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Recently, stochastic simulations of networks of chemical reactions have shown distributions of

steady states that are inconsistent with the steady state solutions of the corresponding deterministic

ordinary differential equations. One such class of systems is comprised of networks that have

irreversible reactions, and the origin of the anomalous behavior in these cases is understood to be

due to the existence of absorbing states. More puzzling is the report of such anomalies in reaction

networks without irreversible reactions. One such biologically important example is the futile cycle.

Here we show that, in these systems, nonclassical behavior can originate from a stochastic

elimination of all the molecules of a key species. This leads to a reduction in the topology of the

network and the sampling of steady states corresponding to a truncated network. Surprisingly, we

find that, in spite of the purely discrete character of the topology reduction mechanism revealed by

“exact” numerical solutions of the master equations, this phenomenon is reproduced by the

corresponding Fokker–Planck equations. © 2009 American Institute of Physics.

�doi:10.1063/1.3264948�

Diverse cellular functions are mediated by signal trans-

duction and subsequent gene transcription events. The dy-

namical behavior of chemical reaction networks control and

regulate these processes. The dynamics of spatially homoge-

neous chemical reactions are often described by determinis-

tic ordinary differential equations in terms of classical

chemical kinetics �CCK�.
1,2

The mean-field character of such

a treatment is exemplified by considering the following

deterministic ordinary differential equation describing the

dynamics of second order reactions such as A+B→

k

AB:

− d�A�/dt = k�A · B� � k�A��B� , �1�

where k is the rate coefficient. In writing Eq. �1�, the number

of molecules of each species is described by an average con-

centration ��A� or �B�� and the average of the product of the

number of A and B molecules is replaced by the product of

the average concentrations. In other words, stochastic and

discrete features of the underlying molecular number levels,

including fluctuations and associated correlations are ig-

nored.

Cell signaling and gene transcription often involve small

copy numbers of the pertinent molecules. Therefore, many

important examples of stochastic fluctuations in determining

cellular response have been reported.
3–5

Accurate analysis of

these and other chemical processes—for which the underly-

ing discrete molecular states or random nature of individual

interactions become important—requires methods able to

capture such features. This is frequently done via the chemi-

cal master equation �CME�.
6

For example, when a continuous-deterministic CCK de-

scription of the dynamics of chemical reactions yields mul-

tiple steady states in some parameter range, the correspond-

ing discrete-stochastic CME descriptions will generally

produce a multimodal distribution of responses. This is be-

cause CCK closely follows modes of the underlying CME

distribution, so presence of multiple steady states under the

same set of parameters broadly indicates existence of mul-

tiple distribution modes.
7

Notably, CME distributions with

this type of multimodality, e.g., bimodality with cells being

either “on” or “off,” can be realized for parameter ranges

where a deterministic multi/bistability is predicted as well as

outside of these regimes. The latter phenomenon results from

stochastic sampling of parameters or dynamic states in the

deterministically bistable regime, which is enabled by the

fluctuations inherent in CME system trajectories that are not

available under CCK.

A more intriguing class of phenomena is comprised of

studies showing the existence of bimodal stochastic re-

sponses for systems whose deterministic description yieldsa�
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monostable solutions for all parameter ranges. Two types of

reaction networks in this class have been reported. One is

comprised of systems with absorbing states �i.e., systems

comprised of irreversible chemical reactions�. It was recently

demonstrated that the necessary and sufficient conditions for

such a system to exhibit purely stochastic bimodal responses

are the existence of more than one absorbing state and feed-

back loops characterized by distinct time scales.
4

One inter-

esting account attempting to unify considerations of chemi-

cal networks subject to fluctuations and time-scale

separations has been published recently.
8

The focus of this

paper is on chemical reaction networks without absorbing

states, e.g., networks comprised of reversible chemical reac-

tions, which exhibit bimodal stochastic responses when a

deterministic treatment is devoid of instabilities in any pa-

rameter range.

An example of such a system is obtained by considering

the following simple birth-death process for a species X:
9,10

�⇄
k-X

kX

X, �2�

The rate constants in Eq. �2� can be chosen such that at

steady state there are only few molecules of X present. This

reaction can then be coupled to a fast “indicator” reaction as

shown below:

