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Solution to Michaelis–Menten enzyme kinetic equation
via undetermined gauge functions: Resolving the nonlinearity
of Lineweaver–Burk plot
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Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India

~Received 10 January 2002; accepted 4 June 2002!

A composite approximate solution of Michaelis–Menten enzyme kinetic equation, which could

describe both transient and slow dynamics, was obtained by ordinary perturbation methods in terms

of undetermined gauge functions up to a first-order level. It was found that the zeroth-order

perturbation function itself solved the paradox due to steady-state approximation and predicted well

the maximum enzyme-substrate complex (@ES#max) and time tm to attain it. Extensive kinetic

simulations using a chemical kinetic simulator proved the validity of these results. A comparison

between simulated and predicted results showed that error in the prediction of tm was negligible

when perturbation parameter falls in the range of ~0,«!1!. Apart from these, also the effect of

transient dynamics on the linearity of Lineweaver–Burk plot ~especially near the origin! has been

explained. © 2002 American Institute of Physics. @DOI: 10.1063/1.1496459#

INTRODUCTION

Kinetics of enzyme reactions is very important in biol-

ogy, as well as in chemistry. The simplest enzyme kinetic

model which is most well known Michaelis–Menten1 model,

can be described by

E1S↔

k2

k1

ES→

k3

E1P ,

where E, S, ES, and P represent enzyme, substrate, enzyme–

substrate complex, and products, respectively. Here k1

(mol21 s21), k2 (s21) and k3 (s21) are the respective rate

constants. The system of coupled differential equations for

this model can be given as

d@ES#

dt
5k1~@E0#2@ES# !~@S0#2@ES#2@P# !

2~k21k3!@ES#

d@E#

dt
52

d@ES#

dt
5S d@S#

dt
1

d@P#

dt
D ~1!

d@P#

dt
5k3@ES# .

Since finding an explicit analytical solution for system ~1! is

impossible, usually this will be approximated by either

steady-state ~SSA! or equilibrium methods.2–4 The SSA is

based on the assumption that,

lim
t→`

d@ES#

dt
'0, ~2!

and it is valid only when the following inequalities are true.

@E0#!@S0# , k2@k3 , @S0#'@S# , @ES#<@E0# .
~3!

The necessity of aforementioned condition can be proved as

follows: Under condition ~3!, system ~1! can be approxi-

mated to

d@ES#

dt
5k1~@E0#2@ES# !@S#2~k21k3!@ES# . ~4!

The solution to Eq. ~4! for the initial condition @ES#t5050

can be given as

@ES#5

@E0#@S#

@S#1S k21k3

k1
D ~12e2~k1@S#1k21k3!t!, ~5!

and its derivative becomes

d@ES#

dt
5k1@E0#@S#e2~k1@S#1k21k3!t. ~6!

Now it is easy to verify that Eq. ~6! satisfies SSA conditions

given by Eq. ~2! as

lim
@S#→`

t→`

S d@ES#

dt
D50. ~7!

Therefore, the corresponding SSA limits are

lim
t→`

@ES#5

@E0#@S#

@S#1S k21k3

k1
D ,

lim
t→`

v5

d@P#

dt
5k3@ES#5

Vmax@S#

@S#1Km

, ~8!

where

a!Author to whom correspondence should be addressed; electronic mail:

muruga@tifr.res.in
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Vmax5k3@E0# , Km5

k21k3

k1

.

Here v is the reaction velocity and Vmax is its maximum.

Condition ~3! may hold in vitro ~under laboratory conditions!
but definitely not in vivo5–8 ~inside the living cells! where the

concentration of enzyme is always comparable with substrate

concentration. Another paradox due to SSA is as follows: For

system ~1!, the following inequality also should hold

@P#`5 lim
t→`

S k3E
0

t

@ES#dt D<@S0# , ~9!

which warns us against SSA given by Eq. ~5! in that situa-

tion, @P#` will become infinite which is impossible. Since

@S# is evolving with time, the self-consistency @given by third

inequality in Eq. ~3!# of SSA will fail after certain period.

