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pre-localization stage can accommodate its intrinsic randomness in a natural way and enhance the service life 
predictions of degrading structural systems and their components. 

Using principles of thermodynamics, damage growth equations can be formulated in terms of the Helmholtz 
free energy potential. Spatial and temporal fluctuations in the state variables, caused by the intrinsic variations 
in the material micro structure, as well as due to environmental and loading conditions, can be modeled by 
treating Helmholtz free energy as a random process. This leads to a stochastic differential equation (SDE) for 
the random damage growth, the solution of which describes the evolution of time-dependent damage growth 
mechanism [2-4]. The studies in the literature have focused on modeling the noise associated with the damage 
growth equations as Brownian motion leading to the possibilities of physically unrealizable negative damage 
increments. 

The present study focuses on the development of creep damage growth equations for structural materials 
subjected to high temperatures for extended periods of time. For example, structural components in nuclear 
power plants carrying high temperature liquids would be susceptible to such creep damage effects. 
Complicating effects such as modeling the noise processes as non-Gaussian processes to ensure that the 
damage growth increments are always positive have been studied. Numerical examples which illustrate the 
developments made in this paper have been presented. 

2. CDM-based damage growth equations 

Following the methodology adopted in [3-4], the CDM based damage growth equations are first developed. 
Introducing the Helmholtz free energy potential    for a closed system R in diathermal contact 
with a heat reservoir and applying the second law of thermodynamics, it can be shown that [3] 

.   (1)  

Here, T is the absolute temperature,  are state variables comprising the strain tensor and D is the damage 
tensor which is of order one if the material is assumed to be isotropic,  is the work done on  R,  E is the 
kinetic energy of R and the dots represent the time derivatives  with respect to time t. In writing Eq. (1) it is 
assumed that   = 0. This is not strictly true for systems which are exposed to temperature fluctuations. 
However, in this study, we assume that the temperature fluctuations are gradual and very slow and the system 
can be assumed to be in quasi-static thermodynamic equilibrium at constant temperature. Compactly, Eq. (1) 
can be written as where  is the heat dissipation rate. If  then the thermodynamic process 
becomes reversible.   

Now the system R is said to be in equilibrium when it is in diathermal contact with a heat reservoir if the 
first variation of Helmholtz free energy is zero i.e., .  The equilibrium system undergoes rapid 
changes of its micro-state and causes random fluctuations in state variables; thus the evaluation of free energy 
can be described as random process [5]. Using  variational  principles, one can write 

 (2) 

Here, t0 is the initial equilibrium state and is a random process representing the random fluctuations in the 
free energy. These fluctuations are due to the uncertainties arising from modeling uncertainties, micro 
structural variations and environmental conditions. Eq. (2) can be further expressed as 

   (3) 

the terms I1 and I2 in Eq. (3) are defined as 

  (4) 
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Here,  is defined in the mean-square sense. In a deformable body where damage accumulates close to 
thermodynamic equilibrium within and along its boundary,  at every instant t, it can be shown that 
for a deformable body undergoing isotropic damage accumulation caused by uniaxial loading, the damage 
growth equation can be represented as 

   (5) 

Here,  is the far-field stress acting normal to the surface,  partial derivative of the free energy 
per unit volume with respect to the damage variable D and  is the rate of change of fluctuations in  per unit 
strain. 

It is reasonable to assume that the source of the fluctuations in the free energy  is due to unknown 
modeling errors and hence can be modeled as random process. Additionally, it has been assumed in [5] that 

is a zero mean  process with equal probability of having positive and negative values, indicating that the 
probability density function is symmetric about zero and  that the mean-square value of the fluctuations do not 
change with strain or time. It can be shown that the above conditions can be satisfied if  follows Langevin 
equation given by 

     (6) 

where,  is a Gaussian white  noise indexed with strain and k1, k2 are appropriate positive constants of  
the  Langevin equation defined in Eq. (6) such that, k1 is very large; see [5] for details.  Now, Eqs. (5) and (6) 
describe two processes with very different scales of strain (or time). A large number of fluctuations occur in 

in a strain during which the damage growth is insignificant. Therefore, on a scale where damage growth is 
assumed to be constant, from Eq. (5), we get . Thus, from Eq. (6), we can approximate it as 

