights (a) by exactly solving Eq. (14), and (b)

by the approximate tree method (θ = 0.5). Nb is the number of fibres in a cluster of

breaks. The radii of the clusters studied are R = 22, 23, 24, 25, and 26. The speed up factor

is simply the ratio of the CPU times required for the exact calculation and the tree-based

calculation.

thus extends substantially into the patch for the case of θ = 0.9, than it does for θ = 0.5

and 0.75.

The CPU time requirements for the computing the stress-overloads due to penny-shaped

clusters of various radii R = 22, 23, 24, 25, and 26 by the exact and tree methods is shown in

Fig. 6. Nb denotes the number of broken fibres in the penny-shaped cluster. Calculations for

the tree method were performed taking θ = 0.5. In all cases, computing the exact solution

is more time consuming than computing using the tree method. For small Nb, the speed up

obtained using the tree method, which is the ratio of the CPU times required for the exact

calculation and the tree-based calculation, is relatively small. This is because the overheads

associated with the recursive tree operations, e.g., evaluation of Eqs. (37) and (38), outweigh
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any computational gains in solving Eq. (36) by the tree method. The computational cost

associated with Eqs. (37) and (38) are fixed for all Nb. Therefore, the computational speed

up increases with larger Nb. The computational speed up can be considerable. For example,

corresponding to R = 26, the tree method is about 30 times faster than the exact calculation.

Since tree calculations assuming θ = 0.5 give an acceptable approximation of the over-

loads, and since computational time is sufficiently reduced for θ = 0.5, this value is used in

all the Monte Carlo simulations reported below.

III.2. Monte Carlo simulations

Monte Carlo simulations of composite patch failure are performed on a wide range of

composite sizes: N = 28, 210, 212, 214, and 216. For each size, the fibre strength Weibull

exponents ρ = 0.5, 1, 2, 3, 5 and 10 have been simulated. For each N and ρ, nsimul = 250

simulations have been performed. The simulation algorithm follows that of Mahesh et al.

[19, 31], except that the tree method of Sec. II.3 is used to update the fibre stresses (ratio

of fibre load and fibre cross-sectional area) after the formation of new fibre breaks. Each

simulation begins by assigning a strength drawn from the Weibull distribution, Eq. (1), to

each of the N fibres. It is assumed that σ0 = 1. The applied stress per fibre is raised to the

point where exactly one fibre will break. Stress redistribution is computed using the tree

method. If any other fibres will fail under the influence of the stress concentration of the

first break, those fibres are also failed. Otherwise, the applied stress per fibre is incremented

to the point of failing exactly one more fibre. This process is repeated until all the fibres

fail. The applied stress per fibre is not allowed to decrease. The applied stress per fibre

at which all the N fibres fail is the composite patch strength per fibre, and denoted σi,

i = 1, 2, . . . , nsimul. The composite strengths, sorted in ascending order, are denoted σ(i),

i = 1, 2, . . . , nsimul. Empirical strength distributions are deduced from this data. The value

of the empirical cumulative distribution function assigned to σ(i) is

Gemp(σ(i)) =
i

nsimul + 1
, for all i = 1, 2, . . . , nsimul. (42)

The variation of the applied stress per fibre over the simulation history for the weakest

((i) = 1) ρ = 1, N = 210 = 1024 composite patch is plotted in Fig. 7a. A large number of

applied stress increments are performed and 590 fibres break before the remaining fibres fail

23



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  200  400  600  800  1000

a
p
p
li
ed

st
re
ss

p
er

fi
b
re

break number

(a) (b)

FIG. 7: (a) Evolution of the applied stress per fibre with the number of fibre breaks, in the

weakest ((i) = 1) of 250 Monte Carlo simulations for a composite patch comprised of

N = 210 fibres with Weibull exponent ρ = 1. (b) Intact fibres (blue dots), broken fibres at

the instant when the peak applied stress is first reached (red crosses), and the first twenty

fibres that fail after the peak load is reached (blue squares), are shown.

under the influence of the overloads due to the existing fibre breaks. The fibres that break

before the peak load is attained, and the first twenty fibres that break at the peak load are

indicated in Fig. 7b.