Also, a problem due to bifurcation significantly modifies the

SSA, limit8 with respect to a slight change in the initial

values.9 Thus, in order to circumvent these disadvantages of

SSA many attempts were made to solve system ~1! by ordi-

nary and singular perturbation methods in terms of inner ~for

the fast component! and outer ~for the slow component!
solutions.10–12 In some attempts, the outer solutions of the

singular perturbation series were expanded in terms of com-

plicated Lambert’s functions.13,14 Recently, the transient and

slow kinetics were treated using a double perturbation series,

which yielded a partial decoupling at finite series expansion

and complete decoupling at infinite series expansion.3 Since

most of the treatments simplified the problem by decoupling,

they could not describe the dynamics for full time scale (0

<t<`) using a single perturbation series. In order to com-

bine the inner and outer solutions ~to get the composite ap-

proximation!, one has to use methods like the asymptotic

matching principle of Van Dyke.15 Since such solutions ob-

tained from earlier approaches were complicated and cum-

bersome to apply, there was a need to develop a simple so-

lution which could describe the fast ~presteady state!, slow

~steady state!, as well as the boundary layer dynamics better

than SSA. Thus, the aim of this article is to develop a com-

posite approximation to system ~1! ~which is practically ap-

plicable! by ordinary perturbation methods in terms of unde-

termined gauge functions, check its validity by stochastic

simulations, and show the effect of transient dynamics on the

linearity of the Lineweaver–Burk ~LB! plot.

REDUCTION OF SYSTEM „1… TO PERTURBATION
PROBLEM BY NEW SCALING SCHEME

System ~1! can be written symbolically as,

dx

dt
5k1~e02x !~s02x2p !2~k21k3!x , ~10!

dp

dt
5k3x , ~11!

where @ES#5x , @S0#5s0 , @E0#5e0 and @P#5p . From Eq.

~11!,

x5

1

k3
S dp

dt
D . ~12!

Using relation ~12!, Eq. ~10! can be simplified to

d2p

dt2 1~k1~e01s0!1k21k3!
dp

dt
2k1k3e0s0

52S k1p1

k1

k3

dp

dt
D dp

dt
2k1k3e0p . ~13!

The dimensionality of Eq. ~13! can be removed by the fol-

lowing scheme of scaling

P5

k1s0

k3e0

p , ~14!

t5k3t . ~15!

Therefore, Eq. ~13! is reduced to the following perturbation

problem with an ordinary perturbation parameter «5e0 /s0

d2p

dt2 1a
dP

dt
1bP2g52«S S P1

dP

dt D dP

dt D , ~16!

where

a5

k1~e01s0!1k21k3

k3

, b5

k1e0

k3

,

and g5S k1s0

k3
D 2

.

The perturbation parameter « has the following limit when

the SSA conditions hold

lim
s0→`

s0@e0

~« !50. ~17!

In the limit given by Eq. ~17!, Eq. ~16! becomes an ordinary

second-order linear differential equation with constant coef-

ficients!

SOLUTION TO EQ. „13… BY UNDETERMINED GAUGE
FUNCTIONS

The solution to Eq. ~16! can be expanded in terms of

gauge functions16 as

P5P01«P11o~«2!. ~18!

Putting Eq. ~18! into Eq. ~16! and equating coefficients of

similar powers of « on left- and right-hand side, we obtain

d2P0

dt2 1a
dP0

dt
1bP02g50, ~19!

d2P1

dt2 1a
dP1

dt
1bP152

dP0

dt S dP0

dt
1P0D , ~20!

d2P2

dt2 1a
dP2

dt
1bP252

dP1

dt S dP1

dt
1P1D . ~21!

The gauge functions should satisfy the following initial con-

ditions
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uPkut5050

UdPk

dt
U

r50

50 ~22!

k50,1,2.

