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Stiffness and damping characteristics of lubricated ball
bearings considering the surface roughness effect.
Part 1: theoretical formulation

M Sarangi, B C Majumdar* and A S Sekhar

Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

Abstract: The stiffness and damping characteristics of isothermal, elastohydrodynamically

lubricated point contact problems are evaluated numerically considering the surface roughness

effect and variation in viscosity with pressure. A set of equations under steady-state and dynamic

conditions is derived from the classical Reynolds equation using the linear perturbation method. The

elasticity equation and steady-state Reynolds equation are solved simultaneously using the finite

difference method with the successive over-relaxation scheme, whereas the dynamic pressures are

found after solving the set of perturbed equations using the previously obtained steady-state

pressures. The load capacity is obtained from the steady-state pressure distribution. The stiffness and

damping coefficients of the contact are determined using the dynamic pressures. Then the overall

stiffness and damping matrices of the ball bearing are obtained from the load distribution, coordinate

transformation, and compatibility relations.

Keywords: ball bearing, damping, elastohydrodynamic lubrication, load distribution, rotor–bearing

systems, stiffness, surface roughness

NOTATION

a,b semimajor and semiminor axes

respectively of the contact envelope

c inner ring clearance of the bearing

C, �CC damping of a single lubricated contact,
�CC ¼ CU=ðE0RxrÞ

Cb,Kb damping and stiffness respectively of a

single ball

Ci,Co,Ki,Ko inner race contact damping, outer race

contact damping, inner race stiffness,

and outer race stiffness respectively of

each ball

Cb, Kb overall damping and stiffness matrices

respectively of the bearing

d diameter of the ball ¼ 2r

de pitch diameter of the ball bearing ¼ 2re
E0 combined Young’s modulus

Ea,Eb Young’s moduli of two ellipsoids

f influence coefficient

G material properties parameter ¼ aE0

h, �hh film thickness, �hh ¼ h=Rx

hc central film thickness

hT average film thickness
�hh0, �qq0,f

0
x,f

0
y corresponding steady-state values

Dh perturbation parameter, change in film

thickness

k elliptical parameter ¼ a=b
K , �KK stiffness of a single lubricated contact,

�KK ¼ K=ðE0RxÞ
M, D, K, F global assembled mass, damping,

stiffness and force matrices

respectively of the rotor–bearing

system

N coordinate transformation vector

p, �pp hydrodynamic pressure, �pp ¼ p=E0

�pph, �pp _hh perturbed pressures

Pd bearing radial clearance

q, �qq modified pressure, �qq ¼ q=E0

�qqh, �qq _hh perturbed modified pressures

�rr geometrical parameter ¼ r=Rx

rax, rbx, ray, rby radii of two ellipsoids a and b under

contact along the x and y axes

respectively

ri, ro inner race and outer race radii

respectively

R equivalent combined contact radius of

two ellipsoids, 1=R ¼ 1=Rx þ 1=Ry

The MS was received on 12 January 2004 and was accepted after
revision for publication on 26 August 2004.
* Corresponding author: Department of Mechanical Engineering, Indian
Institute of Technology, Kharagpur, West Bengal 721302, India.
Email: majum@mech.iitkgp.ernet.in

529

J00204 # IMechE 2004 Proc. Instn Mech. Engrs Vol. 218 Part J: J. Engineering Tribology

 at Universitats-Landesbibliothek on January 4, 2014pij.sagepub.comDownloaded from 