In the weakest ρ = 10 specimen, as shown in Fig. 8a, only thirteen fibres break before

the applied stress reaches its peak value. Many of these breaks are isolated, as shown in

Fig. 8b. However, a cluster of breaks forms near the upper/lower edges of the patch, which

propagates catastrophically at the peak load. It is recalled that the upper and lower edges

are equivalent because of the assumed periodicity.

These simulations on small composite patches suggest that ρ = 10 patches are ‘brittle’,

while ρ = 1 patches are ‘tough’, following the nomenclature introduced in Sec. I.3. However,

this suggestion is on account of the small patch size. A qualitatively different picture emerges

from the simulations of large patches, described below.

Paralleling Eq. (6), consider the empirical weakest-link distribution:

Wemp(σ(i); ρ,N) = 1− (1−Gemp(σ(i); ρ))1/N . (43)

Fig. 9 plots the empirical Wemp(σ(i); ρ,N) deduced from simulations of the composite patches

of all sizes N and all ρ studied presently. For clarity, the abscissa is normalised by the
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FIG. 8: (a) Evolution of the applied stress per fibre with the number of fibre breaks, in the

weakest ((i) = 1) of 250 Monte Carlo simulations for a composite patch comprised of

N = 210 fibres with Weibull exponent ρ = 10. (b) Intact fibres (blue dots), broken fibres at

the instant when the peak applied stress is first reached (red crosses), and the first twenty

fibres that fail after the peak load is reached (blue squares), are shown.

mean fibre strength, µF = Γ(1 + 1/ρ). Without this normalisation, the Wemp(σ(i); ρ,N)

distributions for some of the ρ cross each other. It is clear that for each ρ ≥ 1, there

exists a critical patch size, Nc(ρ) such that Wemp(σ(i); ρ,N) becomes independent of N for

N ≥ Nc(ρ), i.e.,

Wemp(σ(i); ρ,N) = Wemp(σ(i); ρ), for N ≥ Nc(ρ). (44)

It is also clear that the critical Nc(ρ) decreases with increasing ρ. For ρ = 10, the empir-

ical weakest-link distribution of even the smallest simulated patch, N = 28, already obeys

Eq. (44). This implies that Nc(ρ = 10) < 28. For ρ = 1, however, N = 28 and N = 210 do

not obey Eq. (44), but N ≥ 212 does. Thus, 210 < Nc(ρ = 1) ≤ 212. For ρ = 0.5, Eq. (44)

is approached, but not yet reached even for Nc = 214. But it appears that simulating even

larger patches will lead to Eq. (44) being followed for some Nc(ρ = 0.5) ≥ 214. Inverting the

foregoing argument, no matter how large the simulated composite patch size, N , there will

be a small enough ρ, for which Eq. (44) cannot be directly demonstrated using Monte Carlo

simulations, on account of the simulation patch size being inadequate. This is a limitation

of the simulations. It does not imply a break down of Eq. (44) for low ρ.
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FIG. 9: Empirical weakest-link distribution functions, Wemp(σ; ρ,N), obtained from 250

Monte Carlo simulations, for each value of Weibull exponent ρ ∈ {0.5, 1, 2, 3, 5, 10}, and for

patch sizes, N ∈ {28, 210, 212, 214, 216}. Vermilion, purple, black, orange and blue dots,

correspond respectively to these patch sizes. The blue lines correspond to fits obtained

using the simple stochastic model of Sec. III.3.

III.3. Probabilistic ‘tight’ cluster growth model

As noted in Sec. I.3, Smith et al. [7] proposed a dominant failure event, whose occurrence

underlies the weakest-link strength distribution for LLS bundles with large ρ. The proposed

failure event ceases to be dominant at smaller ρ. A dominant failure event for all ρ was

proposed by Habeeb and Mahesh [15] by introducing the failure of equal load sharing (ELS)

bundles as the elementary events in the chain of events leading up to LLS composite patch

failure. Presently, the latter ‘tight’ cluster growth model is adapted for Hedgepeth load

sharing (HLS).

