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Recent studies in single-molecule enzyme kinetics reveal that the turnover statistics of a single
enzyme is governed by the waiting time distribution that decays as mono-exponential at low sub-
strate concentration and multi-exponential at high substrate concentration. The multi-exponentiality
arises due to protein conformational fluctuations, which act on the time scale longer than or com-
parable to the catalytic reaction step, thereby inducing temporal fluctuations in the catalytic rate
resulting in dynamic disorder. In this work, we study the turnover statistics of a single enzyme
in the presence of inhibitors to show that the multi-exponentiality in the waiting time distribution
can arise even when protein conformational fluctuations do not influence the catalytic rate. From
the Michaelis-Menten mechanism of inhibited enzymes, we derive exact expressions for the wait-
ing time distribution for competitive, uncompetitive, and mixed inhibitions to quantitatively show
that the presence of inhibitors can induce dynamic disorder in all three modes of inhibitions re-
sulting in temporal fluctuations in the reaction rate. In the presence of inhibitors, dynamic disorder
arises due to transitions between active and inhibited states of enzymes, which occur on time scale
longer than or comparable to the catalytic step. In this limit, the randomness parameter (dimension-
less variance) is greater than unity indicating the presence of dynamic disorder in all three modes
of inhibitions. In the opposite limit, when the time scale of the catalytic step is longer than the
time scale of transitions between active and inhibited enzymatic states, the randomness parameter is
unity, implying no dynamic disorder in the reaction pathway. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4737634]

. INTRODUCTION

The ability to visualize single molecule enzyme kinet-
ics using spectroscopic techniques has revealed that many
interesting and non-trivial aspects of enzymatic activity can
be inferred from the kinetics of a single enzyme molecule.
Single-molecule enzymology shows that several enzymes un-
dergo temporal fluctuations in the catalytic rates' due to pro-
tein conformational fluctuations,>® an effect which is hard to
perceive from an ensemble experiment. The conformational
fluctuations along with other discrete and random molecu-
lar events, referred to as molecular noise,’ render the course
of an enzymatic reaction stochastic. In single-molecule enzy-
mology, therefore, the waiting time for the turnover of an en-
zyme is a stochastic event, resulting in a distribution of wait-
ing times.

Recent experimental studies have obtained the dis-
tribution of waiting times for the turnover of a single
enzyme using fluorescence spectroscopy.® Interestingly,
the waiting time distribution for enzymatic turnovers fol-
lows a mono-exponential decay at low substrate concen-
tration but multi-exponential decay at high substrate con-
centration. The first moment of the distribution yields
the mean waiting time of enzymatic turnover, the re-
ciprocal of which follows the classical Michaelis-Menten
(MM) equation'® at low substrate concentration. How-
ever, at high substrate concentration, there are system-
atic deviations from the classical behavior, believed to
be due to protein conformational fluctuations. The multi-
exponential form of the distribution is a signature of
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multiple competing time-scales in the reaction. This ef-
fect, known as dynamic disorder,'! occurs when the time-
scale of product formation is comparable to the time-
scale of transitions between different conformational states
resulting in temporal fluctuations in the catalytic rates.
Single-molecule enzymology, therefore, provides useful
information about temporal fluctuations in the reaction
rates, which is often obscured in an ensemble average
kinetics.

It is well known that enzyme inhibition provides use-
ful insight into the control and mechanism of enzymatic
activity.'”>”'* Many drugs regulate enzyme action by bind-
ing to the specific sites of an enzyme, thereby reducing its
activity. At the single molecule level, does the inhibited en-
zyme kinetics result in enhanced temporal fluctuations in
the reaction rate? If so, does the presence of dynamic dis-
order manifest differently in different modes of inhibitions?
To answer this, starting from the MM mechanism for inhib-
ited enzymes, we study the effects of inhibitors on single-
molecule enzyme kinetics'® in reversible inhibitions, namely,
competitive, uncompetitive, and mixed inhibitions. Our key
result is that the presence of inhibitors can result in dynamic
disorder in the reaction pathway in all three modes of in-
hibition due to transitions between the active and inhibited
states of enzymes. We show that dynamic disorder in inhib-
ited Michaelis-Menten kinetics can arise even when protein
conformational fluctuations do not influence the reaction rate,
that is, when they act on time scales shorter than the catalytic
step.