Rx,Ry equivalent contact radii along the x

and y axes respectively

t time

U, �UU combined velocity ¼ Ua þUb and

Z0U=ðE0RxÞ respectively
Ua,Ub surface velocities of two mating

ellipsoids

u global displacement vector

V ,Vc combined elastic deformation and

central elastic deformation respectively,
�VV ¼ V=Rx

Wi, �WWi load capacity of each ball contact on

the race, �WWi ¼ Wi=ðE0R2
xÞ

Wx total load-carrying capacity of the

bearing

x, y, �xx, �yy referred coordinate axes ¼ x=Rx and

y=Rx respectively

a pressure–viscosity coefficient of the

lubricant

b ball contact angle with the race

g surface pattern parameter

d elastic deformation

e combined local roughness

z,= Hertz contact elliptical integrals

Z, Z0 absolute viscosity of the lubricant and

absolute viscosity of the lubricant in

the ambient condition respectively

L hydrodynamic roughness parameter

na, nb Poisson’s ratios of two ellipsoids

s combined standard deviation of

roughness

t non-dimensional time ¼ opt

fx,fy,fs flow factors

j,jl load-sharing angle of bearing

o angular frequency

op whirl frequency

O whirl ratio, equal to the ball speed to

the ball vibration frequency in the race

¼ op=o

�� non-dimensional parameter

1 INTRODUCTION

Ball bearings, known as antifriction bearings, cover a

major part of industrial applications. Relative ball

motion between the journal and housing plays a key

role in supporting load. Friction is reduced due to the

rolling action of balls and races. In practice, lubricant is

fed into the contact zone of the balls to reduce the

friction further. As the load is supported by a relatively

small contact area, the pressure developed in the area is

high, causing elastic deformation of the contact surfaces.

The elastic deformation and film thickness are some-

times of the same order of magnitude. Hence the elastic

deformation must be considered in the theory of

hydrodynamic lubrication. Therefore, it is known as

elastohydrodynamic lubrication (EHL).

Calculation of the stiffness of ball bearings is

performed by treating the contact as dry for simplicity,

and damping is almost neglected. The damping char-

acteristic has a substantial influence on the stability of a

system. The work presented here is an attempt to

evaluate the stiffness and damping characteristics of ball

bearings under EHL. The effect of the surface roughness

has also been taken into consideration.

Up to the mid-1970s, elliptical contacts in ball

bearings were treated as circular contacts or equivalent

line contacts to avoid computational time and cost.

However, subsequently the availability of faster com-

puters enabled researchers to work on actual elliptical

contacts. Hamrock and Dowson [1] presented a

comprehensive range of numerical solutions for fully

flooded point contacts in which the influence of the

ellipticity ratio was considered. The empirical expres-

sions presented in their work are widely used in the

design and analysis of machine elements presenting

elliptical, lubricated conjunctions. The fluid film thick-

ness in the contact zone becomes few tens of microns to

support the load, which is of same order as that of

surface roughness. This consideration has attracted the

attention of researchers. Patir and Cheng [2] presented

the formulation for the average Reynolds equation in

terms of pressure and shear flow factors with an

assumed Gaussian roughness distribution. The flow

factors were presented in the form of simple empirical

relations with directional roughness patterns. This

roughness model was used by Majumdar and Hamrock

[3] for line contact problems, where the average film gap

height is obtained analytically. A full numerical solution

for partial EHL in elliptical contacts was given by Zhu

and Cheng [4] using the same roughness model.

Now the theory of EHL is well understood. However,

fewer attempts are being made to study the dynamic

characteristics of elastohydrodynamically lubricated

contacts, which include the calculation of stiffness and

damping. Attempts have been made to investigate

damping in ball bearing contacts with relatively simpler

experimental models. Zeillinger et al. [5] presented

experimental work on the calculation of damping

coefficients of a ball bearing and subsequently followed

the theoretical work of Dietl [6]. In this theoretical

study, an elliptical elastohydrodynamically lubricated

contact was converted to an equivalent line contact

considering the major axis of the ellipse, and the mixed-

lubrication stiffness and damping coefficients are

evaluated. A relatively high axial load was applied,

which allows the assumption of equal load distribution

of each ball in the race. This high load in the contact

zone may lead to boundary lubrication. Measurement
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and theoretical estimation of damping coefficients and

related rotor dynamics behaviour have been given in

references [7] to [13].

In this paper, the theoretical formulation of the

stiffness and damping coefficients of a fully lubricated

ball bearing is presented considering the surface rough-

ness. Static and dynamic hydrodynamic pressure equa-

tions are derived using a linearized first-order

perturbation technique. Overall equivalent bearing

stiffness and damping directional matrices are obtained

from static load distribution and individual ball contact

stiffness and damping, which can be used directly in the

finite element method (FEM) analysis of the rotor–

bearing system.

2 THEORY

2.1 Elastic deformation

The two ellipsoids shown in Fig. 1 make a contact at a

single point under the unloaded condition and this is

called the ‘point’ contact. Geometrical parameters are

summarized as follows.