The dominant failure event proposed by Smith et al. [7], viz., ‘tight’ cluster growth,

involves the sequential failure of the most overloaded neighbouring fibres. This is illustrated

in Fig. 10 for Hedgepeth load sharing (HLS). The failure of a fibre maximally overloads its

N1 = 6 neighbours equally, as shown in Fig. 10a. The failure of any of these fibres maximally
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FIG. 10: Overloads, ΩP , and number of most overloaded fibres, NP , around a ‘tight’

cluster of (a) P = 1, (b) P = 2, and (c) P = 3 fibres broken in a tight cluster. The applied

load is taken to be unity.
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1 0.1046 6

2 0.2336 2
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FIG. 11: (a) Progression of fibre breakage leading to a ‘tight’ cluster of P = 10 breaks.

Overloads ΩP and number of most overloaded neighbours NP of the P cluster, are also

tabulated. Note the non-monotonicity in ΩP and NP , with cluster size, P . (b) Progression

of failure of ELS M -bundles, leading to ‘tight’ cluster growth of the crack, analogous to

(a). M = 19, as shown. In (a), and (b), Ê, Ë, . . . indicate the order of fibre, and

M -bundle breakage, respectively.
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overloads two of the neighbours of the cluster of breaks, as shown in Fig. 10b. Failure of one

of the two most severely overloaded neighbours produces the failure configuration of Fig. 10c,

overloading three of the neighbours most severely. Continuing this process of failing one of

the most severely overloaded fibres, tight cluster growth is obtained. The development of a

tight cluster of ten breaks is illustrated in Fig. 11. Also listed are the overloads, ΩP and the

number of most overloaded neighbouring fibres, NP around a tight cluster of P breaks, for

P ∈ {1, 2, . . . , 10}, as predicted by HLS.

‘Tight’ cluster growth in the present model of composite failure follows that of Smith et al.

[7], with the exception that failure of single fibres in the original model is replaced with that

of ELS bundles comprised of M fibres, termed M -bundles. The schematic development of

a tight cluster of broken M -bundles, for M = 19, is shown in Fig. 11b. For the case that

M = 1, the present tight cluster growth model reduces to that of Smith et al. [7].

Recalling from Eq. (4) that E(M)(σ) denotes the strength distribution of an equal load

sharing bundle of M fibres, the probability of failure of one M -bundle under far-field load

per fibre σ will be E(M)(σ). Exactly paralleling the situation of individual fibres, the M -

bundle is assumed to be surrounded by N1 = 6 M -bundles, each of which obeys ELS. This

is sketched in Fig. 11b. The stress concentrations induced by the central broken M -bundle

on the fibres in the neighbouring M -bundles will, in general, be different. For simplicity,

therefore, a uniform effective stress overload is defined on fibres comprising each of the N1

neighbouring M -bundles surrounding the failed M -bundle. The interaction between M -

bundles is taken to follow HLS, with a ρ-dependent correction, K(ρ). The effective stress

overload on the neighbours is

Ω′1 = K(ρ) Ω1. (45)

The probability that at least one of the N1 neighbouring M -bundles fails is {1 − [1 −

E(M)((1 + Ω′1)σ)]N1}. Continuing thus, the probability of formation of a tight cluster of P ,

M -bundles, altogether comprised of L = PM fibre breaks, is

WP (σ) =
{
E(M) (σ)

}
×

P∏
p=1

{
1−

[
1− E(M)

(
(1 + Ω′p)σ

)]Np
}
, (46)

where,

Ω′p = K(ρ)Ωp. (47)
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The model predicted weakest link distribution is then

WHLS(σ) = lim
P→∞

WP (σ). (48)

Tight cluster growth may initiate at any of the N fibres. The strength distribution of the

composite patch, GHLS(σ) is then obtained by substituting Eq. (48) into Eq. (6).