The zeroth-order gauge function P0 from Eq. ~19! with the

aforementioned initial conditions can be given as

P05

g

b
1

g

b~d12d2!
~d2ed1t

2d1ed2t!, ~23!

where d1,25

2a6Aa2
24b

2
.

Also one should note that

~d11d2!52a ,d1d25b , ~24!

and its first-order derivative can be given as

dP0

dt
5

gd1d2

b~d12d2!
~ed1t

2ed2t! ~25!

putting

d152u1v , d252u2v , ~26!

where u5

a

2
, v5

Aa2
24b

2
.

Equations ~23! and ~25! can also be written as

P05

g

b
2

g

b sinh~h !
e2utsinh~vt1h !, ~27!

dP0

dt
5S 2g

v
D e2utsinh~vt !, ~28!

where h5tanh21S v

u
D .

Converting Eq. ~23! and ~25! to the original variables using

relations ~14! and ~15!

@P#5p05s01

s0

Aa2
24b

~d2ed1k3t
2d1ed2k3t!, ~29!

@ES#5x5

1

k3

dp0

dt
5

k1s0e0

Aa2
24b

~ed1k3t
2ed2k3t!. ~30!

This also can be written as in the form of Eq. ~27! and

~28! as

p5s02

s0

sinh~h !
e2k3utsinh~k3vt1h !, ~31!

@ES#5x5

2k1e0s0

k3Aa2
24b

e2k3utsinh~k3vt !. ~32!

It is clear that Eq. ~30! is a composite approximation ~it
contains the information of both transient and slow dynam-

ics! of system ~1!, which satisfies the condition given by Eq.

~9! and thus @ES# cannot be correctly approximated by SSA.

When (d1k3)>0, we can see that Eq. ~30! is reduced to SSA

and thus the first exponential is responsible for the slow dy-

namics. This is achieved because we did not decouple the

system ~1! completely. So the infinite expansion of series

~18! will actually yield the exact solution!

NONLINEARITY IN LINEWEAVER–BURK DOUBLE
RECIPROCAL PLOT

The nonlinearity of the usual set of Eadie–Hofstee plots

has been discussed in earlier works.17 Recently, based on the

KT theory of Yang et al.,18 the nonlinearity in the LB plot

due to diffusive dynamics19 has been explained. ~Here the

presteady-state rate constants are time dependent.! The effect

of transient dynamics on the linearity of the LB plot can be

shown as follows. When condition ~3! holds, Eq. ~30! re-

duces to SSA as

d1'0, e0!s0

@ES#5x'
k1s0e0

k1s01k21k3

~12e2~k1s01k21k3!tc! ~33!

v5k3x5

Vmaxs0

s01Km

w~s0 ,tc!,

w~s0 ,tc!512e2~k1s01k21k3!tc. ~34!

Here, tc is the reaction time, which is usually kept constant

in experiments. Therefore, the equation for the LB plot be-

comes

1

v

5S 1

Vmax

1

Km

Vmaxs0
D 1

w~s0 ,tc!

5S 1

Vmax

1

Km

Vmax
S 1

s0
D D S 1

12e2S k1

1/s0
1k21k3 D tc

D . ~35!

This clearly indicates that the LB plot is not linear when we

keep reaction time tc constant and change the substrate con-

centration. But this nonlinearity will dominate only when

(k21k3) or tc is very small compared to k1 , especially near

the origin. On the other hand, when these aforementioned

factors are sufficiently large, then it is easy to verify that the

nonlinear part in Eq.~35! becomes unity as in Eq.~36! and

also this warns us about the datapoints to be chosen to cal-

culate Km values. So, wherever possible, only data points

near the origin have to be taken for extrapolation and not

data points away from the origin as they lead to an erroneous

estimate of Km and Vmax . When we consider data points near

the origin, it is easy to verify that the nonlinear term in Eq.

