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1 Introduction

LetRn×n denote the set of all real square matrices of order n. We say that a real matrix A is nonnegative (posi-

tive) if it is entry wise nonnegative (positive) and we write A ≥ 0 (A > 0). This notation and nomenclature are

used for vectors also. If v is a nonzero andnonnegative columnor rowvector thenwe say that v is semipositive.

Definition 1.1. A ∈ Rn×n is called a Z-matrix if all the off-diagonal entries of A are nonpositive. If A is a Z-

matrix, then A can be expressed in the form A = sI − B, where B ≥ 0 and s ≥ 0. A Z-matrix A is called an

M-matrix if B ≥ 0 and 0 ≤ ρ(B) ≤ s, where ρ(B) denotes the spectral radius of B.

The term M-matrix was first introduced by Ostrowski in 1937 with reference to the work of Minkowski who

proved that if a Z-matrix A has all its row sums positive, then det A > 0. An extensive theory of M-matrices

has been developed relative to their role in numerical analysis, in modeling of an economy, optimization

and Markov chains [3]. Fifty equivalent conditions for a matrix to be an M-matrix are also given there. The

following is a sample of a couple of such equivalent conditions for a matrix to be a nonsingular M-matrix.

Theorem 1.1. (Theorem 6.2.3, [3]) Let A be a Z-matrix. Then the following statements are equivalent.

(i) A is a nonsingular M-matrix.

(ii) A−1 ≥ 0.

(iii) A has a convergent regular splitting, that is, A has a representation A = U − V, where U−1 ≥ 0, V ≥ 0, and

U−1V is convergent (ρ(U−1V) < 1).

In [3], the authors have also proved the following result for a singular M-matrix. For A ∈ Rn×n, AD denotes

the Drazin inverse of A (see section 2 for a definition).
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Theorem 1.2. (Lemma 6.4.4, [3]) Let A ∈ Rn×n and A = sI −B, where B ≥ 0. Then ρ(B) ≤ s if and only if AD ≥ 0.

Several generalizations of M-matrices have been studied in the literature. We recall a few of these, in what

follows. In [16], the class ofMν-matrices were introduced and the authors established thatMν-matrices have

properties that are analogous to those ofM-matrices. Amatrix A ∈ Rn×n is anMν-matrix if A can be expressed

as A = sI − B, where 0 ≤ ρ(B) ≤ s and there exists an integer m0 such that Bm ≥ 0 for every integer m ≥ m0.

This last condition on B is referred to as eventual nonnegativity.

In [11], the notion of pseudoM-matriceswere introduced. These arematrices of the form A = sI−B, where

s > ρ(B) > 0 and B is eventually positive, i.e., there exists a nonnegative integer m such that Bl > 0 for all

l ≥ m. The authors show that the inverse of a pseudo M-matrix is eventually positive.

In [12], matrices of the form A = sI −B were considered, where s > ρ(B)with B irreducible and eventually

nonnegative. The authors demonstrate that if an eventually nonnegativematrix B is irreducible and the index

of the eigenvalue 0 of B is at most 1, then there exists β > ρ(B) such that A = sI − B has a positive inverse for

all s ∈ (ρ(B), β).

Let us recall that A ∈ Rn×n is said to have the Perron-Frobenius property, if ρ(A) positive and is an eigen-

value of A such that, there is a nonnegative eigenvector corresponding to this eigenvalue. Let WPFn denote

the class of all matrices B ∈ Rn×n such that both B and Bt have the Perron-Frobenius property.

In [7], the authors consider yet another extension of M-matrices, namely, GM-matrices. A = sI − B is

called a GM-matrix, if 0 < s ≤ ρ(B) and B ∈ WPFn. The authors prove that A is a nonsingular GM-matrix if

and only if A−1 ∈ WPFn and 0 < λn < Re(λi) for i = 1, 2, · · · , n − 1 where λ1, λ2, . . . , λn are the eigenvalues

of A with |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. This is an analogue to Theorem 1.1, for GM-matrices.

When we attempt at extending the above result to singular matrices, we observe that the group inverse is

a better choice. The reason for this is given in the following. If λ is an eigenvalue of a nonsingular matrix A,

then we know that λ−1 is an eigenvalue of A−1, with the same eigenvector. But not every generalized inverse

retains this property. Such a property is referred to as the spectral property [1]. For example, if 0 ≠ λ is an

eigenvalue of a singular matrix A, then it is not true always that λ−1 is an eigenvalue of A†. On the other hand,

if λ is an eigenvalue of a singular matrix A, then we know that λ† is an eigenvalue of A#, where λ† = λ−1, if

λ = ̸ 0 and λ† = 0 if λ = 0. A precise statement is given in Theorem 2.3. It is for this advantage that we prefer

the group inverse to any other generalized inverse, in particular the Moore-Penrose inverse.

In this article, as our first objective, we extend the aforementioned result of [7] to a subclass of singular

matrices, which in turn also generalizes Theorem 1.2. This is done in Theorem 3.2. We consider matrices with

a nonnegative core nilpotent decomposition, i.e., those matrices A, of index k, which can be written as A =

P

[︃

C 0

0 N

]︃

P−1, where C and P are nonsingular matrices, N is nilpotent of index k (that is N l = 0 for all

l ≥ k), and O is the zeromatrix of appropriate size. P and P−1 are nonnegative. Thenwe consider, among such

matrices, only those matrices which have a representation similar to those of GM-matrices and call them as

GM#-matrices. Consequently, we prove that A is a GM#-matrix if and only if A# ∈ WPFn.

In the second part of this article, in Section 4, we consider various splittings of matrices of the type above

and obtain sufficient conditions for their convergence.We say that a splitting A = U−V converges if ρ(U−1V) <

1 when U is invertible and ρ(U#V) < 1 or ρ(U†V) < 1 (as the case may be) when U is a singular matrix (Here

U# denotes the group inverse of U and U† denotes the Moore-Penrose inverse of U. These definitions will be

given in the next section).

The paper is organized as follows. In the section that follows the introductory part, we present some

preliminary definitions and results. In the third section, we characterize GM#-matrices. In the last section,

we give some sufficient conditions for the convergence of splittings of GM#-matrices.
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2 Preliminary notions and results

Let A ∈ Rn×n. The unique matrix Y ∈ Rn×n such that AYA = A, YAY = Y , (AY)t = AY and (YA)t = YA is

called the Moore-Penrose inverse of A and is denoted by A†. Recall that the smallest positive integer k such

thatRn = R(Ak)⊕N(Ak), or equivalently, the smallest nonnegative integer k such that rank Ak = rank Ak+1 is

called the index of A and is denoted by Ind(A). It is well known that the index exists for all nonzero matrices.