Curvatures in the x and y directions are defined as

1

Rx

¼ 1

rax
þ 1

rbx
,

1

Ry

¼ 1

ray
þ 1

rby

For the ball inner race contact,

Rx ¼ dðde � d cos bÞ
2de

, Ry ¼
rid

2ri � d

and, for the ball outer race contact,

Rx ¼ dðde þ d cos bÞ
2de

, Ry ¼
rod

2ro � d

The point contact spreads to form an elliptical contact

due to deformation of the mating surfaces under a

normal load. This contact envelope is defined by the

elliptical parameter k ¼ a=b, where a and b are the

semimajor and semiminor axes respectively. The com-

bined elastic deformation of two surfaces can be

represented by

Vðx, yÞ ¼ 2

pE0

ð ð

pðx0, y0Þ dx0 dy0

½ðx� x0Þ2 þ ðy� y0Þ2�1=2
ð1Þ

where

E0 ¼ 2

ð1� n2aÞ=Ea þ ð1� n2bÞ=Eb

The integral equation (1) can be solved numerically

taking the uniform pressure over an elemental area of

2a062b0 and following a flexibility method of solution

[14] to give

Vi ¼
2

pE0

X

n

j¼1

pj fi j for i, j ¼ 1, 2, . . . , n ð2Þ

where n is the total number of elements, pj is the

distributed pressure over segment j, and fij is the

influence coefficient representing the deflection of

segment i because of uniform pressure over j, given by

fij ¼ðxþ b0Þ ln
ðyþ a0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ a0Þ2 þ ðxþ b0Þ2
q

ðy� a0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� a0Þ2 þ ðxþ b0Þ2
q

2

6

4

3

7

5

þ ðyþ a0Þ ln
ðxþ b0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ a0Þ2 þ ðxþ b0Þ2
q

ðx� b0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ a0Þ2 þ ðx� b0Þ2
q

2

6

4

3

7

5

þ ðx� b0Þ ln
ðy� a0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� a0Þ2 þ ðx� b0Þ2
q

ðyþ a0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ a0Þ2 þ ðx� b0Þ2
q

2

6

4

3

7

5

þ ðy� a0Þ ln
ðx� b0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� a0Þ2 þ ðx� b0Þ2
q

ðxþ b0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� a0Þ2 þ ðxþ b0Þ2
q

2

6

4

3

7

5

2.2 Hydrodynamic equation

The hydrodynamic pressure and the mean film thickness

are obtained from the numerical solution of the

hydrodynamic equation. The governing hydrodynamic

equation for rough surfaces can be written as [2]

q

qx
fx

h3

12Z

qp

qx

� �

þ q

qy
fy

h3

12Z

qp

qy

� �

¼ Ua þUb

2

qhT

qx
þUa �Ub

2
s
qfs

qx
þ qhT

qt
ð3Þ

with film thickness

h ¼ hc � Vc þ
x2

2Rx

þ y2

2Ry

þ V

where

fx,fy ¼ pressure flow factors

fs ¼ shear flow factor

s ¼ combined standard deviation of rough surfaces

hT ¼ average gap height

hT is given by

hT ¼
ð

?

�h

ðhþ eÞf ðeÞ de

where f ðeÞ ¼ ½1=ðs
ffiffiffiffiffiffi

2p
p

Þ�e�e2=2s2 is the probability den-

sity function of combined roughness e. After performing
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integration and differentiating hT with respect to x or t,

qhT

qðx, tÞ ¼
1

2
1þ erf

h
ffiffiffi

2
p

s

� �� �

qh

qðx, tÞ ð4Þ

where

erfðxÞ ¼ 2
ffiffiffi

p
p

ðx

0

e�t2dt

The expressions for the flow factors can be found in

reference [2] and are

fx ¼
1� c1e

�gðh=sÞ for g4 1

1þ c1
h

s

� ��g

for g > 1

8

<

:

ð5Þ

and

fx

h

s
, g

� �

¼ fy

h

s
,
1

g

� �

where c1 and g are constants given in Table 1. g is

defined as the ratio of the lengths at which autocorrela-

tion functions of the x and y profiles reduce to 50 per

cent of the initial values. This can be thought of as the

length-to-width ratio of a representative asperity. As per

the definition, transverse, isotropic, and longitudinal

roughness patterns correspond to g < 1, g ¼ 1, and

g > 1 respectively.

Depending on the type of lubricant, a suitable

viscosity variation function can be assumed. For a

piezoviscous lubricant, the exponential pressure viscos-

ity relationship is adopted [15] as

Z ¼ Z0 eap ð6Þ

Although this relation is approximate, its use makes the

modified differential equation (8) linear. However, for a

more accurate prediction the relationship given by

Roelands [16] can be used. The introduction of the

latter relationship makes the differential equation non-

linear, which is difficult to handle.