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

-1.14 -1.12 -1.1 -1.08 -1.06 -1.04 -1.02 -1 -0.98 -0.96

ln
(−

ln
(1

−
W

(σ
))
)

ln σ

P = 1

10

20

30

50

100
200
400

N = 212

214

216

FIG. 12: Empirical weakest-link strength distribution for ρ = 1 and N = 212, 214 and 216,

compared with the predictions of Eq. (46) for various P .

The tight cluster growth model relates the weakest-link strength distribution of the HLS

composite patch to that of smaller ELS patches, just as Curtin’s scaling rule, Eq. (7), does.

Excepting this similarity, the two models are conceptually very different. First, localised

HLS stress overloads, Ω′p, due to existing breaks cause new breaks in the present model.

Local overloads do not feature in Eq. (7) at all. Second, the failure of an ELS M -bundle in

the present model is but a part of a chain of events leading up to composite failure. The

failure of an N ′c-fibre ELS bundle signifies composite failure, according to Curtin’s Eq. (7).

Third, the mean strength of the present M -bundles exactly equals that of an ELS bundle

comprised of M fibres. This is not true for the N ′c bundles of Eq. (7). Finally, and perhaps

most importantly, the number of factors, P + 1, required for convergence will increase with

decreasing σ, according to Eqs. (46) and (48). Therefore, WP (σ) does not scale as a power
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of σ in the lower-tail. GHLS(σ) will, therefore, not be Weibull distributed. On the other

hand, Curtin [20] has shown that Eq. (7) leads to a Weibull distributed composite strength

in the lower tail.

In fitting the parameters M and K to capture the empirical distribution functions, the

focus is on fitting the lower tail of the empirical distribution. Setting the fitting parameters

as M = 24 and K = 0.682 for the ρ = 1 composite patches yields predictions of WP , as

shown in Fig. 12. The fitting parameters are unique in that no other combination of M and

K produces as good a fit of the lower tail. For sufficiently large P , which depends on σ, the

WP (σ) converge to a curve that correctly captures the shape of the lower tail of the empirical

weakest-link distribution. For example, at lnσ ≈ −1.04, WP=100 already approximates the

empirical weakest-link strength distribution well. At the lower stress-level, lnσ ≈ −1.12,

however, WP=100(σ) overestimates the empirical strength distribution. P > 200 is needed to

match Eq. (46) with the empirical strength distribution. The critical cluster that can grow

catastrophically thus contains over L = PM = 200 × 24 = 4800 fibres. This is larger than

the Monte Carlo simulation patch sizes of most foregoing simulation studies of the present

system. The largest present patch of N = 65536 fibres, however, comfortably accommodates

the large critical cluster.

The upper tail of the empirical strength distribution is not well-captured by the tight

cluster growth model. The model overestimates the failure probability in the upper tail,

over the range where the empirical weakest-link strength distribution is derived from the

simulation data of the N = 212 = 4096 composite patches. This overestimation is again

because the simulation patch itself is smaller than the critical cluster size (L = PM = 4800

fibres). Failure of small patches do not follow the dominant mechanism proposed in the tight

cluster growth model. However, it must be noted that even in this range, the prediction of

the tight cluster growth model is conservative.

In an entirely analogous way, the present probabilistic model is able to capture the em-

pirical weakest link strength distribution for all ρ > 1. The values of M and K selected

for each ρ to obtain a good fit, as shown in Fig. 9, are listed in Table I. The empirical

weakest-link strength distribution obtained from the largest simulated patch size for ρ = 0.5

is also fit, even though it is not clear that composites larger than N = 216 fibres in this

case obey weakest-link scaling. For ρ ≤ 5, it is seen that the upper tail is overestimated

by the probabilistic model. Again, this is because the upper tail of the empirical strength
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TABLE I: Parameters of the probabilistic model of Sec. III.3 used to obtain the predicted

curves shown in Fig. 9.

ρ K M

0.5 0.610 106

1 0.682 24

2 0.953 6

3 0.973 4

5 1.093 2

10 1.238 1

distribution is obtained from simulations on composite patches that are smaller than the

critical cluster, as explained in the preceding paragraph. For ρ = 10, however, even the

smallest simulated patch size is adequate to accommodate the small critical cluster.