Let Ind(A) = k. Then the unique matrix X, which satisfies the equations XAX = X, AX = XA and Ak+1X = Ak

is called the Drazin inverse of A and is denoted by AD. When k = 1, X is known as the group inverse of A

and is denoted by A#. The group inverse of A exists if and only if rank(A) = rank(A2). The group inverse, if it

exists, is unique.

The following Theoremgives a formula to find theDrazin inverse (andhence the group inverse, if it exists)

of A from the core nilpotent decomposition of A.

Theorem 2.1. (Theorem 7.2.1, [5]) If A ∈ Rn×n is such that Ind(A) = k, then there exists a nonsingular matrix P

such that A = P

[︃

C 0

0 N

]︃

P−1, where C is nonsingular and N is nilpotent of index k. Further, if P, C and N are

any matrices satisfying the above conditions, then AD = P

[︃

C−1 0

0 0

]︃

P−1.

Theorem 2.2. (Corollary 7.2.2, [5]) For A ∈ Rn×n, A# exists if and only if there exists nonsingular matrices P

and C such that A = P

[︃

C 0

0 0

]︃

P−1. If A# exists then A# = P

[︃

C−1 0

0 0

]︃

P−1.

The spectral property of the group inverse is given by the following Theorem. Let λ† denote 1
λ if λ ≠ 0 and 0,

if λ = 0.

Theorem 2.3. (Theorem 7.4.1, [5]) For A ∈ Rn×n, with index 1, λ ∈ σ(A) if and only if λ† ∈ σ(A#). That is, if

σ(A) = {λ1, λ2, . . . , λn}, then σ(A
#) = {λ†1, λ

†
2, . . . , λ

†
n}.

The reverse order law does not hold for the group inverse in general. However, the commutativity of A and B

guarantees that (AB)# = B#A#.

Theorem 2.4. (Theorem 7.8.4, [5]) Let both A, B ∈ Rn×n have index 1. If AB = BA, then

(i) (AB)# = B#A# = A#B#

(ii) A#B = BA#, AB# = B#A.

Next, we recall the notion of dominant and strictly dominant eigenvalues of a square matrix A.

Definition 2.1. For A ∈ Rn×n , σ(A) denotes its spectrum. An eigenvalue λ ∈ σ(A) is called dominant if |λ| =

ρ(A) and strictly dominant if λ = ρ(A), λ is a simple eigenvalue and is strictly larger in modulus than any other

eigenvalue, i.e., |λ| > |µ| for all µ ∈ σ(A), with µ ≠ λ. The eigenspace of A for the eigenvalue λ is denoted by

Eλ(A). Thus Eλ(A) = N(A − λI), the null space of A − λI.

The definition of amatrix having the Perron-Frobenius propertywasmentioned in the introduction.We recall

a stronger notion, next.

Definition 2.2. We say that A ∈ Rn×n has the strong Perron-Frobenius property if the spectral radius ρ(A)

is a strictly dominant eigenvalue and there is a positive eigenvector corresponding to ρ(A). By PFn we mean

the collection of matrices A such that both A and At have the strong Perron-Frobenius property. As mentioned

earlier, WPFn denotes the collection of matrices A such that both A and At have the Perron-Frobenius property.
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Recall that a matrix A is said to be eventually nonnegative (eventually positive) if Ak ≥ 0 (Ak > 0) for all k ≥ k0
for some positive integer k0.

The inclusions in the following are proper (see [6], Section 5): PFn ⊂ {nonnilpotent eventually nonneg-

ative matrices}⊂ WPFn.

For A ∈ Rn×n, we denote by G(A), the graph with vertices 1, 2, . . . , n in which there is an edge (i, j) if

and only if aij ≠ 0. We say that vertex i has access to vertex j if i = j or if there is a sequence of vertices

{v1, v2, . . . , vr} such that v1 = i, vr = j and (vi , vi+1) is an edge in G(A), for i = 1, 2, . . . , r − 1. If i has access

to j and j has access to i then we say that i and j communicate. Equivalence classes under the communication

relation on the set of vertices of G(A) are called classes of A. By A[α]we denote the principal sub-matrix of A

indexed by α ⊆ {1, 2, . . . , n}. The graph G(A[α]) is called a strong component of G(A) whenever α is a class

of A. We say that G(A) is strongly connected whenever A has only one class, or equivalently, whenever A is

irreducible. We call a class α basic if ρ(A[α]) = ρ(A). We call a class α initial if no vertex in any other class β

has access to any vertex in α and final if no vertex in α has access to a vertex in any other class β.

In the rest of this section we collect results that will be used in the sequel. The next two theorems give

a relation between eventually positive (eventually nonnegative) matrices and the matrices with PFn (WPFn)

property.

Theorem 2.5 (Theorem 2.2, [15]). For any A ∈ Rn×n, the following properties are equivalent:

(i) A and At possess the strong Perron-Frobenius property.

(ii) A is an eventually positive matrix.

(iii) At is an eventually positive matrix.

Theorem 2.6. (Theorem 2.3, [15]) Let A ∈ Rn×n be an eventually nonnegative matrix which is not nilpotent.

Then both A and At possess the Perron-Frobenius property.

The following result can be proved using the spectral decomposition. A proof is given in [9]. Gλ(A) denotes

the generalized eigenspace of A corresponding to the eigenvalue λ.

Theorem 2.7. (Theorem 2.1, [8]) Let A ∈ Rn×n have k distinct eigenvalues λ1, λ2, . . . , λk where |λ1| ≥ |λ2| ≥

. . . ≥ |λk|. Let P be the projection matrix onto Gλ1 (A) along ⊕k
j=2Gλj (A) (P is called the spectral projector) and

let Q = A − λ1P. Then, PQ = QP and ρ(Q) ≤ ρ(A). Furthermore, if the index of A − λ1I is 1 then PQ = 0.

Next we present two results, where the first one gives a necessary and sufficient condition for a matrix to be

in PFn, while the second one gives a characterization for a matrix to be inWPFn.

Theorem 2.8. (Theorem 2.2, [8]) For any matrix A ∈ Rn×n, the following statements are equivalent:

(i) A ∈ PFn.

(ii) ρ(A) is an eigenvalue of A and in the spectral decomposition A = ρ(A)P + Q we have P > 0, rank P = 1 and

ρ(Q) < ρ(A), where P denotes the spectral projector.

Theorem 2.9. (Theorem 2.3, [8]) For any matrix A ∈ Rn×n, the following are equivalent:

(i) A ∈ WPFn has a strictly dominant eigenvalue.

(ii) ρ(A) is an eigenvalue of A and in the spectral decomposition A = ρ(A)P + Q we have P ≥ 0, rank P = 1 and

ρ(Q) < ρ(A), where P denotes the spectral projector.