Then pressure can be represented with viscosity

variation as

q ¼ 1� e�ap

a
ð7Þ

Making use of equations (3) to (7) and considering pure

rolling, the hydrodynamic governing equation can be

written in non-dimensional form as

q

q�xx
fx

�hh 3 q�qq

q�xx

� �

þ q

q�yy
fy

�hh 3 q�qq

q�yy

� �

¼ 6 �UU 1þ erf
L
ffiffiffi

2
p

�hh

�hhc

� �� �

q�hh

q�xx

þ 6 �UUO

�rr
1þ erf

L
ffiffiffi

2
p

�hh
�hhc

� �� �

q�hh

qt
ð8Þ

with film thickness

�hh ¼ �hhc � �VVc þ
�xx2

2
þ �yy2

2ðRy=RxÞ
þ �VV

where L ¼ hc=s quantifies the severity of roughness. It

can be seen from the expressions for fx and hT that,

when L approaches a large value, fx approaches 1 and

qhT=qx approaches qh=qx. Then equation (8) becomes

the classical two-dimensional Reynolds equation as

applicable for smooth surfaces. Generally L varies

from 1 for a rough surface to 6 for a smooth surface.

The present theory considers only the hydrodynamic

Fig. 1 Geometry of ball bearing and contacting elastic solids

Table 1 Constants used in equation (5)
for different values of g [2]

g c1 g

1

9
1.480 0.42

1

6
1.380 0.42

1

3
1.180 0.42

1 0.900 0.56
3 0.225 1.50
6 0.520 1.50
9 0.870 1.50
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load-supporting ability of a partial elastohydrodynami-

cally lubricated contact. The surface roughness which

influences the flow pattern in the contact region gives a

pressure distribution different from that of a smooth

surface contact. For any small value of L (say less than

0.5) the load-supporting ability due to asperity contact

will be predominant. The present method does not

consider this aspect. The solution of equation (8) with

appropriate boundary conditions will give the pressure

distribution and film thickness in the contact zone. To

find the stiffness and damping of this lubricated contact,

a linearized first-order perturbation method is employed

as applicable to small displacements. Then the dynamic

film thickness and pressure can be expressed as

h ¼ h0 þ Dh

q ¼ q0 þ qh Dhþ q _hh D _hh

ð9Þ

where

qh ¼
qq

qh
, q _hh ¼

qq

q _hh

Substituting equation (9) into equation (8), neglecting

the second-order terms and collecting the zeroth- and

the first-order terms for Dh and D _hh, the resulting set of

equations

q

q�xx
f0
x
�hh 3
0

q�qq0

q�xx

� �

þ q

q�yy
f0
y
�hh 3
0

q�qq0

q�yy

� �

¼ 6 �UU 1þ erf
L
ffiffiffi

2
p

�hh0
�hhc

� �� �

q�hh0

q�xx
ð10Þ

f0
x
�hh 3
0

q
2
�qqh

q�xx2
þ 3f0

x
�hh 2
0

q�hh0

q�xx
þ �hh 3

0

qf0
x

q�xx

� �

q�qqh

q�xx
þ 3f0

x
�hh 2
0 þ �hh 3

0 Dfx

� � q
2
�qq0

q�xx2
þ 6f0

x
�hh0 þ 3�hh 2

0 Dfx

� � q�qq0

q�xx

q�hh0

q�xx

þ 3�hh 2
0

qf0
x

q�xx
þ �hh 3

0

qðDfxÞ
q�xx

� �

q�qq0

q�xx
þ f0

y
�hh 3
0

q
2
�qqh

q�yy2
þ 3f0

y
�hh 2
0

q�hh0

q�yy
þ �hh 3

0

qf0
y

q�yy

 !

q�qqh

q�yy
þ 3f0

y
�hh 2
0 þ �hh 3

0 Dfy

� 	

q
2
�qq0

q�yy2

þ 6f0
y
�hh0 þ 3�hh 2

0 Dfy

� 	

q�qq0

q�yy

q�hh0

q�yy
þ 3�hh 2

0

qf0
y

q�yy
þ �hh 3

0

qðDfyÞ
q�yy

" #

q�qq0

q�yy
¼ 6 �UU Derf

q�hh0

q�xx

� �

ð11Þ

f0
x
�hh 3
0

q
2
�qq _hh

q�xx2
þ �hh 3

0

qf0
x

q�xx
þ 3f0

x
�hh 2
0

q�hh0

q�xx

� �

q�qq _hh

q�xx
þ f0

y
�hh 3
0

q
2
�qq _hh

q�yy2
þ �hh 3

0

qf0
y

q�yy
þ 3f0

y
�hh 2
0

q�hh0

q�yy

 !

