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Abstract

The stochastic analysis of the response of frictionally damped Duffing oscillator subjected to Poisson white noise (PWN) and its

stochastic bifurcation analysis are considered. The behaviour of the stochastic attractors is examined through the stationary solution

of the corresponding generalized Fokker-Planck-Kolmogorov (FPK) or Kolmogorov-Feller (KF) equation. A finite element (FE)

scheme has been used for the solution of the FPK equation, using C1 continuity shape functions. Parametric studies are carried out

to gain insights into the effects of the Coulomb friction, and arrival rates of the underlying Poisson process of PWN. The results of

FE solution are shown to be in good agreement with the results of Monte Carlo simulation (MCS).
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1. Introduction

In the study of the dynamics of many engineering systems, the systems and the excitations are usually considered

to be continuous. However, in many cases of vibrating systems, discontinuities in the system equations arise due to

presence of dry friction, impact and backlash. Also, the excitations can be discontinuous having discrete non-Gaussian

characteristics. Excitations due to earthquakes and their aftershocks [1], traffic load [2], wave action on ship [3], wind

buffeting of airplane tail [4], can be modeled as a sum of discrete train of random pulses with random amplitudes

occurring at random times. The random pulses have been modeled as Poisson white noise (PWN) in the literature [5].

The response and bifurcation analyses of nonlinear systems subjected to PWN have been carried out in the literature

using equivalent linearization, cumulant neglect closure and other approximate methods.

However, the results from these methods are not very accurate for strong nonlinearities and/or low arrival rates of

the PWN. As in the case of white noise excitation, for the PWN excitation the joint probability density function (pdf)

of response of the nonlinear oscillators is governed by a corresponding Fokker-Planck-Kolmogorov (FPK) equation

[3, 6]. The solution of the FPK equation will give directly the joint pdf of the response from which the statistics

of the response can be obtained. However, closed form solution of the FPK equation is available only for a limited
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class of problems when the joint pdf can be expressed as a separable product of marginal pdfs. Approximate methods

like the path integral (PI) method [7], finite element (FE) method [8] have been developed and used to numerically

obtain the solution of the FPK equation subjected to white noise and colored noise excitations. The FPK equation

corresponding to the Duffing oscillator subjected to PWN excitation and its solution has been studied in the literature

by the perturbation [3, 6], finite difference [10], and exponential closure [11] methods. Muscolino et al.[12] have used

Monte Carlo simulations (MCS) for the stochastic analysis of a nonlinear system under PWN excitation.

The presence of friction modeled by the Coulomb (dry friction) model with constant or variable friction coefficients

in the dynamics of a linear or nonlinear system introduces yet another nonlinearity which is discontinuous. The

stochastic response analysis of nonlinear systems with friction subjected to PWN excitation is an important study

which has not been treated adequately in the literature. In the present work, a recently developed FE method [8], with

C1 continuity shape functions is used for the solution of the FPK equation corresponding to the Duffing oscillator

with single well and double well potentials including Coulomb friction, subjected to PWN excitation. The effects of

the Poisson arrival rate and friction coefficient on the response are investigated. In this study the Coulomb friction

force is approximated using arc tangent function and the effect of the approximation representing the discontinuity

is verified by comparing the results obtained by the FE method with MCS results. The mean up-crossing rate of the

response is estimated using the Rice’s formula [13] and the joint pdf of response states is obtained by the FE method.

It is observed that the increase in the Coulomb damping coefficient has the effect of reducing the probability of large

excursion leading to improved reliability of the system.

2. Problem Formulation

Consider the Duffing oscillator with Coulomb friction (Fig. 1) subjected to PWN excitation

Ẍ + cẊ − αX + βX3 + μg sgn(Ẋ) = γWP(t), (1)

where c, α, β, γ and g (acceleration due to gravity) are constants, μ is the coefficient of friction, and sgn is the signum

function. WP(t) is the PWN excitation. The number of over dots represents the order of differentiation with respect to

the time parameter t. The signum function during the stick condition leads to convergence difficulties as its derivative

involves the Dirac-delta function. The problem is circumvented in this work by using an approximate expression of

the form [14]

sgn(Ẋ) =
2

π
atan(ΘẊ), Θ >> 1, (2)

where Θ is a large number. Θ = 104 seems to be an adequate approximation for the problem considered in this paper.

Fig. 1. Schematic of Duffing oscillator with Coulomb friction.