The following two results together give another sufficient condition for a matrix to be inWPFn .

Theorem 2.10. (Theorem 3.6, [8]) If the matrix A has a basic and initial class α for which A[α] has a right

Perron-Frobenius vector, then A has the Perron-Frobenius property.

Theorem 2.11. (Theorem 3.7, [8] If the matrix A has a basic and final class β for which (A[β])t has a right

Perron-Frobenius vector, then At has the Perron-Frobenius property.
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3 GM#-matrices

As mentioned earlier, in [7], the authors proposed the notion of a GM-matrix and gave a characterization for

a nonsingular GM-matrix. We give the statement of this result for ready reference and later use.

Theorem 3.1. (Theorem 3.1, [7]) Let A ∈ Rn×n. Let the eigenvalues of A (when counted with multiplicity) be

arranged in the following manner: |λ1| ≥ |λ2| ≥ . . . |λn|. Then the following are equivalent:

(i) A is a nonsingular GM-matrix.

(ii) A−1 ∈WPFn and 0 < λn < Re(λi) for all λi ≠ λn.

Next, we propose the definition of a nonnegative core-nilpotent decomposition.

Definition 3.1. Let A ∈ Rn×n be of index k. A core-nilpotent decomposition, A = P

[︃

C 0

0 N

]︃

P−1 is called a

nonnegative core-nilpotent decomposition if P ≥ 0 and P−1 ≥ 0. Here C is nonsingular, N is nilpotent of index k

and O is the zero matrix of the appropriate size.

We now present the main result of this article, which is an analogue of Theorem 3.1 for singular matrices.

First, we consider the class of all matrices for which the group inverses exist.

Theorem 3.2. Let A ∈ Rn×n be of index 1. Let {λ1, λ2, . . . , λm}, the non-zero eigenvalues of A, be such that

|λ1| ≥ |λ2| ≥ . . . ≥ |λm|, where 1 < m < n. Further, assume that, A = P

[︃

C 0

0 0

]︃

P−1 is a nonnegative core

nilpotent decomposition. Then the following statements are equivalent:

(i) A can be written as A = ρ(B)I − B, with P−1BP =

[︃

B1 0

0 B2

]︃

, where B1 ∈ WPFm.

(ii) A# ∈ WPFn and 0 < λm < Re(λi), for i = 1, 2, . . . ,m − 1.

Proof. Wehave A = P

[︃

C 0

0 0

]︃

P−1, P ≥ 0, P−1 ≥ 0 and C is nonsingular. As the index of A is 1, A# exists and

so A# = P

[︃

C−1 0

0 0

]︃

P−1, by Theorem 2.2. By Theorem 2.3, the nonzero eigenvalues of A# are λ−11 , λ−12 , . . . , λ−1m

(including multiplicities) and 0 is also an eigenvalue of A#, with n −m as its multiplicity. So, ρ(A#) = |λm|
−1 =

ρ(C−1), as the eigenvalues of C−1 are same as the nonzero eigenvalues of A#.

(i)⇒ (ii). Let A = ρ(B)I − B, with P−1BP =

[︃

B1 0

0 B2

]︃

, where B1 ∈ WPFm. We prove that ρ(A#) is an

eigenvalue of A# with a nonnegative eigenvector corresponding to it. From A = ρ(B)I − B, we have

P

[︃

C 0

0 0

]︃

P−1 = ρ(B)

[︃

Im 0

0 In−m

]︃

− B.

Thus,

[︃

C 0

0 0

]︃

= ρ(B)

[︃

Im 0

0 In−m

]︃

− P−1BP = ρ(B)

[︃

Im 0

0 In−m

]︃

−

[︃

B1 0

0 B2

]︃

.

We thus have C = ρ(B)Im − B1 and O = ρ(B)In−m − B2. Thus, B2 is a diagonal matrix of order n − m

with ρ(B) as its diagonal entries. Clearly, ρ(B) ≥ ρ(B1). Since C is nonsingular, we have ρ(B) > ρ(B1). Also,

B1 ∈ WPFm. So, C is a nonsingular GM-matrix. Therefore, by Theorem 3.1, C−1 ∈ WPFm and 0 < λm < Re(λi)

for i = 1, 2, . . . ,m − 1.

Next we show that A# ∈ WPFn. Let w0, u0 ∈ Rm
+ be such that

C−1w0 = ρ(C−1)w0 = |λm|
−1w0 = λ−1m w0

and (C−1)tu0 = ρ(C−1)u0 = λ−1m u0.

Set w := (w0, 0)t ∈ Rn. Then w ≥ 0. Further,
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A#(Pw) = P

[︃

C−1 0

0 0

]︃

w = P

[︃

C−1 0

0 0

]︃[︃

w0

0

]︃

= P

[︃

C−1w0

0

]︃

= P

[︃

ρ(C−1)w0

0

]︃

= ρ(C−1)Pw = λ−1m Pw =

ρ(A#)Pw.

Thus, A#(Pw) = ρ(A#)Pw, where Pw ≥ 0 (since P ≥ 0). Hence, Pw is a right Perron-Frobenius vector for

A#. This implies that A# has the Perron-Frobenius property. In a similar way, we can prove that (A#)t also has

the Perron-Frobenius property. So, A# ∈ WPFn.

(ii)⇒ (i): Let A# ∈ WPFn and Re(λi) > λm > 0 for i = 1, 2, · · · ,m − 1. So, there exists v ≥ 0, w ≥ 0 in Rn

such that A#v = ρ(A#)v = ρ(C−1)v and (A#)tw = ρ(A#)w = ρ(C−1)w. Now A# = P

[︃

C−1 0

0 0

]︃

P−1. So,

[︃

C−1 0

0 0

]︃

P−1v = P−1A#PP−1v = ρ(A#)P−1v = ρ(C−1)P−1v.

Let v0 ∈ Rm be defined such that its m coordinates are the first m coordinates of P−1v in that order.

Thus v0 ≥ 0. We show that v0 ≠ 0. Let v = (v1, v2, . . . , vn)
t. As P and P−1 are both nonnegative, P and

P−1 are both monomial matrices, i.e., each row and column has only one nonzero entry. Therefore, P−1v =

(k1ivi , k2jvj , . . . , knlvl)
t, where kji is the unique positive entry in the j

th row of the matrix P−1. If v0 = 0, then

P−1v = (0, km+1svs , . . . , knlvl)
t (where 0 denotes a zero vector of appropriate order). From the last equation,

we then have

(0, 0)t = ρ(C−1)(0, km+1svs , · · · , knlvl)
t ,

that is, P−1v = 0. This implies that v = 0, a contradiction. So v0 ≠ 0. Hence,

[︃

C−1 0

0 0

]︃[︃

v0

0

]︃

= ρ(C−1)

[︃

v0

0

]︃

.