q�qq _hh

q�yy

¼ 6 �UUO

�rr
1þ erf

L
ffiffiffi

2
p

�hh0
�hhc

� �� �

ð12Þ

is found. In the derivation of equations (10) to (12), the

variation in fx and erf functions with film thickness are

expressed using Taylor’s series according to

fxðh0 þ DhÞ ¼ f0
x þ Dfx

where f0
x ¼ fxðh0Þ and

Dfx ¼
c1 g

L
�hhc
e�gðL�hh0=�hhcÞ for g4 1

�c1 g
L
�hhc

L
�hh0
�hhc

� 	�ðgþ1Þ
for g > 1

8

>

>

<

>

>

:

and

Dfx L
�hh0
�hhc
, g

� �

¼ Dfy L
�hh0
�hhc
,
1

g

� �

For the error function erf

erf
L
ffiffiffi

2
p

�hh0 þ Dh

�hhc

� �

¼ erf
L
ffiffiffi

2
p

�hh0
�hhc

� �

þ Derf

where

Derf ¼ 2
ffiffiffi

p
p L

ffiffiffi

2
p

�hhc

� �

e� L�hh0=
ffiffi

2
p

�hhcð Þ2

3 SOLUTION

3.1 Steady-state solution

The steady-state pressure distribution is obtained with

simultaneous solution of equations (2) and (10) and film

thickness in equation (8) satisfying the boundary

conditions as used in reference [17] and using finite-

difference method with successive over-relaxation

scheme [18]. The numerical instabilities in the solution

due to high load-carrying capacity and high speed can

be avoided with the help of introduced relaxation

factors. Sometimes an alternative method of solution

such as adaptive meshing or the multi-grid method may

overcome this difficulty. Now

�qqnew ¼ �qqold þ orfq ð�qqnew � �qqoldÞ
with orfq ¼ 1:2--1:5

�hhnew ¼ �hhold 1þ orfh
�WWinew � �WWi

�WWi

� �� �

with orfh ¼ 0:01--1

�WWi the total load-carrying capacity of the
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elastohydrodynamically lubricated contact is

�WWi ¼
ð ð

A

�pp d�xx d�yy

where

�pp ¼ � lnð1� G�qqÞ
G

Figure 2 shows the non-dimensional pressure dis-

tribution as obtained under steady-state solution. The

pressure distribution pattern is similar to that of

previous work [17] and the non-dimensional minimum

film thickness ð0:118 78610�4Þ obtained from the

present work is close to that in the empirical relation

ð0:120 72610�4Þ of Hamrock and Dowson [17]. The

maximum pressure developed is 0.3023GPa for the data

given in Fig. 2 with the use of 69 mesh points in the

rolling direction and 33 mesh points in the transverse

direction. A finer mesh is used in the contact region.

Obviously with a higher applied load the peak pressure

will be more. In the present study the maximum peak

pressure obtained is 0.3872GPa under some operating

conditions. For a load that causes a pressure higher than

this value, use has to be made of still finer mesh sizes or

an alternative method of solution, such as the multi-grid

method.

3.2 Solution under dynamic conditions

Having obtained the steady-state pressure distribution

and film thickness, the pressure distribution under

dynamic conditions is obtained from the solution of

equations (11) and (12) satisfying appropriate modified

boundary conditions using the finite difference method

and successive over-relaxation scheme.

3.3 Stiffness and damping coefficients

The non-dimensional stiffness and damping coefficients

of a single ball contact can be written in terms of

dynamic pressure distributions as

�KK ¼ Kl

E 0Rx

¼
ð ð

A

�pph d�xx d�yy

�CC ¼ ClU

E0Rxr
¼
ð ð

A

�pp _hh d�xx d�yy

3.4 Overall equivalent stiffness and damping matrices of

ball bearings

The overall stiffness and damping of a ball bearing are

the results of the inner and outer race contact stiffnesses

and dampings of individual load-sharing balls, which

vary with contact geometry and load-carrying capacity.