~35! becomes unity as in Eq. ~37!

lim
tc→`

~k21k3!→`

5S 1

w~s0 ,tc!
D51, ~36!

lim

S 1

s0
D→0

S 1

w~s0 ,tc!
D51. ~37!

FIRST-ORDER PERTURBATION CORRECTION

The following results were generated using MAPLE7

mathematics software. Putting Eq. ~27! in Eq. ~20! and solv-

ing for P1 , which is the first-order gauge function, we obtain
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dP0

dt S dP0

dt
1P0D5

g2d1d2

b2 S 1

d12d2

~ed1t
2ed2t! D1

g2d1d2

b2 ~d2~11d1))e2d1t

1~d1~11d2))e2d2t
2~(d11d2)1d1d2!e ~d td2!t!,

~38!

d2P1

dt2 2~d11d2!
dP1

dt
1d1d2P15

g2d1d2

b2 S 1

d12d2

~ed1t
2ed2t! D1

g2d1d2

b2 ~d2~11d1!!e2d1t

1~d1~11d21e
2d2t

2~~d11d2!1d1d2!e ~d11d2!t!.

~39!

The solution to Eq. ~39! with an initial condition given by Eq. ~22! can be given as

P15

1

d12d2
S S ~nd22m !1

g2~~d12d2!t11 !

b~d12d2!2 D ed1t
2S ~nd12m !1

g2~~d12d2!t21 !

b~d12d2!2 D ed2tD
1

g2~~2d211 !d11d2!

b2~d12d2!2 e ~d11d2!t
g2

b2~d12d2!2 S d1
2~11d2!

2d22d1

e2d2t
1

d2
2~11d1!

2d12d2

e2d1tD ,

~40!

where

m52S 2d1d2g2

b2~d12d2!2 S d1~11d2!

2d22d1

1

d2~11d1!

2d12d2
D

2

g2~~2d211 !d11d2!~d11d2!

b2~d12d2!2 D ,

n5

g2

b2~d12d2!2 S ~~2d211 !d11d2!

2S d1
2~11d2!

2d22d1

1

d2
2~11d1!

2d12d2
D D .

After putting P0 and P1 in Eq. ~18!, we obtain

P5P01«P11o~«2!5

g

b S 11

1

~d12d2!
~d2ed1t

2d1ed2t! D
1

e0

s0
S 1

d12d2

~F~t !ed1t
2G~t !ed2t!2~Ae2d1t

1Be2d2t
2Ce ~d11d2!t! D1o~«2!, ~41!

where

A5

g2d2
2~11d1!

b2~d12d2!2~2d12d2!
,

B5

g2d1
2~11d2!

b2~d12d2!2~2d22d1!
,

C5

g2d1
2~~2d211 !d11d2!

b2~d12d2!2 ,

F~t !5

1

d12d2
S ~nd22m !1

g2~~d12d2!t11 !

b~d12d2!2 D ,

and

G~t !5

1

d12d2
S ~nd12m !1

g2~~d12d2!t21 !

b~d12d2!2 D .

In the same way, the derivative of P also can be expanded as

dP

dt
5

dP0

dt
1«

dP1

dt
1o~«2!

5

g

~d12d2!
~ed1t

2ed2t!1

e0

s0

dP

dt
. ~42!

When we compare Eqs. ~23! and ~25! with Eqs. ~41! and

~42!, we can conclude that even though the latter is closer to

real solution, in the application point of view, it is compli-

cated and, the nonlinear least-square fit may not yield any

new information about the system. But when we compare

Eq. ~8! with Eqs. ~23! and ~25!, it is clear that the latter gives

very good approximation closer to the real solution and also

satisfies the condition given by Eq. ~9!.