So, C−1v0 = ρ(C−1)v0. This implies that C−1 has the Perron-Frobenius property. In a similar way we can prove

that (C−1)t also has the Perron-Frobenius property. Thus, C−1 ∈ WPFm. Further, the eigenvalues of C are the

nonzero eigenvalues of A, which satisfy the condition that 0 < λm < Re(λi), for i = 1, 2, · · · ,m−1. Therefore,

by Theorem 3.1, C is a nonsingular GM-matrix. Hence, there exists B1 ∈ Rm×m such that C = sI − B1 with

B1 ∈ WPFm and s > ρ(B1). Now, setB = P

[︃

B1 0

0 B2

]︃

P−1 ,whereB2 = sIn−m. Then ρ(B) = s, since s > ρ(B1).

Now, sIn−B = s

[︃

Im 0

0 In−m

]︃

−P

[︃

B1 0

0 sIn−m

]︃

P−1 = P

[︃

sIm − B1 0

0 0

]︃

P−1 = P

[︃

C 0

0 0

]︃

P−1 = A. Thus

A has the given property, completing the proof of (ii)⇒ (i).

Remark 3.1. Theorem 3.2 holds good when A is of index k where k > 1. In this case we must replace A# by AD,

the Drazin inverse of A.

We illustrate the above theorem by the following example.

Example 3.1. Let A =

⎡

⎢

⎢

⎢

⎣

7 0 −2 0

0 1 0 0
3
2 0 11 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

. Then rank A = rank A2 and so A# exists. Also, σ(A) = {10, 8, 1, 0}, ρ(A) =

10. Let P =

⎡

⎢

⎢

⎢

⎣

2 0 0 0

0 0 4 0

0 3 0 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

. Then P−1AP =

⎡

⎢

⎢

⎢

⎣

7 −3 0 0

1 11 0 0

0 0 1 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, so that C =

⎡

⎢

⎣

7 −3 0

1 11 0

0 0 1

⎤

⎥

⎦

and C−1 =

1
80

⎡

⎢

⎣

11 3 0

−1 7 0

0 0 80

⎤

⎥

⎦

. σ(C) = {10, 8, 1}. Now, let B =

⎡

⎢

⎢

⎢

⎣

13 0 2 0

0 19 0 0

− 3
2 0 9 0

0 0 0 20

⎤

⎥

⎥

⎥

⎦

. For one thing, B � 0 and for an-

other, B ∈ WPF4. The latter assertion follows from the fact that the eigenspace corresponding to the eigen-

value 20 is spanned by the vector (0, 0, 0, 1)t. Then A = ρ(B)I − B, where σ(B) = {20, 19, 12, 10}. Also,
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P−1BP =

⎡

⎢

⎢

⎢

⎣

13 3 0 0

−1 9 0 0

0 0 19 0

0 0 0 20

⎤

⎥

⎥

⎥

⎦

, with B1 =

⎡

⎢

⎣

13 3 0

−1 9 0

0 0 19

⎤

⎥

⎦

. B1 ∈ WPF3, since σ(B1) = {19, 12, 10} and

ρ(B1) = 19 is an eigenvalue of B1 with an eigenvector (0, 0, 4)t. Thus condition (i) of Theorem 3.2 holds.

Now A# = P

[︃

C−1 0

0 0

]︃

P−1 = 1
160

⎡

⎢

⎢

⎢

⎣

22 0 4 0

0 160 0 0

−3 0 14 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

. Since σ(A#) = {0, 1, 1
10 ,

1
8} and ρ(A#) = 1 is an

eigenvalue of A# with an eigenvector (0, 4, 0, 0)t, we have A# ∈ WPF4 i.e., condition (ii) of Theorem 3.2 is

satisfied.

The nonnegativity of P and P−1, cannot be dispensed with, in Theorem 3.2. We illustrate this by the following

example.

Example 3.2. Let A =

⎡

⎢

⎣

7 0 8
3

0 0 0

12 0 11

⎤

⎥

⎦

and P =

⎡

⎢

⎣

2 0 0

0 0 4

0 −3 0

⎤

⎥

⎦

. Then P−1AP =

⎡

⎢

⎣

7 −4 0

−8 11 0

0 0 0

⎤

⎥

⎦

. Hence,

C =

[︃

7 −4

−8 11

]︃

. Let B =

⎡

⎢

⎣

9 0 − 8
3

0 16 0

−12 0 5

⎤

⎥

⎦

. Then A = 16I − B, where σ(B) = {16, 13, 1}, ρ(B) = 16.

P−1BP =

⎡

⎢

⎣

9 4 0

8 5 0

0 0 0

⎤

⎥

⎦

, so that B1 =

[︃

9 4

8 5

]︃

. Since B1 ≥ 0, we have B1 ∈ WPF2. On the other hand,

A# = 1
45

⎡

⎢

⎣

11 0 − 8
3

0 0 0

−12 0 7

⎤

⎥

⎦

, σ(A#) = { 1
15 ,

1
3 , 0} and ρ(A

#) = 1
3 . But the eigenvector corresponding to

1
3 is of the

form (2α, 0, −3α)t, where α is any real number.

Next we extend the definition of a GM-matrix to any square matrix of index 1.

Definition 3.2. Let A be a square matrix of index 1, having a nonnegative core nilpotent representation. We

say that A is a GM#-matrix if it satisfies property (i) of Theorem 3.2. A is said to be an inverse GM#-matrix if A
#

has that property.

In view of Theorem 3.2, we have the following:

Corollary 3.1. A matrix C ∈ Rn×n is an inverse GM#-matrix if and only if C ∈WPFn and Re(λ−1) > (ρ(C))−1 for

all λ ∈ σ(C), λ = ̸ ρ(C). Every nonzero real eigenvalue of an inverse GM#-matrix is positive.

4 Splittings of GM#-matrices

In [10] and [14], the authors studied various splittings of rectangular matrices. All those splittings involve

Moore-Penrose inverse. Asmentioned in the introduction, only the group inverse has spectral properties simi-

lar to those of inverse of a nonsingularmatrix. So,we study those splittings ofmatrices that uses group inverse

of matrix.

In this section, we define various splittings of a GM#-matrix and give sufficient conditions for their con-

vergence. We begin by recalling some definitions.



172 | Agrawal N. Sushama et al.

Definition 4.1. A splitting A = U − V is called

(1) a weak (nonnegative) splitting if U−1V ≥ 0.

(2) a weak-regular splitting if U−1V ≥ 0 and U−1 ≥ 0.

(3) a regular splitting if U−1 ≥ 0 and V ≥ 0.

