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1. Introduction

Movement of contaminants through fractured porous media has 

received significant attention over the last few decades as the 

high permeability fracture provides a preferential pathway for 

the movement of contaminants in the heterogeneous subsurface 

system. Even though single species transport has been the major 

focus of research, multispecies transport nevertheless has its own 

significance. Multispecies contaminant transport is considered im-

portant since multiple reactive contaminates occur in many field 

situations. For example, the nuclear waste can get contaminated 

with radioactive materials which degrade to produce many daugh-

ter products such as tetrachloroethylene (PCE) and trichloro-

ethylene (TCE) and many byproducts [1, 2]. Analytical solutions 

have been provided by researchers in the past for multispecies 

contaminant transport in porous media [3-11]. Natarajan and 

Suresh Kumar [12] provided a finite difference numerical solution 

for the same. Moreover, Natarajan and Suresh Kumar [13] analysed 

the effect of non-linear sorption on multispecies solute transport 

in heterogeneous porous media. Recently, Natarajan [14] inves-

tigated the effect of distance dependent and time dependent dis-

persion coefficient on multispecies contaminant transport in po-

rous media. 

Although earlier studies have addressed the techniques that 

can be adopted to model the transport of multispecies contaminant 

transport in porous media, studies pertaining to the mobility and 

spreading characteristics of such solutes is yet to be studied. Spatial 

moment analysis is a method that is used in analysing the effect 

velocity, effective dispersion coefficient and dispersivity of the 

solutes within the system. 

Spatial moment analysis was introduced by Aris [15] to study 

the dispersion of a solute in a fluid flowing through a tube. Later, 

Marle et al. [16] and Guven et al. [17] used this method to analyse 

transport of non-reactive solutes for steady horizontal flow in a 

perfectly stratified aquifer. Freyberg [18] used this method to inter-

pret the data based on advection and dispersion of non-reactive 

tracers at the Borden site. Valocchi [19] examined the impact of 

adsorption kinetics upon the spatial moments of the depth averaged 

contaminant plume using the spatial moment analysis used by 

Horn [20] and Brenner [21]. Dagan and Cvetkovic [22] used spatial 

moment analysis to analyse the kinetically sorbing solute plume 

in a heterogeneous aquifer. Later, the method of spatial moment 

analysis was extended to heterogeneous porous media by several 

authors for single species solute transport [23-28]. While spatial 

moments have been used earlier for solute transport in homogeneous 

as well as heterogeneous porous media, the objective of the present 

study is to apply the method of spatial moment analysis for mul-

ti-species solute transport in a classical porous domain.
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2. Governing Equations

The basic equation describing the single species contaminant trans-

port for one dimensional porous media is of the form [29]












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Where c is the concentration of the contaminant, x indicates 

the dimension, t is the time, D is the hydrodynamic dispersion 

coefficient, v is the velocity of the fluid, and f is the reaction 

rate. 

When first order reaction rate is assumed, Eq. (1) becomes
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Where k is the first order reaction rate constant. The above 

equation can be extended to describe the multispecies contaminant 

transport in porous media. For example, the chlorinated solvent 

contaminants such as PCE degrades to produce daughter products 

such as TCE, dichloroethylene (DCE) and vinyl chloride (VC) [5] 

 →  →  →  →  [6] (3)

Where ci is the species concentration in the i th generation. 

Species i, which is produced from species i-1, also reacts to produce 

species i+1 and this further reacts to produce more species. The 

generalized form of such a sequential transport system can be 

described using the following equations.
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Where i is the index of the species, ki is the first order reaction 

rates, k0 = 0, y is the yield coefficient and n is the number of 

species.

Three species solute transport has been considered for this 

study. The numerical model for the three species transport in 

porous media is of the form:
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The initial and boundary conditions for the above equations 

are as follows:


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        (9)

            (10)

                (11)

Where C1, C2, C3 are the concentration of the first, second and 

third species; k1, k2, k3 are the first order reaction rates, y1 and 

y2 are the stochiometric yield coefficients and L is the length of 

the domain. The parameters used for this model is shown in Table 1. 