X→

kY

X + Y; Y→

k-Y

� �3�

Species X gives birth to species Y with rate kY, and Y can be

degraded with the rate k−Y. If the rate constants kY and k−Y

are chosen to be much larger than kX and k−X, an adiabatic

concentration of Y is established corresponding to the par-

ticular value of X being sampled stochastically. When a

small number of X molecules is present, on average, one can

see the signature of the discreteness of X in multiple peaks

appearing in the steady-state probability distribution of Y

�see Fig. 1, simulations carried out with standard Gillespie

algorithm
11

�, provided that the rates of the reactions �3� are

fast enough that peaks in the steady-state distribution of Y

are resolved. The “indicator reaction” effectively amplifies

the discrete nature of the molecules of X which is why this

scenario can be called the “discreteness amplification” sce-

nario for obtaining multipeaked distributions for determinis-

tically monostable systems. A particular example of this sce-

nario that was presented in Ref. 9 can be obtained from the

reaction schemes �2� and �3� by restricting possible numbers

of X molecules to zero or one. Referring to the state with

X=0 as the inactive state of a gene and X=1 as the active

state, a bimodal distribution of cellular response is obtained

for conditions where the adiabatic limit is approached.

Our focus is on a different class of chemical reaction

networks without absorbing states that can exhibit purely

stochastic bimodalities. Kinetic schemes in this class have

been described previously,
12

but the underlying reason for a

bimodal stochastic response in the absence of any determin-

istic instabilities remained unclear. Here, we show that a pre-

viously unreported phenomenon, network topology reduc-

tion, is one of the mechanisms that could result in this

unusual behavior.

We start by considering the following simple chemical

reaction network:

N + N⇄
k2

k1

A + N, N⇄
k4

k3

A , �4�

A⇄
k6

k5

B . �5�

The deterministic kinetic equations for this system are

dN

dt
= − k1N2 + k2NA − k3N + k4A ,

dA

dt
= k1N2 − k2NA + k3N − k4A − k5A + k6B , �6�

dB

dt
= k5A − k6B .

Equation �6� makes clear that the quadratic equation ob-

tained for steady-state concentrations of A �or B� can only

result in a single stable fixed point for all possible values of

the rate parameters. Stochastic simulation of this reaction

network for some choices of parameter values, however,

yields a bimodal response for the number of B molecules

�Fig. 2�. This phenomenon cannot be explained by the argu-

ments described above in the “amplification of discreteness”

scenario.

One of the peaks in the bimodal distribution in Fig. 2

corresponds to the monostable deterministic steady state so-

lution of Eq. �6�, but the other is different. The explanation

for this unexpected stochastic bimodality can be found by

considering the time courses of the concentrations of N and

B simultaneously �Fig. 2, inset�. One notices that values of B

corresponding to the peak that is not centered around the

deterministic solution �i.e., B�27� are sampled when the

number of molecules of N in the system accidentally, by way

of stochastic fluctuations, becomes zero. In this situation, the

FIG. 1. Stochastic simulations for networks �1� and �2� with parameters

kX=0.01, k−X=0.01, kY=300, and k−Y=10. Steady-state distribution of mol-

ecules Y is shown.
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reaction network effectively reduces in size because all reac-

tions, where N is among the reactants cannot occur, which

leads to certain kinetic degrees of freedom otherwise avail-

able to the system to be temporarily “frozen out,” subse-

quently constraining it onto a smaller dynamical manifold.

The latter may potentially display different temporal or sta-

tionary features, thus contributing another behavioral mode

to discrete-stochastic reaction network properties that may

then be reflected in the overall species state distribution.

While a general analytical investigation of specific CME

mechanisms underlying such phenomena is substantially out-

side the scope of this work and would need to be further

addressed/discussed elsewhere, the described mechanism

provides a compelling example of how this type of deviant

chemical and biochemical dynamics can arise even in seem-

ingly simple reaction mechanisms, making them relevant for

in vivo and in vitro applications. For example, of the six

reactions in the scheme described by Eqs. �4� and �5� only

three are still possible if N is eliminated. If parameters are

chosen appropriately, this reduced network may be realized

for a sufficient amount of time to allow sampling of its

steady state, with the second peak in the bimodal response

shown in Fig. 2 corresponding to it. The only way for the

system to escape from being “trapped” or “frozen” in the

reduced network is through the occurrence of a reaction that

produces N, i.e., the one that converts A to N here.