The notion of proper splitting of matrices plays a crucial role in characterizing various generalizations of

monotone matrices. Let us recall its definition [4].

Definition 4.2. Let A ∈ Rn×n. Then A = U − V is said to be a proper splitting if R(A) = R(U) and N(A) = N(U).

The following theorem gives some of the properties of a proper splitting in the context of the group inverse.

For a proof we refer to [13].

Theorem 4.1. Let A = U − V be a proper splitting of A. Suppose that A# exists. Then U# exists and

(a) AA# = UU#; A#A = U#U; VU#U = V; UU#V = V.

(b) A = U(I − U#V) = (I − VU#)U.

(c) Both I − U#V and I − VU# are invertible.

(d) A# = (I − U#V)−1U# = U#(I − VU#)−1.

The next result presents necessary and sufficient conditions for the convergence of proper splitting of amatrix

of index 1. This is an extension of Lemma 4.5 of [7] for the case of singular matrices.

Theorem 4.2. Let A = U − V be a proper splitting of a matrix A of index 1. Then the following are equivalent:

(i) The splitting is convergent. i.e., ρ(U#V) < 1.

(ii) min{Re(λ) : λ ∈ σ(A#V)} > − 1
2 .

(iii) min {Re(λ) : λ ∈ σ(VA#)} > − 1
2 .

Proof. (i) ⇔ (ii): Let A = U − V be a proper splitting. Then by Theorem 4.1, A = U(I − U#V) = (I − VU#)U

and A# = (I − U#V)−1U# = U#(I − VU#)−1. So, A#V = (I − U#V)−1U#V. Hence, if λ is an eigenvalue of U#V

with the eigenvector v, then A#Vv = (I − U#V)−1U#Vv = λ
1−λ v. Note that λ = ̸ 1 (since I − U#V is invertible).

This implies that λ
1−λ ∈ σ(A#V). Again U = A + V = A − (−V). This is a proper splitting of U. So U#(−V) =

(I − A#(−V))−1A#(−V) i.e., U#V = (I + A#V)−1A#V. As above, we can see that if µ is an eigenvalue of A#V with

an eigenvector w, then µ
1+µ is an eigenvalue of U#V. Thus µ ∈ σ(U#V) if and only if there exists a unique

λ ∈ σ(A#V) such that µ = λ
1+λ . The inequality ρ(U

#V) < 1 holds if and only if |µ| < 1 for all µ ∈ σ(U#V), which

in turn holds if and only if | λ
1+λ | < 1 for all λ ∈ σ(A#V). This is true if and only if (Re(λ))2+(Img(λ))2

(1+Re(λ))2+(Img(λ))2
< 1 for all

λ ∈ σ(A#V), which in turn holds if and only if Re(λ) > − 1
2 for all λ ∈ σ(A#V). Finally, this happens if and only

if min{Re(λ) : λ ∈ σ(A#V)} > − 1
2 . This proves (i)⇔ (ii).

The equivalence of (i) and (iii) follows by observing that the nonzero eigenvalues of A#V and VA# are the

same or by using the relation VA# = VU#(I − VU#)−1.

Corollary 4.1. Let A = U − V be a proper spitting of a matrix A of index 1. If A#V or VA# is an inverse GM#-

matrix, then the splitting is convergent.

Proof. Let P = A#V. If P is an inverse GM#-matrix, then by corollary 3.1, P ∈ WPFn and Re((λ)−1) > (ρ(P))−1 >

0 for all nonzero λ ∈ σ(P), λ ≠ ρ(P). Thus condition (ii) of Theorem 4.2 is satisfied. Therefore the splitting is

convergent. If P = VA#, by a similar argument, it again follows that the splitting is convergent.

Before we proceed to define splittings of GM#-matrices we give some results that will be used to prove the

convergence of such splittings. The following lemma is part of Theorem 2.1 in [2].
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Lemma 4.1. Let A = U −V be a proper splitting of A such that U†V ∈WPFn. Then the following are equivalent:

(i) ρ(U†V) < 1.

(ii) A†V has the Perron-Frobenius property.

(iii) ρ(U†V) = ρ(A†V)
1+ρ(A†V)

.

The above result holds good even if we replace theMoore-Penrose inverse by the group inverse, when it exists.

Lemma 4.2. Let A = U − V be a proper splitting of A such that A# exists. If U#V has the Perron-Frobenius

property, then the following are equivalent:

(i) ρ(U#V) < 1.

(ii) A#V has the Perron-Frobenius property.

(iii) ρ(U#V) = ρ(A#V)
1+ρ(A#V)

.

Wemay make even weaker assumptions in Lemma 4.2, as we show below.

Lemma 4.3. Let A = U − V be a proper splitting of a matrix A of index 1, such that V# exists and UV = VU.

Suppose that V#U is a GM#-matrix. Then the following are equivalent:

(i) ρ(U#V) < 1.

(ii) A#V has the Perron-Frobenius property.

(iii) ρ(U#V) = ρ(A#V)
1+ρ(A#V)

.

Proof. Since V#U is a GM#-matrix, by Theorem 2.4 and Theorem 3.2, U#V = (V#U)# ∈ WPFn. This implies

that U#V has the Perron-Frobenius property. The equivalence of the statements now follows from Lemma

4.2.

Theorem 4.3. Let A ∈ Rn×n be with index 1 and A = U − V be a proper splitting of A, such that U#V has the

Perron-Frobenius property and U#V is not nilpotent. Then any one of the following conditions is sufficient for

the convergence of the splitting:

(A1) A#V is eventually positive.

(A2) A#V is eventually nonnegative.

(A3) A#V ∈ WPFn.

(A4) A#V has a simple, positive and strictly dominant eigenvalue with a positive spectral projector of rank 1.

(A5) A#V has a basic and an initial class α such that (A#V)[α] has a right Perron-Frobenius eigenvector.

Proof. We first prove that (A2) ⇒ (A3) ⇒ convergence of the splitting. Suppose that A#V is eventually non-

negative.We have A# = (I−U#V)−1U# so that A#V = (I−U#V)−1U#V. Since U#V is not nilpotent, it has at least

one nonzero eigenvalue, say λ (≠ 1, since I − U#V is invertible). Then λ
1−λ is an eigenvalue of A#V showing

that A#V is not nilpotent. By Theorem 2.6, A#V has the Perron-Frobenius property. By Lemma 4.2, it follows

that the splitting is convergent. Thus we have the following implications:

(A1) ⇒ (A2) ⇒ (A3) ⇒ convergence of the splitting.

⇕ ⇑

(A4) (A5)

In the above scheme, (A1) holds if and only if A#V ∈ PFn (by Theorem 2.5), which in turn is equivalent

to (A4) (by Theorem 2.8). Then (A5) implies that A#V has the Perron-Frobenius property (by Theorem 2.10),

which implies the convergence of the splitting (by Lemma 4.2). The other implications are obvious.