The PWN process can be assumed to be of the form

WP(t) =
N(t)∑
k=1

Ykδ(t − tk), (3)
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where Yk is the amplitude of the kth pulse arriving randomly at time tk with assigned pdf PY (y), δ(·) is Dirac-delta

function and N(t) is a Poisson process. Yks are identically distributed independent random variables which are also

independent of the time tk.

Using the state space approach Eq. (1) can be expressed in the form of the following Ito stochastic differential

equations

dX1 = X2 dt,

dX2 = (−cX2 + αX1 − βX3
1 − μg sgn(X2)) dt + γdC(t), (4)

where dC(t) is an increment of the compound Poisson process C(t) defined by

C(t) =
N(t)∑
k=1

YkU(t − tk), (5)

and U(t) is the unit step function. The response (X1, X2) ∈ �2, is a Markov vector and the corresponding transitional

joint pdf p(X, t|X0, t0) is governed by the following FPK equation [6]

∂p
∂t
= −X2

∂p
∂X1

− ∂{−cX2 + αX1 − βX3
1
− μg sgn(X2)}p

∂X2

+
γ2λ E[Y2]

2!

∂2 p
∂X2

2

− γ
3λ E[Y3]

3!

∂3 p
∂X3

2

+
γ4λ E[Y4]

4!

∂4 p
∂X4

2

(6)

where p = p(X, t|X0, t0), the joint transition pdf of the state variables is used for notational convenience. The

stationary solution of the generalized FPK equation is obtained by letting ∂p(X, t|X0, t0)/∂t = 0.

3. Finite Element Method

The Galerkin weighted residual approach, leads to weak form of the generalized FPK Eq. (6) of the form

Mṗ +Kp = 0, (7)

where the elements of M and K are given by

Mrs =

∫
Ω

ψrψsdX1dX2 (8)

and

Krs =

∫
Ω

[
− ψrX2

∂[ψs]

∂X1

− ψr
∂[−cX2 + αX1 − βX3

1
− μg sgn(X2)]ψs

∂X2

−γ
2λE[Y2]

2!

∂[ψr]

∂X2

∂[ψs]

∂X2

+
γ3λE[Y3]

3!

∂[ψr]

∂X2

∂2[ψs]

∂X2
2

+
γ4λE[Y4]

4!

∂2[ψr]

∂X2
2

∂2[ψs]

∂X2
2

]
dX1dX2

(9)

subjected to the initial condition p(0) = p, where p is a vector containing the values of the joint pdf at the nodal

points. {ψi}9i=1
are nine shape functions corresponding to the nine nodes of the quadratic element shown in Fig. 2.

Since the generalized FPK equation is of fourth order, hence its weak form requires the interpolation functions to be

twice differentiable. The nine-noded quadratic element shown in Fig. 2 is chosen for the FE discretization. In terms

of normalized coordinates ξ, η, the shape functions are polynomials of degree of 4 and are of the form

ψ1 =
1

4
(ξ2 − ξ)(η2 − η), ψ2 =

1

4
(ξ2 + ξ)(η2 − η),

ψ3 =
1

4
(ξ2 + ξ)(η2 + η), ψ4 =

1

4
(ξ2 − ξ)(η2 + η),

ψ5 =
1

2
(1 − ξ2)(η2 − η), ψ6 =

1

2
(ξ2 + ξ)(1 − η2),

ψ7 =
1

2
(1 − ξ2)(η2 + η), ψ8 =

1

2
(ξ2 − ξ)(1 − η2),

ψ9 = (1 − ξ2)(1 − η2),

(10)
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Fig. 2. Nine-node quadratic element.

The phase space domain for the FE solution is discretized into a mesh of 200 × 200 elements. More details on the

numerical implementation and validation of the FE method is available in [8] and is not repeated here for the sake of

brevity.

The computed joint pdf px1,x2
(X1, X2), is used to estimate the expected up-crossings of the process, given by Rice’s

formula [13]

E[N+(α̃, T )] =

∫ T

0

∫ ∞
0

ẋpXẊ(α̃, ẋ, t) dẋ dt. (11)

Here, N+(α̃, T ) is the number of up-crossings of X(t) of the level α̃ in duration T and E[·] is the expectation operator.

If X(t) and Ẋ(t) are jointly stationary in the weak sense Eq. (11) can be simplified to

E[N+(α̃, T )] = Tν+(α̃) = T
∫ ∞

0

ẋpXẊ(α̃, ẋ) dẋ . (12)

Here, ν+(α̃) is the mean upcrossing intensity across level α̃.