 Eq. (5) can be subsequently written as follows; 

      (7) 

where,  are the Weiner increments. If t is the indexing parameter rather than  Eq. (7) can be 
written in terms of the strain rate   

   (8) 

Here, k3 and k4 are positive constants  and are different from k1 and k2 due to Eq. (8) being now indexed 
with time t, such that,  Eq. (8) represents a stochastic differential equation (SDE), where 
the coefficient for dt is known as the drift coefficient and the coefficient for  is known as the diffusion 
coefficient. It has been shown in [5] that where  is the failure stress of the material at 
temperature T.  

2.1. Stochastic creep damage 

Next we modify Eq. (8) for thermal creep damage. Here, we use the Bailey-Norton creep strain rate model, 
given by [6] 

                                                                                                              (9) 
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where,  is a temperature dependent constant,  are material parameters and the remaining 
parameters have the meanings as defined earlier. Assuming  = 1 (for the steady state creep condition) and 
substituting in Eq. (8), the stochastic creep damage growth equations can be expressed as 

    (10) 

Here, A1 and B1 are defined as 

                   (11) 

The right hand side of Eq. (10) denotes the increments in creep damage growth. An inspection of Eq. (10) 
reveals that depending on the magnitude of the Weiner increments, which takes values from [- , ], there is a 
non-zero probability of having negative damage increments irrespective of the values of  A1 and B1. This is 
physically impossible. There is a need to investigate the use of non-Gaussian models for the random 
fluctuations in the free energy. This is discussed in the following section. 

3. Non-Gaussian model for creep damage growth 

The model for  in Eq. (10) has been defined  following the assumptions that the fluctuations in the free 
energy is zero-mean and that there is an equal probability of having positive and negative fluctuations about the 
mean value. Alternative models for the damage growth may be obtained instead if one makes the assumption 
that damage growth increments are always positive. A more general form of Eq. (10) would be to replace 

 by  where, dS(t) Sb(t)dt is always greater than zero. A simple model for  would be to 
assume the increments to follow the Geometric Brownian motion (GBM). A stochastic process  is said to 
follow a GBM if it satisfies the following SDE [7] 

     (12) 

where,  is a Weiner process,  and  are respectively the drift and diffusion coefficients for the GBM and 

    (13) 

Assuming = 0, the corresponding creep damage growth equation can be written as 

   (14) 

Closed form solutions for either Eq. (10) or Eq. (14) are not possible and we have resort to numerical 
integration. This is discussed in the following section. 

4. Numerical examples and discussions 

The stochastic creep damage growth in Type-A36 stainless steel stressed to 83 MPa at 1000°F (or 538°C) is 
considered. The material parameters of A36 stainless steel are taken from the literature [5] and are:  = 
2.967×10-13, m = 4.8,  = 373 MPa, = 83 MPa and = 69 MPa . The material is initially assumed 
to be defect free, i.e., D0 = 0 and the material parameters are considered to be deterministic quantities

Since the creep damage growth is random, different realizations would lead to different damage growth 
trajectories. To characterize the creep damage growth, Monte Carlo simulations are carried out. N = 1x104 
sample realizations of the trajectories are simulated in the computer. Two cases have been studied: (a) Case 1- 
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where the fluctuations have been modeled as 
modeled as geometric Brownian motion. This 
geometric Brownian motion. Eqs. (10) and (14
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Fig. 1. Case 1: Creep damage growth trajectories
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Fig. 3. Case 1: Variation of the pdf of creep damage at di
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As in case 1, both the mean and the variance 
Figure 6, the pdf of damage at different time ins
process. This implies that the growth of damage

 

Fig. 5. Case 2: Variation of the pdf of creep damage at d
time instants. 

Fig. 7. Response of creep strain variation with tim
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