Remark 4.1. Recall that a regular splitting A = U −V of a monotone (inverse positive) matrix A converges. The

result above is a generalization of this situation since we do not require that A be even square.

The following is an example illustrating the splitting given in Theorem 4.3.
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Example 4.1. Let A =

⎡

⎢

⎣

7 0 − 8
3

0 0 0

−12 0 11

⎤

⎥

⎦

=

⎡

⎢

⎣

12 0 0

0 0 0

0 0 11

⎤

⎥

⎦

−

⎡

⎢

⎣

5 0 8
3

0 0 0

12 0 0

⎤

⎥

⎦

= U −V. Then this is a proper

splitting of A. Since U#V =

⎡

⎢

⎣

5
12 0 2

9

0 0 0
12
11 0 0

⎤

⎥

⎦

≥ 0, U#V has the Perron-Frobenius property. Also, it is not-nilpotent,

since σ(U#V) = {0,
5
12
±
√︁

25
144

+ 32
33

2 } = {0,
5
12
±
√︁

5433
4752

2 } = {0, 0.743, −0.326}. We have A# = 1
135

⎡

⎢

⎣

33 0 8

0 0 0

36 0 21

⎤

⎥

⎦

and so, A#V ≥ 0. In particular, A#V is eventually nonnegative. Hence the splitting is convergent, by condition

(A2) of Theorem 4.3. We can also deduce this directly by noting that ρ(U#V) ≈ 0.74 < 1.

The splitting given in Theorem 4.3 is clearly different from the one studied in [10]. In [10], the authors study

splittings of the type A = U − V, where R(A) = R(U), N(A) = N(U) and U†V ≥ 0. Presently, we do not have an

example of a matrix which has a splitting of the type considered in Theorem 4.3, and which does not have a

splitting of the type above. However, we are able to present an example of a particular splitting corresponding

to Theorem 4.3 which is not a splitting of the type above.

The following is an example of a pseudo overlapping splitting.

Example 4.2. Let A be the GM#-matrix given in Example 3.1. Then A = 20I−B, where B =

⎡

⎢

⎢

⎢

⎣

13 0 2 0

0 19 0 0

− 3
2 0 9 0

0 0 0 20

⎤

⎥

⎥

⎥

⎦

,

P−1BP =

[︃

B1 0

0 B2

]︃

and B1 =

⎡

⎢

⎣

13 3 0

−1 9 0

0 0 19

⎤

⎥

⎦

. Here P =

⎡

⎢

⎢

⎢

⎣

2 0 0 0

0 0 4 0

0 3 0 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

.

We have σ(A) = {10, 8, 1, 0}, σ(B) = {20, 19, 12, 10} and σ(B1) = {19, 12, 10} so that ρ(B) = 20,

ρ(B1) = 19 and ρ(B) − ρ(B1) = 20 − 19 = 1 = λ2. Let w = (0, 0, 1)t be an eigenvector for the eigenvalue 19

of B1. Set w
0 := (0, 0, 1, 0)t and v = Pw0. Then v = (0, 4, 0, 0)t. We note that Bv = (0, 76, 0, 0)t = 19v, i.e.,

v ∈ Eρ(B)−λ2 (B) = E19(B).

Now consider the splitting, A =

⎡

⎢

⎢

⎢

⎣

7 0 −2 0

0 1 0 0
3
2 0 11 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

7 0 0 0

0 2 0 0

0 0 11 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

0 0 2 0

0 1 0 0

− 3
2 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

= U − V . Then

U# = 1
154

⎡

⎢

⎢

⎢

⎣

22 0 0 0

0 77 0 0

0 0 14 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

and U#V = 1
154

⎡

⎢

⎢

⎢

⎣

0 0 44 0

0 77 0 0

−21 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

. Thus σ(U#V) = {0, 12 , ±0.1974i}, so that

λ = ρ(U#V) = 1
2 , is the dominant eigenvalue of U

#V . We have (U#V)(0, 4, 0, 0)t == ρ(U#V)(0, 4, 0, 0)t. Hence

v ∈ Eλ(U
#V) ∩ Eρ(B)−λ2 (B). That is, the above splitting is a pseudo overlapping splitting of A. Further, η =

ρ(B)−ρ(B1)
1−λ = 20−19

1− 1
2

= 2 is an eigenvalue of U =

⎡

⎢

⎢

⎢

⎣

8 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

and Re(η) = 2 > ρ(B)−ρ(B1)
2 = 1

2 . So, the given

splitting is convergent.
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Remark 4.2. In above example, the splitting A =

⎡

⎢

⎢

⎢

⎣

7 0 −2 0

0 1 0 0
3
2 0 11 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

7 0 0 0

0 2 0 0

0 0 11 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

0 0 2 0

0 1 0 0

− 3
2 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

= U − V is a pseudo overlapping splitting but not a proper nonnegative splitting. The splitting is proper, but

U†V = 1
154

⎡

⎢

⎢

⎢

⎣

0 0 44 0

0 77 0 0

−21 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

� 0

In [7], Elhashah and Szyld proposed the notion of an overlapping splitting of a nonsingular GM-matrix, as

given below.

Definition 4.3. (Definition 4.3, [7]) A splitting A = U − V of a nonsingular GM-matrix A = sI − B, where B ≥ 0

and B ∈ WPFn, is called an overlapping splitting, if the eigenspace Eλ(U
−1V), corresponding to a dominant

eigenvalue λ of U−1V, contains a right Perron-Frobenius vector of B, i.e., the vector space Eλ(U
−1V) ∩ Eρ(B)(B)

contains a right Perron-Frobenius vector of B.

Motivated by this definition, we introduce a pseudo-overlapping splitting of a GM#-matrix.

Definition 4.4. Let A ∈ Rn×n be a GM#-matrix with A = P

[︃

C 0

0 0

]︃

P−1, a nonnegative core nilpotent decom-

position of A, where C ∈ Rm×m. Here, A = ρ(B)I − B for some matrix B ∈ Rn×n with P−1BP =

[︃

B1 0

0 B2

]︃

, where

B1 ∈ WPFm and B2 = ρ(B)In−m. A splitting A = U − V of A is called a pseudo overlapping splitting, if for a

dominant eigenvalue λ of U#V, the vector space Eλ(U
#V) ∩ Eρ(B)−λm (B) contains a nonzero nonnegative vector.

Here λm is the nonzero eigenvalue of A having the least absolute value.

Now, we present a necessary and sufficient condition for the convergence of a pseudo overlapping splitting

of a GM#-matrix.