III.4. Scaling of the critical cluster size

Consider next a tight cluster of P , M -bundles arranged in the form of a circular disk. In

analogy with the foregoing argument, the probability of failure of an M -bundle abutting this

tight cluster is given by E(M)((1 + Ω′P )σ). The probability that at least one of the NP = 6

M -bundles ahead of the tight cluster will fail is 1 −
[
1− E(M)((1 + Ω′P )σ)

]NP . Requiring

that this probability be large, say, 1− 1/e, results in

1−
[
1− E(M)((1 + Ω′P )σ)

]NP
= 1− e−1. (49)

Substituting Eq. (47) into Eq. (49) results in an equation relating P and σ. For each P , this

equation is readily solved for σ by the method of successive bisection.

The scaling of the critical cluster size, MP with σ is shown in Fig. 13, as predicted by

the above calculation for different ρ. For clarity, attention is restricted to only those P ,

which correspond to circular clusters of breaks of radii R = 1, 3, 5, . . .. For these clusters,

the number of most overloaded intact neighbours NP = 6. In the limit of small σ, L = MP ,

the criticial cluster size scales approximately as σ−4 with the scaling exponent gradually but

systematically decreasing with decreasing ρ.
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FIG. 13: Scaling of the critical cluster size, L = PM with applied stress σ. For small σ,

the critical cluster size scales approximately as σ−4, with only a weak dependence on ρ.

IV. DISCUSSION

The statistics of Hedgepeth and Van Dyke [17] composite failure when ρ is large is well-

understood in the literature [6, 19, 33, 40, 41]. The present work extends this understanding

to low ρ. Monte Carlo simulations of large patches containing up to 216 fibres confirm that

composite strength has a weakest-link structure for ρ ≥ 1. For ρ < 1 too, it appears that

the weakest-link structure will prevail if even larger patches were simulated.

Commercial synthetic fibres seldom have Weibull exponents, ρ < 5. Natural fibres, such

as sisal, jute, and coir typically have smaller Weibull exponents, approximately ranging

between 2–4 [42]. The regime ρ < 2 is also of technological interest, as in the following

case. Consider a hybrid composite, wherein different fibre types of comparable stiffness are

used to reinforce the matrix, e.g., flax, and E-glass reinforced epoxy [43, 44]. The strength

distribution of a typical fibre is now given by

Fe(σ) =
I∑
i=1

pi

(
1− exp

[
−
(
σ

σ0i

)ρi])
. (50)

Here, I is the number of types of fibres, ρi and σ0i are the Weibull exponent and scale factor
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of fibre type i, respectively. pi is the number fraction of fibre type i, which satisfies
∑I

i pi =

1. Hybrid reinforcement increases variability of fibre strengths. This causes substantial

improvement in the composite toughness, and is particularly effective in the case of natural

fibre composites [45]. The variability of fibre strengths amongst all fibre types will be greater

than that amongst each fibre type. If Fe(σ) were approximated by a Weibull distribution,

the effective Weibull exponent, ρ in Eq. (1), would represent the variability of fibre strengths

amongst all fibre types. The equivalent ρ may then satisfy ρ ≤ mini∈1,2,...,I ρi. Taking typical

values for the fibre strength parameters corresponding to the flax/E-glass composite [42, 44],

including ρ1 = 2 and ρ2 = 6, and p1 = p2 = 0.5, results in an effective ρ ≈ 0.6 for the hybrid

composite.

As noted in Secs. I.3 and I.4, brittle failure entails the development of a sufficiently

large cluster of L breaks, which can propagate catastrophically. Two models, one developed

presently, and another obtained from the literature are able to predict the generation of such

a cluster in good agreement with the empirical Monte Carlo results. They are discussed

below.