Table 1. Parameters Used in This Study (from Sun et al. 1999b) 

Parameters Values Unit

Dispersion coefficient (D) 4 m2/d

Velocity (v) 0.4 m/d

Decay rate of species 1 (k1) 0.2 d-1

Decay rate of species 2 (k2) 0.1 d-1

Decay rate of species 3 (k3) 0.02 d-1

Yield coefficient (y1) 0.5 -

Yield coefficient (y2) 0.3 -

3. Numerical Method and Spatial Moment Analysis 

An implicit finite difference numerical technique has been em-

ployed to model the partial differential equations. A constant con-

tinuous source of parent contaminant is injected at the inlet of 

the domain. This coupled system of equations is solved numerically 

using the upwind scheme for advection and second-order central 

difference finite difference scheme for dispersion. The implicit 

finite difference code for solving the coupled equations was written 

in FORTRAN 90 language and the same was validated using ana-

lytical solution. The validation plots have been provided in Figs. 

1(a) and 1(b). 

Having obtained the concentration distribution of the first spe-

cies contaminant in the porous system at each time level, from 

the above numerical method, the method of spatial moments as 

a function of travelling time is calculated. Such spatial moments 

of point concentration data provide an integrated measure of the 

concentration field over the entire extent of the domain. In the 

present model, the contaminant transport parameters are consid-

ered by characterizing the three spatial moments of the concen-

tration distribution along the fracture. 

The lower order spatial moments have been obtained using 

a similar approach to Guven et al. [17]. The zeroth moment (M0) 

is proportional to the total mass of the fluid in the high permeability 

fracture. The first spatial moment (M1) describes the displacement 

of the centre of the mass and the second spatial moment (M2) 

describes the spread of the deviation from the centre of mass. 

The expressions for the evaluation of the zeroth moment, first 

moment and second moment are given below.
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From these moments, the effective velocity and effective dis-

persion coefficient can be obtained using the following expressions:
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(15)

However, the above expressions are valid for pulse sources 

only [30]. Since the boundary condition in the inlet is assumed 

to be a constant continuous source, a first derivative of the concen-

tration in the fracture is used to obtain the equivalent pulse in 

order to use the above expressions (12) to (15). The spatial moment 

analysis has been carried out only for the first species contaminant 

in this study. 

4. Results and Discussion 

The results from the numerical model for multispecies solute trans-

port in porous media without sorption has been validated with 

analytical solution derived with different decay rate coefficients 

for the three species but same yield coefficient, provided by 

Slodicka and Balazova [9]. The dataset used for this validation 

has been provided in Table 2. 

Table 2. Dataset Used for the Validation of the Analytical Solution 

Provided by Slodicka and Balazova (2009) 

Parameters Values Unit

Dispersion coefficient (D) 0.18 cm2/h

Velocity (v) 0.2 cm/h

Decay rate of species 1 (k1) 0.05 h-1

Decay rate of species 2 (k2) 0.03 h-1

Decay rate of species 3 (k3) 0.02 h-1

Yield coefficient (y1) 1 -

Yield coefficient (y2) 1 -

4.1. Validation of the Numerical Model 

The comparison of the results from the numerical model with 

that of the analytical solution has been provided in Fig. 1(a) below. 

It observed from Fig. 1(a) that there is a good agreement between 

analytical solution and the numerical solution obtained from the 

present numerical model. Further, the numerical model results 

were validated with the analytical solution derived with different 

decay rate coefficients as well as yield coefficients for the three 

species, provided by Sun et al. [6]. The dataset that was used 

for this validation is same as the one used for conducting this 

study (Table 1). Fig. 1(b) illustrates the comparison between the 

analytical and numerical solution. 