Theorem 4.4. Let A ∈ Rn×n be a GM#-matrix with A = P

[︃

C 0

0 0

]︃

P−1, a nonnegative core nilpotent decompo-

sition of A. Here, C ∈ Rm×m is nonsingular and A = ρ(B)I−B for somematrix B ∈ Rn×n with P−1BP =

[︃

B1 0

0 B2

]︃

where B1 ∈ WPFm and B2 = ρ(B)In−m. Let A = U − V be a pseudo overlapping splitting with R(A) ⊆ R(U). If λ

is a dominant eigenvalue of U#V, then η = ρ(B)−ρ(B1)
1−λ ∈ σ(U) and the splitting A = U − V converges if and only if

Re(η) > ρ(B)−ρ(B1)
2 .

Proof. A is a GM#-matrix with nonnegative core nilpotent decomposition, A = P

[︃

C 0

0 0

]︃

P−1, with C ∈

Rm×m nonsingular. Let λ1, λ2, . . . , λm be the nonzero eigenvalues of A, with |λ1| ≥ |λ2| ≥ . . . ≥ |λm|. Since A

is a GM#-matrix, by Theorem 3.2, ρ(C−1) = |λ−1m | = λ−1m and A = ρ(B)I − B, with B = P

[︃

B1 0

0 B2

]︃

P−1 where

B1 ∈ WPFm and B2 = ρ(B)In−m.

First, we prove that ρ(B1) = ρ(B) − λm . From A = ρ(B)I − B, we get C = ρ(B)Im − B1. Therefore, σ(B1) =

{ρ(B) − λ1, ρ(B) − λ2, . . . , ρ(B) − λm}. So,

ρ(B) − λm ≤ ρ(B1). (4.1)
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On the other hand, since B1 ∈ WPFm, there exists w0 ≥ 0 in Rm such that B1w
0 = ρ(B1)w

0. So, Cw0 =

(ρ(B) − ρ(B1))w
0, so that (ρ(B) − ρ(B1))

−1 ≤ ρ(C−1) = λ−1m , i.e., ρ(B) − ρ(B1) ≥ λm or

ρ(B) − λm ≥ ρ(B1). (4.2)

From (4.1) and (4.2), we get,

ρ(B) − λm = ρ(B1). (4.3)

Since A = U −V is a pseudo overlapping splitting, there exists a nonnegative nonzero vector v ∈ Rn such

that

Bv = (ρ(B) − λm)v (4.4)

and

U#Vv = λv, (4.5)

where λ is a dominant eigenvalue of U#V. Now, from (4.4), we have (ρ(B)I − B)v = Av = (U − V)v, so that

ρ(B)v − (ρ(B) − λm)v = U(I − U#V)v, since V = UU#V as R(A) ⊆ R(U). Using (4.5), we then have

λmv = U(I − U#V)v = U(1 − λ)v. (4.6)

Thus, Uv = λm
1−λ v. If λ = 1, (4.6) becomes λmv = 0, a contraction to λm ≠ 0 and v ≠ 0. So, λ = ̸ 1. Hence

λm
1−λ ∈ σ(U), i.e., η = ρ(B)−ρ(B1)

1−λ ∈ σ(U).

Since η = ρ(B)−ρ(B1)
1−λ ,we get λ = η−(ρ(B)−ρ(B1))

η ∈ σ(U#V). Thus thepseudooverlapping splitting is convergent

if and only if ρ(U#V) = |λ| < 1. This holds if and only if |η − (ρ(B) − ρ(B1))| < |η| for some η ∈ σ(U), which

in turn holds if and only if Re(η) > ρ(B)−ρ(B1)
2 . Equivalently, η lies in the right half plane determined by the

bisector of the segment on the real axis whose end points are 0 and ρ(B) − ρ(B1).

Corollary 4.2. Let A = U − V be a pseudo overlapping splitting of a GM#-matrix A. Suppose further that

U#V ∈ WPFn. Then ρ(U#V) < 1, i.e., the splitting is convergent.

Proof. We have U#V ∈ WPFn. So, ρ(U#V) is a dominant eigenvalue of U#V. Therefore, as in Theorem 4.4, we

can prove that ρ(B)−ρ(B1)

1−ρ(U#V)
∈ σ(U). As, 1 − ρ(U#V) < 2, the inequality 1

1−ρ(U#V)
> 1

2 holds. As, ρ(B) ≥ ρ(B1), this

implies that ρ(B)−ρ(B1)

1−ρ(U#V)
> ρ(B)−ρ(B1)

2 . Now η = ρ(B)−ρ(B1)

1−ρ(U#V)
. Then Re(η) = η > ρ(B)−ρ(B1)

2 . Therefore, by Theorem 4.4,

the splitting A = U − V converges.

In Theorem 4.4, if A is a nonsingular GM-matrix then the pseudo overlapping splitting A = U − V is nothing

but an overlapping splitting.Wehave the following result for the convergence of such an overlapping splitting

of a nonsingular GM-matrix.

Corollary 4.3. (Proposition 4.13, [7]) If A = sI −B is a GM-matrix and the splitting A = U −V is an overlapping

splitting for which Eλ(U
−1V) ∩ Eρ(B)(B) contains a right Perron-Frobenius eigenvector of B and |λ| = ρ(U−1V),

then such a splitting is convergent if and only if there is an η = s−ρ(B)
1−λ ∈ σ(U) such that Re(η) > s−ρ(B)

2 .

The following is an example of a pseudo overlapping splitting.

Example 4.3. Let A be the GM#-matrix given in Example 3.1. Then A = 20I−B, where B =

⎡

⎢

⎢

⎢

⎣

13 0 2 0

0 19 0 0

− 3
2 0 9 0

0 0 0 20

⎤

⎥

⎥

⎥

⎦

,

P−1BP =

[︃

B1 0

0 B2

]︃

and B1 =

⎡

⎢

⎣

13 3 0

−1 9 0

0 0 19

⎤

⎥

⎦

. Here P =

⎡

⎢

⎢

⎢

⎣

2 0 0 0

0 0 4 0

0 3 0 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

. We have σ(A) = {10, 8, 1, 0},

σ(B) = {20, 19, 12, 10} and σ(B1) = {19, 12, 10} so that ρ(B) = 20, ρ(B1) = 19 and ρ(B) − ρ(B1) = 20 − 19 =
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1 = λ2. Let w = (0, 0, 1)t be an eigenvector for the eigenvalue 19 of B1. Set w
0 := (0, 0, 1, 0)t and v = Pw0.

Then v = (0, 4, 0, 0)t. We note that Bv = (0, 76, 0, 0)t = 19v, i.e., v ∈ Eρ(B)−λ2 (B) = E19(B).