In order to check the accuracy of the FE solution, the estimated pdf obtained from solving the FP equations are

compared with those obtained from MCS which are treated as the benchmark. The MCS is a direct numerical method

which requires the generation of a family of sample functions of the excitation consistent with its stochastic nature.

Corresponding sample functions of the response are simulated by numerical integration of the equation of motion

(Eq. (1)). The response statistics and their probability structure are estimated from the simulated sample functions.

In this work, the sample path of the PWN is obtained by generating a sequence of impulse magnitudes modeled as

Dirac-delta functions. The impulse inter-arrival times δt j =
1
λ
ν are assumed to be exponentially distributed with mean

1
λ

with ν assumed to be a uniformly distributed random variable in the interval [0, 1].

4. Illustrative Examples

4.1. Duffing Oscillator with Friction (Mono-Stable Oscillator)

The FE method described in section 3 is used to solve the FPK equation of the Duffing oscillator with friction and

subjected to PWN excitation. First the case of the mono-stable (uni-modal) Duffing oscillator is considered where the

parameter α has a negative value. The parameters in Eq. (1) are taken as c = 0.1, α = −1, β = 0.5, γ = 1 and λ = 0.1.

Two values of frictional force are considered namely μg = 0.05 and 1, the former representing a very low amount of

friction. The undamped and unforced Duffing oscillator with negative α values implies positive linear stiffness and

has a single stable equilibrium point at the origin of the phase space leading to mono-stable behaviour. The intensity

of pulse amplitude Y is assumed to be a zero mean Gaussian random variable with E[Y2
1 ] = σ2

Y , E[Y4
1 ] = σ4

Y .

Cai and Lin [6] and Muscolino et al. [12] have investigated the response of Duffing oscillator without friction to

PWN excitation, the former using a perturbation method and the latter using MCS. Cai and Lin [6] have derived an
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Fig. 16. Stationary solution of Duffing oscillator with λ = 1 (a) Joint-pdf (b) contour plot (c) marginal pdf of displacement (d) marginal pdf of

velocity; key as in Fig. 15.

4.2. Duffing Oscillator with Friction (Bi-Stable Oscillator)

Next, a double well Duffing oscillator is considered. For the unexcited and undamped case and for positive value

of α, the Duffing oscillator has three equilibrium points

O−
{
−
√
α

β
, 0

}
, O

{
0, 0

}
, O+

{√
α

β
, 0

}

The first and third are stable equilibrium points symmetrically placed on either side of the unstable equilibrium point

at the origin. The potential energy function has double wells corresponding to the stable equilibrium points.

For the parameter values c = 0.4, α = β = 1, γ = 1 and μg = 0.05 the joint pdf, its contour plot and the marginal

pdfs obtained by the FE method and by MCS for three values of arrival rate λ, (λ = 0.1, 1 and 5) are shown in

Figs.15-17. For the FE method, the phase space domain X1 − X2 is discretized into 200 × 200 elements.

Increase in the arrival rate of the Poisson process changes the bimodal nature of the joint pdf into a unimodal char-

acteristic with the two peaks in the joint pdf trying to merge. This indicates a possible P-bifurcation for a critical value

of λ. For low values of λ, the response essentially stays in the neighborhood of either of the two stable equilibrium

points as the joint pdf has distinct peaks centered around these points (Fig. 15 ). As λ increases the response has a

tendency to wander from one attractor to the other equilibrium point indicated by the near unimodal joint pdf around

the origin for λ = 5 . In the case of the bi-modal Duffing oscillator also the FE results agree closely with the MCS

results. The FE method takes an order of magnitude less time on the computer than the MCS method.

The stationary mean up crossing rates for the Duffing oscillator with double well potential for three different values

of arrival rate with and without friction under PWN excitation calculated using Eq.(12) are shown in Fig. 18. The

crossing rate is higher for the oscillator without friction. This is more evident for the lower arrival rate. In this example

only a very low value of μg = 0.05 is considered. For higher value of μg it is expected that the level crossing rates
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Thus the probability of large response is reduced with increase in reliability. In the case of the bi-modal Duffing

oscillator with increase in Poisson arrival rate the bimodal nature of the joint pdf tends to become unimodal indicative

of a P-bifurcation. In this case also with increase in friction the reliability of the system increases as shown by the

decreased values of the expected arrival rate.
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