Another notable case of stochastic bimodality in a re-

versible chemical system has been considered by Samoilov

et al.
12

and by Miller and Beard
13

in the much-studied and

biochemically ubiquitous futile cycle,
1,3

which interconverts

X and X� with the help of enzymes E+ and E− according to

the standard Michaelis–Menten mechanism, with E+ subject

to noise �9�:

X + E+⇄
k+2

k+1

X · E+→

k+3

X� + E+, �7�

X� + E−⇄
k−2

k−1

X� · E−→

k−3

X + E−. �8�

In Ref. 12, it has been shown that inducing a particular class

of monomodal stationary distributions on the forward en-

zyme E+ in the Michaelis–Menten regime may cause this

deterministically monostable �for all parameter ranges
14

�

process to undergo a noise-induced bifurcation, with the en-

suing system response resulting in a bimodal distribution on

X and X�. While such deviant behavior could potentially be

brought about by a range of external processes imparting the

prescribed distribution on E+, the specific example consid-

ered in �12� achieved the required nonlinearity of noise ap-

pearing in the system of reactions �7� and �8� by having it

coupled to a “noise generator” reaction mechanism of type

�4� �or reaction �9� below�

N + N⇄
k−21

k21

E+ + N N⇄
k−22

k22

E+. �9�

The deterministic steady-state equations for the reaction

system �7�–�9� are polynomials of up to sixth order and it is

not straightforward to show that there is no bistability for all

possible sets of rate constants. This can be circumvented by

using the topological rules described by Feinberg and

co-workers,
15

which allow us to conclude that the system

cannot admit more than one positive steady-state, regardless

of parameter values. However, a bimodal steady-state distri-

bution of X �and X�� was found in Ref. 12 for a fully

discrete-stochastic description of this chemical network in a

narrow range of parameters �Fig. 3�. Just like in the simple

example considered previously, the behavior of the generator

FIG. 2. Stochastic Simulations of the networks �3� and �4� with parameters

k1=0.1; k2=10; k3=13; k4=0.03; k5=100; k6=10; and N+A+B=30. Steady-

state distribution of molecules B is shown. Peak at B�27 corresponds to

steady-state of reduced network, while peak at B�15 corresponds to steady

state of the complete network. Inset: time course of simulations shown for N

�red� and B �black� species.

FIG. 3. Steady-state probability distribution, for the reaction networks

�7�–�9� with parameters k1=40; k2=104; k3=104; k−1=200; k−2=100; k−3

=5000; k21=10; k−21=5; k22=10; k−22=0.2; X+X�=2000; and E−=50 �same

as Ref. 12� and E++N=30 �red�, E++N=35 �black�, and E++N=40 �blue�.
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reaction �9� may be viewed as having two network topolo-

gies. For nonzero values of N, the complete network �7�–�9�

is explored and a peak around its steady state solution

emerges. However, when the number of molecules of N sto-

chastically becomes zero—the effective topology is reduced

similar to that of mechanism �4� and �5� �see Fig. 3�.

The necessary conditions for observing bimodality due

to network topology reduction is that the steady-states for

complete and reduced topologies are sufficiently different so

that two distinct peaks can be resolved. The other necessary

condition is that the system stays “arrested” in the reduced

topology for a time scale sufficient for sampling its steady

state. Samoilov et al.
12

may have achieved this for the driver

reaction �9� by “kinetically” arresting the system in the re-

duced topology by setting k−22 Eq. �9� to be smaller than

reaction rates pertinent for the reduced network �7� and �8�.

Since reaction k−22 is the only possible way to return from

the reduced topology to the complete network, this kinetic

restriction fulfils the second necessary requirement.

The strong constraints on the possible range of system

parameters able to support the bimodality observed by Sam-

oilov et al.
12

could be related to the violation of the second

necessary condition above, which requires that the system be

able to spend sufficient time in the N=0 state and that is

possible only for a relatively small number of N molecules in

the steady-state. Therefore, the observed bimodality disap-

pears in Samoilov et al.
12

when increasing the number of

molecules of N participating in the reaction. For N+E+=40,

the peak around X=790 corresponding to reduced topology

becomes very small compared with the situation when

N+E+=35 �Fig. 3�. In spite of the fact that the peaks are well

separated, the reduced topology is rarely sampled because

fluctuations leading to N=0 are rare and the time spent in

this state is short when Ntot is large.

When decreasing the number of molecules of N in the

system, steady-state concentrations for complete and reduced

topologies are very close to each other, and cannot be re-

solved in the simulation. For N+E+=35, one sees two dis-

tinct peaks corresponding to X=1602 �complete system� and

X=1120 �reduced topology�. However, for N+E+=30,

steady-states for the full and reduced topologies are X

=1766 and X=1639, respectively. These peaks cannot be

resolved completely due to intrinsic noise of the level �70

molecules at steady-state conditions �Fig. 3�. With further

decrease in concentration, the two peaks merge into one.

We next turn to the possibility of treating systems of this

type with continuous approximation methods, particularly

the Fokker–Planck equation. The interest is stimulated by the

fact that bimodality in this class of systems occurs due to

special behavior at the single point where N=0. Is N=0 still

a special point when N can take on noninteger values in a

continuous approximation?
16

For arbitrary small N, as long

as it is not exactly 0, the effective topology is still the com-

plete topology of the network, and the effect of the second

attractor is not obvious.