It observed from Fig. 1(b) that there is a good agreement between 

analytical solution and the numerical solution obtained from the 

present numerical model.

a

b

Fig. 1. Validation of the numerical solution with analytical solution for 

multispecies solute transport with different decay rate coefficients 

and yield coefficients (a) Length of the domain = 40 cm, Simulation 

time = 400 h, (b) Length of the domain = 40 m, Simulation 

time = 40 d

4.2. Moments for Different Mean Fluid Velocities 

Fig. 2 provides the temporal variation of zeroth moment for different 

mean fluid velocities varying by an order of magnitude. Zeroth 

moment (the area under the curve) yields the total mass of solutes 

present in the physical system at any given time level. For the 

transport of solutes by advection and dispersion in the absence 

of solute decay, the temporal variation of zeroth moment will 

yield a straight line emanating from the zeorth moment (i.e., the 

ordinate) equal to unity (a line parallel to abscissa). However, 

it can be observed from Fig. 2 that the magnitude of zeroth moment 

remains at unity nearly up to 10 d, after which, the zeroth moment 

starts declining depending upon the magnitude of mean fluid 

velocity. Thus, it is very evident from Fig. 2 that the solutes do 

not undergo decay for the first 10 d, after which, the decaying 
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Fig. 2. Temporal distribution of zeroth moment of the first species for 

different fluid velocities. 

of solutes become very sensitive. It is also observed that the decaying 

of solutes is very minimal for the fluids with lowest mean fluid 

velocity, while the same is very high for the fluids with the largest 

mean fluid velocity. Also, the variation of solute mass after 10 

d remains nearly non-linear for the all the cases discussed in 

Fig. 2. It can thus be concluded from Fig. 2 that the decaying 

of solute mass increases as the magnitude of mean fluid velocity 

increases. A further observation indicates that there are actually 

three distinct regimes of solute mass, particularly at higher mean 

fluid velocities. When the mean fluid velocity is relatively higher, 

the zeroth moment follows three distinct regimes as shown in 

Fig. 2. The first regime pertains to the linear transportation of 

solutes in the absence of solute decay (up to 10 d); the second 

regime pertains to the strong non-linear decaying of solute mass 

(nearly up to 30 d); and the third asymptotic regime again represents 

the linear transportation of solutes but with the maximum decaying 

of solutes. Thus, the method of spatial moment analysis clearly 

provides the details of various time levels up to which the solutes 

undergo different levels of decay depending upon the magnitude 

of mean fluid velocity. Such details are highly critical in evaluating 

the concentration of the contaminants at various downstream 

points far away from the inlet source. 

Fig. 3 provides the temporal distribution of spatial first moment 

for different mean fluid velocities. The slope of the first spatial 

moment with respect to time provides the magnitude of the velocity 

of the solutes. It can be observed from Fig. 3 that the first moment 

has significant slope with time nearly up to 15 d, after which, 

the line reaches their respective asymptoticity, which indicates 

that the velocity of the solute has reached zero as all the solute 

mass has exhausted due to decaying of solutes. Thus, from Fig. 

3, it is the first 15 d that is very critical while assessing the solute 

velocity. It is also observed that the solute velocity reaches zero 

value much earlier for the cases with lower mean fluid velocities, 

while the time taken for the solute velocity to reach zero is larger 

for the cases with the larger mean fluid velocities. This is similar 

to the results obtained by Natarajan and Kumar [31] for colloidal 

Fig. 3. Temporal distribution of first moment of the first species for 

different fluid velocities. 

Fig. 4. Temporal distribution of second moment of the first species 

for different fluid velocities.

transport in fracture matrix coupled system. It can be concluded 

from Fig. 3 that the transportation of solutes with lower mean 

fluid velocity experiences the maximum decaying of solutes at 

the earliest, and subsequently, the velocity of the solute reaches 

zero value at the earliest. In a practical sense, a maximum decaying 

of solutes can be expected in a geological unit with a relatively 

lower hydraulic conductivity for a given hydraulic gradient. For 

example, transportation through clay will encounter more decaying 

of solutes than the transportation through sand.   