IV.1. The present weakest-link model

A tight cluster growth model, extending the model developed by Smith et al. [7] for LLS

patches, fits the empirically obtained weakest-link strength distribution well. In this model,

the weakest-link event is visualised as the occurrence of a sequence of sub-events. In the

stochastic model proposed by Smith et al. [7] for LLS bundles, the sub-events were the

failure of the intact fibres neighbouring a tight cluster of breaks. For large ρ, the variance

of fibre strengths is small, and the probability of failure of one of the most overloaded fibres

surrounding a tight cluster of breaks is overwhelmingly greater than that of failure of any

other fibres. However, for small ρ, the variance of fibre strength is lower, and the probability

of failure of any of the fibres neighbouring the cluster, not even necessarily abutting it,

becomes comparable. The sequence of sub-events in the weakest-link model of Smith et al.

[7] then are not the dominant ones. This causes the Smith et al. [7] model to break down

at smaller ρ. This difficulty is addressed in the present model, using a devise developed

by Habeeb and Mahesh [15] for LLS patches. Presently, each sub-event in the sequence of

events leading to failure is the failure of an M -fibre equal load sharing (ELS) bundle. The
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FIG. 14: Fibre and ELS m-bundle strength distributions corresponding to ρ = 1 and

ρ = 10. Note that the m-bundle corresponding to ρ = 10 is comprised of M = 1 fibre only

(Tab. I).

size of the ELS bundle, M , depends on ρ, as listed in Table I. For ρ = 10, M = 1, i.e.,

the ELS bundle is comprised of only a single fibre, and thus, the present model coincides

with that of Smith et al. [7], adapted for HLS bundles. For decreasing ρ, however, the ELS

bundles contain an increasingly large number of fibres, M . According to Tab. I, the failure

of a ρ = 1 composite patch occurs by the growth of a tight cluster of ELS bundles, each

comprised of M = 24 fibres.

Fig. 14 shows the strength distribution of a single fibre with ρ = 1, and also that of an

ELS bundle consisting of M = 24 fibres. Similarly, the ρ = 10 fibre strength distribution

function is also shown. The slope of these curves qualitatively indicates the scatter in fibre

strengths, with smaller slopes corresponding to greater scatter. It is seen that while the

ρ = 1 and ρ = 10 fibre strength distributions (M = 1) have widely different slopes, the

ρ = 1, M = 24 and ρ = 10, M = 1 ELS bundle strength distributions have similar slopes.

The devise of identifying the failure of ELS M -bundles with the sub-events leading up

to composite failure thus substantially decreases the variability in the probability of occur-
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rence of the sub-events leading up to composite failure. This has the desirable consequence

of making the failure of the most overloaded M -bundle neighbouring a cluster of breaks

overwhelmingly most probable, as in the model of Smith et al. [7].

IV.2. Curtin’s weakest-link model

TABLE II: Parameters N ′c and µ′ used to fit the empirical strength distributions to Eq. (7).

ρ Critical cluster size, N ′c mean strength, µ′

0.5 30638 0.532

1 2690 0.356

2 521 0.415

3 268 0.481

5 135 0.579

10 59 0.716

The empirical strength distributions obtained from the present Monte Carlo simulations

are compared with the fits obtained using the scaling relation, Eq. (7), proposed by Curtin

[20] in Fig. 15. It is seen that the scaling relation fits the empirical distributions very well.

This result confirms and extends the observation of Curtin [20] to lower ρ and larger patch

sizes, N .

To obtain the fitting parameters N ′c, and µ′, the empirical strength distributions were

plotted on Gaussian probability coordinates. For each N ′c ∈ {1, 2, . . .}, the slope of a straight

line that fits the empirical strength distribution best, in a minimum least squares sense, is

computed. The reciprocal of this slope is compared with the standard deviation of Daniels’

distribution, Eq. (3b). The N ′c for which the reciprocal of the slope of the straight line

deviates minimally from that given by Eq. (3b) is selected. It is listed for each ρ in Table II.

The mean strength, µ′, is then adjusted to minimise the error between the empirical strength

distributions and the model predictions. µ′ is also listed in Table II.