A radially loaded ball bearing with radial clearance Pd

is shown in Fig. 3a; the inner ring makes contact under

static and no-load conditions. It is noticeable that the

clearance at the load line is zero and increases with the

angle j, which can be written as

c ¼ Pd

2
ð1� cosjÞ

Now application of the load causes elastic deformation

of the balls over the arc 2jl, and with dynamic

conditions there will be a lubricant film to support this

external load. Then total interference along the load line

ðj ¼ 0Þ is given by (see Fig. 3b)

d0 ¼ V0
c � h0c

where

V0
c ¼ combined inner and outer race elastic

deformations of the ball along the load

line ðj ¼ 0Þ
h0c ¼ combined inner and outer race lubricant film

thicknesses in the load line contact ðj ¼ 0Þ

Fig. 2 Steady-state EHL pressure distribution

Fig. 3 Radially loaded ball bearing
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Interference at any angular position from the load line

can be represented in terms of total radial distance of

inner ring or shaft from the concentric position d

according to

dj ¼ d cosj� Pd

2
ð13Þ

where

d ¼ d0 þ Pd

2

Using Hertz elastic deformation and the Hamrock–

Dowson [17] film thickness empirical relations,

dj ¼ KHW
2=3
j � KEHLW

�0:067
j ð14Þ

where KH is the proportionality of load deformation

constant from Hertz contact theory and

KEHL ¼ 2:69 �UU0:67
i G0:53

i ð1� 0:61 e�0:73kiÞ
þ 2:69 �UU0:67

o G0:53
o ð1� 0:61 e�0:73koÞ

is the proportionality constant for load and central film

thickness [19], and the subscripts i and o correspond to

the inner and outer race contacts respectively.

KH can be found using the empirical relations for

elliptical integrals z and = of Hertz contact given by

Brewe and Hamrock [20] according to

z ¼ 1:0003þ 0:5968

Ry=Rx

,

= ¼ 1:5277þ 0:6023 ln
Ry

Rx

� �

The deformation at the centre of contact is expressed as

d ¼ W

K

� �2=3

where

K ¼ pkE0 Rz

4:5=3

� �1=2

and combining the deformation due to inner and outer

race contact

d ¼ KHW
2=3

with

KH ¼ 1

Ki

� �2=3

þ 1

Ko

� �2=3

Now the total load-carrying capacity of the bearing is

Wx ¼
X

jl

0

Wj cosj ð15Þ

where

jl ¼ cos�1 Pd

2d

� �

Equation (15) is for a pure radial load. The radial, axial

loads, and moment due to misalignment for a bearing

having contact angle b are given by

Wx ¼
X

jl

0

Wj cosj cos b

Wa ¼
X

jl

0

Wj sin b

M ¼ �re
X

jl

0

Wj cosj sin b

Once the radial load is known, the other two compo-

nents of load, Wa and M, can be found. Equations (13)

to (15) will be solved using the non-linear least-square

method and iteratively with successive over-relaxation

on the change in d according to

dnew ¼ dold 1þ orfd
Wxnew �Wx

Wx

� �� �

with orfd ¼ 0:1--1

Having obtained the load sharing, the individual

equivalent stiffness and damping coefficients of each

ball can be calculated as a combination of inner and

outer race contact stiffnesses (Fig. 4).

If two linear spring–damper combinations are con-

nected in series as in Fig. 4, the resulting equivalent

frequency dependent stiffness and damping can be

determined with the help of the complex equation [6]

Kb þ joCb ¼ 1

Ki þ joCi

þ 1

Ko þ joCo

� ��1

ð16Þ

where o is the angular frequency, which is generally of

the inner race, outer race, cage, or ball pass frequencies

or combinations of two or more of these [21]. It is

appropriate to take the combination of inner and outer

race ball pass frequencies, as they contribute more in

dynamics of the system. Replacing a ball with the

equivalent spring–damper system (Fig. 4), it may be

possible to find the overall stiffness matrix Kb and

damping matrix Cb from the compatibility and
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coordinate transformation matrix as

Kb ¼
X

z

i¼1

Kb
i N

T
i N i

Cb ¼
X

z

i¼1

Cb
i N

T
i N i ð17Þ

where z is the number of balls under contact (within the

arc 2jl) and N is the transformation vector with global

displacement vector u ¼ fux, uy, yx, yygT. The displace-

ment along the axial direction is neglected, which is

generally not considered for the finite element formula-

tion of rotor systems. Also,

N i ¼

cosji cos b

sinji cos b

re sinji sin b

�re cosji sin b

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

T

4 APPLICATION TO ROTOR–BEARING

SYSTEMS

The stiffness and damping matrices as formulated in

equation (17) can be used in rotor–bearing systems.