Fig. 4 provides the temporal variation of spatial second moment 

for the same set of mean fluid velocities as discussed in earlier 

plots. Half the slope of the spatial second moment with time pro-

vides the magnitude of dispersion coefficient. It can be observed 
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from Fig. 4 that the solutes moving with the maximum mean 

fluid velocity has experienced the maximum dispersion as 

expected. However, it can be noted that the magnitude of dis-

persion coefficient has reduced drastically (for example, nearly 

1.75 sq.m/d @ 10 d) from its initial value of 4 sq.m/d. Thus, 

it is interesting to note that the decaying of solutes mitigates 

the intensity of solute mixing significantly. It can also be noted 

that the profiles have three distinct regimes: the first regime 

with steep slope (nearly up to 10 d) indicates a linear variation 

of dispersion coefficient with time; the second regime with curved 

profile indicating a non-linear mixing of solutes with time 

(between 10 and 20 d); and the third asymptotic regime represent-

ing the absence of mixing indicating the completing exhaustion 

of solute mass (after 20 d). This is very much similar to the 

observation of Suresh Kumar [32] where the effect of mixing 

reduced with time due to the combined effect of matrix diffusion 

and decay. Thus, it can be concluded from Fig. 4 that the mixing 

of solutes is significantly reduced by the decaying of solutes, 

and that the intensity of reduction in mixing is a function of 

mean fluid velocity.

4.3. Moments for Different Dispersion Coefficients  

Fig. 5 provides the temporal variation of zeroth spatial moment 

for various dispersion coefficients. It can be observed from Fig. 

5 that the solute mass does not change under a relatively lower 

(D = 2 m2/d) dispersion coefficient, while there is a significant 

loss of solute mass at a later stage (after 10 d) with an increased 

dispersion coefficient (D = 4 & 6 m2/d). Thus, a higher dispersion 

coefficient is associated with a higher loss of solute mass. Thus, 

a larger decaying of solute mass can be expected from a system 

with a relatively higher dispersion coefficient, i.e., with a relatively 

heterogeneous system, as against the conventional homogeneous 

system. It can be concluded from Fig. 5 that the decaying of solute 

mass is higher in a heterogeneous system than a homogeneous 

system.

Fig. 5. Temporal distribution of zeroth moment of the first species for 

different dispersion coefficients.

Fig. 6. Temporal distribution of first moment of the first species for 

different dispersion coefficients.

Fig. 7. Temporal distribution of second moment of the first species 

for different dispersion coefficients.

Fig. 6 provides the temporal distribution of first spatial moment 

for various dispersion coefficients. It can be observed from 

Fig. 6 that all the profiles are highly non-linear during its early 

stage (0-10 d) followed by its asymptoticity (after nearly 15 

d). The asymptotic nature reflects the absence of solute mobility 

resulting from complete loss of solutes from decaying, while 

the initial non-linear variation of profiles reflects the time de-

pendent solute velocity as against the assumed constant solute 

velocity. 

Fig. 7 provides the temporal distribution of second spatial 

moment for various dispersion coefficients. It can be observed 

from Fig. 7 that the behavior of mixing of solutes is quite compli-

cated in the sense that there is no monotonous increase or 

decrease of dispersion coefficients with time for various constant 

dispersion coefficients considered. For example, the intensity 
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of mixing of solutes for D = 2 m2/d is lesser than that with D 

= 4 m2/d, and greater than D = 6 m2/d. It can be concluded 

from Fig. 7 that the dispersion coefficient is highly time dependent 

under decaying of solutes with a complex behavior of mixing 

of solutes.  

4.4. Moments for Different Decay Rate Coefficients  

Fig. 8 provides the temporal distribution of zeroth spatial moment 

for various decay rates of species 1. It can be observed from Fig. 

8 that there is a significant loss of solute mass for a relatively 

lower decay rate of species 1 (k1 = 0.2 /d), while there is nearly 

zero loss of solute mass for relatively higher decay rate of species 

1 (k1 = 0.4 & 0.6 /d). Thus, it can be concluded from Fig. 8 that 

the profiles with a relatively low decay rate of species 1 decays 

into nothing much faster than the rest of the cases implying that 

the profiles with relatively high decay rate of species 1 paves 

way for decaying of other species.

Fig. 9 provides the temporal distribution of first spatial moment 

for various decay rates of species 1. It can be observed from Fig. 

9 that there is a monotonous declining of solute velocity as the 

decay rate of species 1 increase. The profiles are highly non-linear 

during its early stage, while they reach asymptoticity at a later 

stage. It can be concluded from Fig. 9 that the solute velocity 

varies non-linearly with time during its initial period, while the 

solute mobility ceases with higher decay rates of species 1 much 

faster.