The fitting parameters listed in Table II are not unique. Over a wide range of values of

N ′c, comparably good fits of the empirical distribution can be obtained. For example, Fig. 16

shows that good fits of Eq. (7) can be obtained for the empirical strength distribution for
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FIG. 15: Fits of the empirical strength distributions (dots) by the model (lines), Eq. (7),

proposed by Curtin [20]. Fitting parameters, N ′c and µ′ are listed in Table II. Vermilion,

purple, black, orange and blue dots, correspond respectively to patch sizes

N ∈ {28, 210, 212, 214, 216}.

ρ = 1 patches with N ′c = 2000 or 3000. In fact, for any intermediate value of Nc also, the

data is fit well by Eq. (7). This contrasts with the uniqueness of the fitting parameters, M

and K, in the tight cluster growth model of Sec. III.3.

The size effect predicted by the present weakest-link model, Eq. (48) is compared with

that predicted by Eq. (7), due to Curtin [20] in Fig. 17. Let σc(N) be the strength of a

composite patch comprised of N fibres corresponding to GHLS(σc) = 1 − exp(−1). Then,

Eqs. (7) and (48) imply that

1−
{

1− Φ(σc;µ
′, sN ′c)

}N/N ′c =1− e−1, and (51a)

1− (1−WHLS(σc))
N =1− e−1. (51b)

It is straightforward to numerically invert both equations in Eq. (51) to obtain σc. Fig. 17

plots the relationship between σc to N , thus obtained. It is clear that both models predict

nearly the same size-scaling for large N .

Surprisingly, despite the differences noted below Eq. (48) between the tight cluster growth
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FIG. 16: Fits of the empirical strength distributions for ρ = 1 composite specimen

obtained from Monte Carlo simulation using the scaling law, Eq. (7), due to Curtin [20]

assuming (a) N ′c = 2000, and (b) N ′c = 3000. The mapping between colours and patch sizes

is as in Fig. 15.

model, and Curtin’s empirically successful scaling law, Eq. (7), their predictions coincide

deep into the lower tail. A physical reason for this coincidence is not clear.

It is also known that the coincidence depends on the assumed load sharing law. In the

case of the severely local LLS law, Habeeb and Mahesh [15] showed that the tight cluster
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FIG. 17: Size effect predicted by Curtin’s scaling law, Eq. (51a), and by the present model,

Eq. (51b), for HLS composite patches.

growth model fits the empirical strength data, while Curtin’s empirical scaling law does not.

In the case of ELS, both the tight cluster growth model and Curtin’s empirical scaling law

are trivially valid by taking M = Nc = N . Therefore, it is speculated that for load sharing

schemes that are more global than HLS, both models can capture the empirical strength

distributions.

V. CONCLUSIONS

A tree based algorithm has been employed to speed up Monte Carlo failure simulations

of composite patches obeying a realistic load sharing scheme. The simulations, performed

on composite patches comprised of up to 216 fibres, reveal the absence of a tough to brittle

transition in 2-dimensional hexagonal patches. A weakest-link strength distribution under-

lies the composite patch strength for all ρ. A simple stochastic two-parameter model based

on failure by tight growth of a cluster of breaks has been proposed. This model captures the

lower tail of the empirical weakest-link strength distribution obtained from the simulations.

The present model’s predictions are found to coincide closely with those obtained from the
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scaling-law observed by Curtin [20].
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Appendix A: Inter-nodal overload coefficients, Λ[k][l]

Consider an arbitrary pair of nodes [a] and [b], such that `[a] = `[b]. Let these nodes

be distant, in the sense that Eqs. (19) and (20) are both satisfied. A smearing function,

f(λ[a][b], λ[a][b]), was introduced in Eq. (21). Let

f(λ[a][b], λ[a][b]) = λ[a][b]. (A1)

Then, it follows from Eq. (26) that for any pair of broken fibres ki and kj,

λkikj ≥ λ̃kikj . (A2)

The choice in Eq. (A1) thus underestimates the overload on broken fibres and is hence, not

conservative. It also follows from Eqs. (12) and (A2) that

N∑
k=1
k 6=ki

λ̃kki ≤ 1. (A3)

Physically, this indicates that load may be lost from the composite patch as a consequence

of smearing.