Consider again the simplest kinetic schemes �4� and �5�

featuring the network-topology reduction induced bimodal-

ity. The corresponding master equation

dPn,a,b�t�

dt
= − 	k1n�n − 1� + k2na + k3n + k4a + k5a + k6b
Pn,a,b�t� + k1n�n + 1�Pn+1,a−1,b�t� + k2�a + 1��n − 1�Pn−1,a+1,b�t�

+ k3�n + 1�Pn+1,a−1,b�t� + k4�a + 1�Pn−1,a+1,b�t� + k5�a + 1�Pn,a+1,b−1�t� + k6�b + 1�Pn,a−1,b+1�t� , �10�

can be transformed into a Fokker–Planck equation according

to standard rules,
16

and after taking care of conservation of

mass law n+a+b=T becomes

�P�n,a,t�

�t
=

�

�n
�f1�n,a�P�n,a,t�� +

�

�a
�f2�n,a�P�n,a,t��

+
1

2

�2

�n2
�f3�n,a�P�n,a,t��

+
�2

�a � n
�f4�n,a�P�n,a,t��

+
1

2

�2

�a2
�f5�n,a�P�n,a,t�� , �11�

with

f1 = k1n2 − k2na + k3n − k4a ,

f2 = − k1n2 + k2na − k3n + k4a + k5a − k6�T − a − n� ,

f3 = k1n2 + k2na + k3n + k4a , �12�

f4 = − k1n2 − k2na − k3n − k4a ,

f5 = k1n2 + k2na + k3n + k4a + k5a + k6�T − a − n� .

The time dependent partial differential Eq. �10� was

solved numerically with reflecting boundary conditions and

the steady state distribution was determined in the very long

time limit. In Fig. 4 the numerical solution of the Fokker–

Planck equation is shown along with the steady-state distri-

bution obtained from the stochastic simulations. Two virtu-

ally coinciding curves represent smoothed probability

histogram at steady state. The height of the surface at point

with coordinates A and N �both integer� is the probability of

195103-4 Artyomov et al. J. Chem. Phys. 131, 195103 �2009�



having A and N molecules at steady state. In order to plot

numerical solution of the Fokker–Planck equations in this

manner, the continuous function P�a ,n� was binned into dis-

crete probabilities �e.g., P�A=2,N=5�=�1.5
2.5da�4.5

5.5dnP�a ,n��.

One can see immediately that continuous approximation cor-

rectly reproduces network topology reduction effects. An

analogy can be drawn with diffusion on a surface where

there is a pointlike sink to understand why the Fokker–

Planck equation reproduces behavior that appears to arise

from discreteness. Even if the surface is curved such that the

mass is concentrated well away from the sink, in the very-

long time limit the mass will escape through the sink due to

negligible, but still nonzero, diffusive motion. The described

Fokker–Planck equation has the character of diffusion in a

potential well with an additional “finite” pointlike sink at the

boundary.

Finally, it can be argued that the fact that both systems

�4�, �5�, and �7�–�9� are “closed” and strictly obeying conser-

vation of mass introduces additional nonlinearity at the

boundary that is necessary to observe the mechanism of net-

work topology reduction. In order to address this point we

have constructed an “open” system that exhibits stochasti-

cally bimodal distribution due to topology reduction

N + N⇄
k2

k1

B + N, N⇄
k4

k3

A, N→

k9

� , �13�

A→

k7

�, A⇄
k6

k5

B, �→

k8

B . �14�

As one can see from the Fig. 5, two peaks are observed

in the steady-state histogram of B molecules. First peak at

B�37 molecule correspond to the complete network when

both Eqs. �13� and �14� are dictating steady-state of the net-

work. The second peak at B�91 molecule correspond to the

steady-state of the reduced network which consists only of

Eq. �14�. The second peak is observed when number of mol-

ecules of N stochastically goes to zero �see inset of Fig. 5�.

In this work we have identified the mechanism that al-

lows multipeaked steady-state distributions for systems with-

out absorbing states characterized by a single deterministic

attractor �e.g., chemical networks consisting of purely revers-

ible chemical reactions that have single stable solution for

their ordinary differential equations chemical equations�.

This mechanism can be realized in both closed, mass-

conserving system and in open, steady-state systems. The

network topology reduction relies on the stochastic fluctua-

tions in the particular network architectures that allow effec-

tive reduction in the number of possible reactions due to

exhaust of one of the components. The validity of continuous

�Fokker–Planck� description of this mechanism was also

studied.
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