Fig. 10 provides the temporal distribution of second spatial 

moment for various decay rates of species 1. It can be observed 

from Fig. 10 that there is a monotonous declining of solute mixing 

as the decay rate of species 1 increase. Similar to Fig. 9, the profiles 

are highly non-linear during its early stage, while they reach asymp-

toticity at a later stage. It can be concluded from Fig. 10 that 

the solute mixing varies non-linearly with time during its initial 

period, while the solute mixing ceases with higher decay rates 

of species 1 much faster.

Fig. 8. Temporal distribution of zeroth moment of the first species for 

different decay rates.

Fig. 9. Temporal distribution of first moment of the first species for 

different decay rates.

Fig. 10. Temporal distribution of second moment of the first species 

for different decay rates.

4.5. Effective Dispersion Coefficient for Different Fluid 

Velocities, Dispersion Coefficients and Decay Rate 

Coefficients 

Fig. 11 shows the temporal distribution of effective dispersion co-

efficients of the solute for different fluid velocities. The dispersion 

coefficient is 1.5 at the beginning of the time period for all the 

fluid velocities considered in this study. The dispersion coefficient 

then increases sharply with increment in fluid velocity at the fifth 

day and then decreases with time. The dispersion coefficient reaches 

zero just before the 20th day is reached. The same phenomenon 

is observed for all the fluid velocities considered. Thus spatial mo-

ment analysis helps in determining the effective dispersion co-

efficient of the solute, which otherwise cannot be known. 
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Fig. 11. Temporal distribution of effective dispersion coefficients for 

different fluid velocities. 

Fig. 12. Temporal distribution of effective dispersion coefficient for differ-

ent dispersion coefficients.

Fig. 12 shows the temporal distribution of effective dispersion 

coefficients of the solute for different dispersion coefficients. 

The dispersion coefficient is different at the beginning for all 

the dispersion coefficients. Thereafter, an increment in the dis-

persion coefficient is observed. The increment is gradual for 

D = 2 m2/d, but the increment is sharp for other dispersion 

coefficients. Then, the dispersion coefficients decreases with 

time. The effective dispersion coefficient reaches zero early for 

high dispersion coefficients and later for low dispersion 

coefficients. 

Fig. 13 shows the temporal distribution of effective dispersion 

coefficients of the solute for different decay rate coefficients. The 

dispersion coefficient is 1.5 initially for all the decay rate co-

efficients considered in this study. The dispersion coefficient then 

Fig. 13. Temporal distribution of effective dispersion coefficient for differ-

ent decay rate coefficients. 

increases sharply for all the decay rate coefficients and then de-

creases with time. The dispersion coefficient reaches zero just 

before the 30th day is reached in all the cases. 

5. Conclusions

Spatial moment analysis has been carried out on the concentration 

of the first species of a multispecies contaminant transport in 

porous media. A constant continuous source was assumed for 

the first species at the inlet of the domain. The concentration 

profile of the contaminants was obtained using implicit finite differ-

ence technique. The conclusions from this study is summarised 

as follows:

1) The decaying of solute mass increases as the magnitude 

of mean fluid velocity increases.

2) The transportation of solutes with lower mean fluid 

velocity experiences the maximum decaying of solutes at 

the earliest.

3) The mixing of solutes is significantly reduced by the decaying 

of solutes and that the intensity of reduction in mixing is a function 

of mean fluid velocity.

4) The decaying of solute mass is higher in a heterogeneous 

system than a homogeneous system.

5) The dispersion coefficient is highly time dependent under 

decaying of solutes with a complex behavior of mixing of solutes.  

6) Loss of solute mass is relatively higher with lower decay 

rate of species 1.

7) The solute mobility and mixing varies non-linearly with 

time during its initial period, while the same ceases with higher 

decay rates of species 1 much faster.

8) The effective dispersion coefficient increases during the 

initial time period and then decreases with time duration for 

different fluid velocities, dispersion coefficients and decay rate 

coefficients. 
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