If, on the other hand, the smearing function were to take the form

f(λ[a][b], λ[a][b]) = λ[a][b], (A4)

overloads due to broken fibres will be overestimated, and the total load in the cross-section

ζ = 0 may increase due to smearing.

Non-conservation of the cross-sectional load makes both the extreme choices for the

smearing function, Eqs. (A1) and (A4) unacceptable. An acceptable choice is obtained

by taking

Λ[a][b] = f(λ[a][b], λ[a][b]) = s(`[a]−1)λ[a][b], (A5)
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and by fixing the scalar s ∈ (0, 1] to ensure the conservation of overload due to fibre breaks.

Letting k denote a generic fibre, and letting k1 be a broken fibre, this implies:

N∑
k=1
k 6=ki

λ̃kk1 = 1. (A6)

Substituting Eq. (26) into Eq. (A6) yields

L∑
`=1

∑
[k]∈D

(`)
[r]

[k] 6=[k1]

4(`−1)Λ
[k][P

(`)
[k1]

]
=

L∑
`=1

∑
[k]∈D

(`)
[r]

[k]6=[k1]

(4s)(`−1)λ
[k][P

(`)
[k1]

]
= 1. (A7)

Here, 4`−1 is the number of fibres in a node of level `. Eqs. (21) and (A5) have been used in

the second step of Eq. (A7). Assuming a break at the fibre with coordinates (m,n) = (0, 0),

i.e., k1 = 1, this equation can be solved efficiently for s using the method of successive

bisection. For θ = 0.5, and N = 216, it is found that s = 0.85.

Comparing Eqs. (A1) and (A3) on the one hand, with Eqs. (A5) and (A7) on the other

also shows that

λ[a][b] ≤ Λ[a][b] = s(`[a]−1)λ[a][b]. (A8)

[1] W. Weibull, Journal of applied mechanics 103, 293 (1951).

[2] D. Hull and T. Clyne, An introduction to composite materials (Cambridge university press,

1996).

[3] M. J. Alava, P. K. Nukala, and S. Zapperi, Advances in Physics 55, 349 (2006).

[4] H. Daniels, Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences 183, 405 (1945).

[5] L. McCartney and R. Smith, J. Appl. Mech 50, 601 (1983).

[6] R. L. Smith, Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences 372, 539 (1980).

[7] R. L. Smith, S. Phoenix, M. Greenfield, R. Henstenburg, and R. Pitt, Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences 388, 353 (1983).

[8] D. G. Harlow and S. L. Phoenix, Journal of Composite Materials 12, 195 (1978).

[9] D. G. Harlow and S. L. Phoenix, Journal of Composite Materials 12, 314 (1978).

41



[10] W. Curtin, Journal of the Mechanics and Physics of Solids 41, 217 (1993).

[11] D. Harlow, Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences 397, 211 (1985).

[12] P. Duxbury and P. Leath, Physical Review B 49, 12676 (1994).

[13] S. Mahesh and S. Phoenix, Physical Review E 69, 026102 (2004).

[14] B. Kahng, G. Batrouni, S. Redner, L. De Arcangelis, and H. Herrmann, Physical Review B

37, 7625 (1988).

[15] C. I. Habeeb and S. Mahesh, Physical Review E 92, 022125 (2015).

[16] J. M. Hedgepeth, NASA Technical Note TN D-882 (1961).

[17] J. M. Hedgepeth and P. Van Dyke, Journal of Composite Materials 1, 294 (1967).

[18] A. Gupta, S. Mahesh, and S. M. Keralavarma, International Journal of Fracture 204, 121

(2017).

[19] S. Mahesh, S. L. Phoenix, and I. J. Beyerlein, International Journal of Fracture 115, 41

(2002).

[20] W. Curtin, Physical Review Letters 80, 1445 (1998).

[21] L. S. Schadler, M. S. Amer, and B. Iskandarani, Mechanics of materials 23, 205 (1996).

[22] T. Okabe, N. Takeda, Y. Kamoshida, M. Shimizu, and W. Curtin, Composites Science and

Techology 61, 1773 (2001).

[23] T. Okabe and N. Takeda, Composites A 33, 1327 (2002).
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