Nowconsider the splitting, A =

⎡

⎢

⎢

⎢

⎣

8 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

1 0 2 0

0 1 0 0

− 3
2 0 −11 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

= U−V.ThenU# = 1
8

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 4 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

and U#V = 1
8

⎡

⎢

⎢

⎢

⎣

1 0 2 0

0 4 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

. Thus σ(U#V) = {0, 0, 18 ,
1
2}, so that λ = ρ(U#V) = 1

2 , is the dominant eigen-

value of U#V . We have (U#V)(0, 4, 0, 0)t == ρ(U#V)(0, 4, 0, 0)t. Hence v ∈ Eλ(U
#V) ∩ Eρ(B)−λ2 (B). That is, the

above splitting is a pseudo overlapping splitting of A. Further, η = ρ(B)−ρ(B1)
1−λ = 20−19

1− 1
2

= 2 is an eigenvalue of

U =

⎡

⎢

⎢

⎢

⎣

8 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

and Re(η) = 2 > ρ(B)−ρ(B1)
2 = 1

2 . So, the given splitting is convergent.

In [7], Elhashah and Szyld proposed a generalization of a regular splitting, viz, a G-regular splitting and ob-

tained sufficient conditions for the convergence of the G-regular splitting of a nonsingular GM-matrix. Let us

recall that result.

Definition 4.5. A splitting A = U − V of a nonsingular GM-matrix A = sI − B is called a G-regular splitting, if

U−1 and V are in WPFn and V is not nilpotent.

Analogous to the above, we introduce a splitting of a GM#-matrix.

Definition 4.6. Let A be a GM#- matrix. A proper splitting A = U−V of A is called a pseudo G#-regular splitting

if U# and V are inWPFn and V is not nilpotent.

In order to prove the concluding result on pseudo G#-regular splittings, let us consider three types of condi-

tions given below: Let A = U − V be a splitting of A.

Type I conditions:

(D1) U# and V are eventually positive.

(D2) U# and V are eventually nonnegative with V non-nilpotent.

(D3) Each of U# and V has a simple positive and strictly dominant eigenvalue with a positive spectral pro-

jector of rank 1.

(D4) Let X = U# or V. Then, X satisfies the following: X has two classes α and β, not necessarily distinct,

such that

(a) α is a basic and initial class such that X[α] is non-nilpotent and has the Perron-Frobenius property.

(b) β is a basic and final class such that (X[β])t is non-nilpotent and has the Perron-Frobenius property.

Type II conditions:

(E1) U#V is eventually positive.

(E2) U#V is eventually nonnegative and non-nilpotent.

(E3) U#V is non-nilpotent and is inWPFn.

(E4) U#V has a simple positive and strictly dominant eigenvalue with a positive spectral projector of rank 1.

(E5) U#V has a basic and initial class α such that (U#V)[α] is non-nilpotent and has the Perron-Frobenius

property.
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Type III conditions

(F1) A#V is eventually positive.

(F2) A#V is eventually nonnegative and non-nilpotent.

(F3) A#V is non-nilpotent and is inWPFn.

(F4) A#V has a simple positive and strictly dominant eigenvalue with a positive spectral projector of rank 1.

(F5) A#V has a basic and initial class α such that (U#V)[α] is non-nilpotent and has the Perron-Frobenius

property.

Theorem 4.5. Let A be a GM#-matrix.

(a) Let A = U − V be a proper splitting of A. Then any one of the Type I conditions is sufficient for the splitting

to be a pseudo G#-regular splitting.

(b) Let A = U − V be a pseudo G#-regular splitting. If the splitting satisfies any one of the Type II conditions,

then any one of the Type III conditions is sufficient for the convergence of the splitting.

Proof. (a) Suppose thatA = U−V satisfies (D1). Then, byTheorem 2.5,U# andV bothbelong to PFn ⊆ WPFn.

Since V is eventually positive, it is not nilpotent. So A = U − V is a pseudo G#-regular splitting. For the re-

maining conditions we use the following implication diagram to outline the proof.

(D1) ⇒ (D2) ⇒ U#, V ∈ WPFn ⇔ A = U − V is a

V is nonnilpotent G# − regular splitting

⇕ ⇑

(D3) (D4)

From the definitions, it follows trivially that (D1) ⇒ (D2). Since A is a GM#-matrix, A# exists and it

belongs to WPFn. Since, A = U − V is a proper splitting, U# exists. Further, rank Uk = rank Uk+1 for k =

1, 2, · · · , so that U is not nilpotent, which in turn implies that U# is not nilpotent (since U# can be expressed

as a polynomial in U). This, together with (D2), imply that U# and V are inWPFn and V is not nilpotent, i.e.,

the splitting A = U − V is pseudo G#-regular.

The equivalence (D1) ⇔ (D3) follows from Theorem 2.5 and Theorem 2.8. Finally, (D4)(a) implies that

U#[α] and V[α] have a right Perron-Frobenius vector. By Theorem 2.10, each of U# and V has the Perron-

Frobenius property. Again (D4)(b) implies that U#[β]t and V[β]t have a right Perron-Frobenius vector. By The-

orem 2.11, each of U# t and V t has the Perron-Frobenius property and so U# and V are in WPFn. Further, V

is not nilpotent, since its basic class V[α] is non-nilpotent. Thus, D4 implies that A = U − V is a G#-regular

splitting.

(b) We first assume that (E1) and (F1) are true. Since U#V is eventually positive, U#V has the strong

Perron-Frobenius property. Therefore, the splitting is the one given by Lemma 4.2. Further, A#V is eventu-

ally positive so that A#V has the strong Perron-Frobenius property. Therefore, by Lemma 4.2, the splitting is

convergent.

With regard to the remaining conditions, we use the following implication diagram to outline the proof.

In the diagram below by PF property we mean the Perron-Frobenius property.

(E5)

⇓

(E1) ⇒ (E2) ⇒ (E3) ⇒ U#V has PF property

⇕ ⇓

(E4) Splitting as given in Lemma 4.2

(F5)

⇓

(F1) ⇒ (F2) ⇒ (F3) ⇒ A#V has PF property

⇕ ⇓

(F4) Splitting is convergent
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The implications (E1) ⇒ (E2) and (F1) ⇒ (F2) follow from the definition of eventual positivity. The

implications (E2) ⇒ (E3) and (F2) ⇒ (F3) follow from Theorem 2.6. The equivalences (E1) ⇔ (E4) and

(F1) ⇔ (F4) follow from Theorem 2.5 and Theorem 2.8.

Finally, from Theorem 2.10, the implications (E5) implies that U#V has the Perron-Frobenius property

and (F5) implies that A#V has the Perron-Frobenius property. The other implications in the above diagrams

are obvious.

Acknowledgement: The authors thank the referees for their suggestions and comments. This has resulted in

a clearer presentation of the material.
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