SIMULATION OF SYSTEM „1…

Since the time evolution of @ES# has turnover behavior,

in order to check the validity of solution ~30!, we can choose

the point (tm , @ES#max) to compare with simulated data. The-

oretical tm can be calculated by equating the time derivative

of @ES# to zero
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d@ES#

dt
5

dx

dt
5

1

k3

d2p0

dt2

5

k1s0e0

Aa2
24b

~d2ed1k3tm2d1ed2k3tm!50,

~43!

tm5

1

k3Aa2
24b

lnS d2

d1
D , ~44!

or from Eq. ~32!,

tm5

2

k3Aa2
24b

tanh21SAa2
24b

a
D . ~45!

A series of stochastic simulations of system ~1! were done

using CKS simulator ~Version 1.01!, IBM free software!
with the following settings: The total number of molecules of

10 000 enabled an equilibrium detection mode, the selection

frequency of 90%, an equilibrium test cycle length of 100

events, and the values of simulation parameters chosen were:

k151 mM21 s21, k25231022 s21, k35831023 s21 and

0.01<«<10. From the generated @ES# data, tm and @ES#max

were measured and compared with the predicted values @Eqs.

~44! and ~45!#. Theoretical Km and Vmax were calculated us-

ing Eq. ~8! and tm was calculated using Eqs. ~44! and ~45!.

RESULTS AND DISCUSSIONS

Simulation results are given to Table I along with pre-

dicted tm values and simulated data are shown in Fig. 1. The

results clearly indicate that the percentage error in the pre-

dicted tm by zeroth-order gauge function is much less in the

case of «,0.1 and «.1. But when «51, the error in the

prediction of tm is maximum ~36%!. In this condition, the

perturbation is completely ‘‘on.’’ So, we have to use Eqs.

~41! and ~42! to compute the tm values. But since most of the

biological conditions fall in the range of ~0,«!1!, the error

due to the zeroth-order gauge function is tolerable in biologi-

cal systems. Though the error is high in the case of «51,

when we compare @ES#max50.6634 mM from simulation

with SSA value of 0.9242 mM given by Eq. ~8!, the error is

40%. At the same time error in @ES#max due to zeroth-order

gauge function ~in this case, @ES#max50.49 mM! is only

24%. Thus, Eqs. ~29! and ~30! not only well predicted the tm

value but also @ES#max better than SSA. The effect of tc in an

LB plot that leads to nonlinearity near origin has been shown

in Fig. 2. From this plot, we can conclude that at a suffi-

ciently large ~in this case, tc.12 s! reaction time tc , the

nonlinearity will disappear.

CONCLUSIONS

A composite solution to Michaelis–Menten enzyme ki-

netic equation was obtained by ordinary perturbation meth-

ods up to the first-order level ~using MAPLE7! and it was

shown that the zeroth-order gauge function itself predicted

tm and @ES#max better than SSA by extensive stochastic simu-

lations using the CKS simulator. The effect of transient dy-

namics on the linearity of the LB plot also was demonstrated.

TABLE I. Simulation results.

s0

~mM!

e0

~mM!

tm~s!
~Simulated!

tm(s)

~Predicted!

@ES#max

~simulated!
~mM!

Percentage

error in

predicted tm

1 0.01 6.6750 6.6147 0.0094 0.9

1 0.10 4.6580 4.4040 0.0920 5.0

1 1.00 3.1210 1.9730 0.6634 36.0

0.1 1.00 2.8360 2.6360 0.0792 7.0

FIG. 1. The time evolution of @ES# from CKS simulation has been shown

for different values of e0 and s0 and same k151 mM21 s21, k252

31023 s21 and k35831022 s21. (I)-e051 mM, s051 mM, (II)-e0

50.01 mM, s051 mM, (III)-e051 mM, s050.1 mM, and (IV)-e050.1

mM, s051 mM.

FIG. 2. The effect of reaction time tc on double reciprocal plot has been

shown. Here, (1/Vmax)512.5 mM21 s21, (Km /Vmax)51.025 s, k151

mM21 s21, k231023 s21 and k35831022 s21 ~I!-tc51.5 s, (II)-tc

53 s, (III)-tc56 s. Solid line indicates the ideal plot predicted by SSA.
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