Characteristic equations are summarized for the case of

a rotor–bearing system (Fig. 5) to understand the

influence of lubricated ball bearings on the dynamics

of rotor systems [22]. The system characteristic equation

will be assembled considering individual components

using the FEM [23, 24].

4.1 Finite rotor element

A Timoshenko beam element with four degrees of

freedom per node is considered [24], whose equation of

motion is given as

ðMR þMTÞ€uuþ ðB� OGÞ _uuþ ðKB � KAÞu ¼ F ð18Þ

where

MR ¼ rotational mass matrix

MT ¼ translational mass matrix

KB ¼ bending stiffness matrix of the Timoshenko

beam

KA ¼ axial stiffness matrix due to the axial load

B ¼ damping matrix

G ¼ gyroscopic matrix

u ¼ fux, uy, yx, yygTgeneralized degrees of freedom

F ¼ external excitation force

4.2 Bearing element

Neglecting the mass of bearing, the equation of motion

for bearing can be written as

Cb _uub þ Kbub ¼ Fb ð19Þ

where the subscript b corresponds to the bearing degrees

of freedom.

4.3 Rigid disc

The disc is assumed to have an effect like a concentrated

mass and so it can be characterized solely by kinetic

energies. Mass and inertia properties can be concen-

Fig. 4 Equivalent stiffness and damping model of ball bearing

Fig. 5 Rotor-bearing system model
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trated on the corresponding node on the shaft [22].

Hence, a disc element with a single node and four

degrees of freedom has been used for modelling the disc

according to

Md€uud � OGd _uud ¼ Fd ð20Þ

where Md and Gd are the mass and gyroscopic matrices

respectively of the disc. The subscript d corresponds to

the disc nodal degrees of freedom.

4.4 System equation of motion

After assembling equations (18) to (20), the system

equation of motion becomes

M€uuþD _uuþ Ku ¼ F ð21Þ

where M is the global mass matrix of the system and

includes the mass matrices of shaft and disc. The matrix

D includes the damping matrices of shaft and bearings

as well as the gyroscopic matrices of shaft and disc. The

global stiffness matrix K is the contribution of stiffness

matrices of shaft and bearings. Equation (20) can be

solved using the state-space method in the absence of

external excitation for the eigen analysis. The forced

vibration characteristics can be studied with inclusion of

the external excitation force.

5 CONCLUSION

A procedure for the numerical evaluation of the stiffness

and damping coefficients of isothermal, elastohydro-

dynamically lubricated ball bearings for elliptical con-

tacts is outlined. This needs simultaneous solution of the

elasticity and hydrodynamic equations as well as the

dynamic pressure equations and load distribution. A

non-uniform mesh is adopted for numerical solution,

which reduces the computational time. An attempt has

been made to derive suitable empirical formulae for the

calculation of stiffness and damping coefficients of

lubricated point contacts using a non-linear least-square

curve-fitting technique with different numerically eval-

uated data presented in the subsequent paper (Part 2).

This approach will avoid the necessity of time-consum-

ing numerical calculations. The analysis is applicable to

a complete range of fully lubricated ball bearings with

relatively moderate load.

REFERENCES

1 Hamrock, B. J., and Dowson, D. Isothermal elastohydro-

dynamic lubrication of point contacts. Part I: theoretical

formulation. Trans. ASME, J. Lubric. Technol., 1976,

98(2), 223–229.

2 Patir, N., and Cheng, H. S. An average flow model for

determining effects of three-dimensional roughness on

partial hydrodynamic lubrication. Trans. ASME, 1978,

100, 12–17.

3 Majumdar, B. C., and Hamrock, B. J. Effect of surface

roughness on elastohydrodynamic line contact. Trans.

ASME, J. Lubric. Technol., 1982, 104, 401–408.

4 Zhu, D., and Cheng, H. S. Effect of surface roughness on

the point contact EHL. Trans. ASME, J. Tribology, 1988,

110, 32–37.

5 Zeillinger, R., Springer, H., and Köttritsch, H. Experi-
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