© 2012 American Institute of Physics
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The MM Kkinetics in the presence of inhibitors is repre-
sented by the following reaction mechanism:!>-!4

kY k9 A
2 / /
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In this reaction mechanism, enzymes (E) can either re-
act reversibly with the substrates to form an enzyme-substrate
(ES) complex, or with the inhibitors to form an enzyme-
inhibitor (EI) complex. The enzyme-substrate complex can
follow two distinct reaction pathways. It can either dissoci-
ate to form the product (P) while regenerating the free en-
zyme (E'), or can react reversibly with the inhibitors to form
the enzyme-substrate-inhibitor (ESI) complex. The regener-
ated enzyme is instantaneously converted into E.> The rate
of produdc[t formation in the presence of inhibitors is given

P

by v = 7] = kg [ES]. The steady state approximation of

4ES) ~ 0 yields

v — kg[E]o
B+ aKy/[S]

where [Elg = [E] + [ES] + [ESI] + [EIl and Ky
= (K%, +k9)/kY. The fast equilibrium approximation be-
tween enzymes and enzyme-inhibitor gives o = 1 + [IJ/Kgs
with Kg; = [E][[)/[E]]. Similarly, 8 = 1 + [{]/Kgs; with Kggy
= [E][)/[ESI]. In a double reciprocal form, the above expres-
sion can be rewritten as

1 ,3 aK M

g + : 3
v KIEl  kI[EILS] )

@

In the absence of inhibitors, « = 8 = 1, Eq. (1) yields the clas-
sical MM equation. In the presence of inhibitors, the inhibi-
tion mechanism is broadly classified as competitive, uncom-
petitive, and mixed. In competitive inhibition, ¢ > 1 and B
= 1, the inhibitor competes with the substrate to bind to
the active site of the enzyme. In uncompetitive inhibition,
o = 1 and B > 1, the inhibitor binds with the active site
of the enzyme only if the enzyme-substrate complex has al-
ready formed. In mixed inhibition, « > 1 and g > 1, the in-
hibitor binds to a site other than the active site because of
which the binding affinity of the substrate for the active site is
reduced.'>!4

In this work, we study single molecule enzyme kinetics
for competitive, uncompetitive, and mixed inhibitions using a
stochastic approach. At the single-molecule level, stochastic-
ity arises due to molecular discreteness, which requires that
the change in the number of active and inhibited enzymatic
states be considered discrete. Each discrete state is specified
by a joint probability, the time evolution of which follows the
chemical master equation (CME). This is in contrast to clas-
sical chemical kinetics, where deterministic mass action ki-
netics governs the time evolution of the concentrations of the
various species.
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In a previous study, the effects of stochasticity due
to protein conformational fluctuations are included in a
single-molecule Michaelis-Menten kinetics by considering
a multistate model.” In this model, a single enzyme at
any time ¢ can exist in any one of the n conformer
states depicted by E;, E,, ..., E;, ..., E,. The same
is true for the enzyme-substrate (ES;, ES,, ..., ES;, ...,
ES,) and the regenerated enzyme (E|, E), ..., E!,... , E,)
states. Assuming that dynamic disorder manifests only in
the catalytic step of the reaction, an analytical distribu-
tion for the catalytic rate w(k,) is chosen from which
a closed form expression for the waiting time distri-
bution is derived. The waiting time distribution shows
mono-exponential decay at low and intermediate substrate
concentrations and multi-exponential decay at high sub-
strate concentrations, which is in qualitative agreement
with the experimental findings.>® The multi-exponential
behavior at high substrate concentration is due to in-
terconversions between different conformers, which oc-
cur on time scales longer than or comparable to the
catalytic reaction step resulting in dynamic disorder.
The presence of dynamic disorder is indicated by the
randomness parameter (dimensionless variance), which be-
comes larger than unity at high substrate concentrations.
Here, we show that the multiexponential waiting time dis-
tribution and dynamic disorder can arise in competitive,
uncompetitive, and mixed inhibition kinetics of a single
enzyme even in the absence of protein conformation fluctu-
ations, solely due to transitions between active and inhibited
enzyme states.

In what follows, starting from the chemical master equa-
tion for multiple enzymes and inhibitors, we obtain coupled
ordinary differential equations for a single enzyme in the pres-
ence of inhibitors. The solution of these equations provides
exact expressions for the waiting time distribution for the en-
zymatic turnover. From the first and the second moments of
the waiting time distribution, we calculate the mean waiting
time and the randomness parameter for three distinct modes
of inhibitions to show how the presence of inhibitors can re-
sult in temporal fluctuations in the waiting time-scales for the
enzymartic turnovers.

Il. SINGLE-ENZYME KINETICS IN THE PRESENCE
OF INHIBITORS

The chemical master equation (CME) for the Michaelis-
Menten kinetics'®!” in the presence of inhibitors includes
the effects of stochasticity by considering the number of
enzymes, enzyme-substrate, enzyme-inhibitor, and enzyme-
substrate-inhibitor complexes as discrete random variables,
which can only take a finite number of “allowed” positive in-
tegral states. At any time ¢, the state is specified by the number
of molecules of each type in the system. If NV is the total num-
ber of enzymes at t = 0 and ng, ngs, ng;, nesy, np, g are
the number of enzymes, enzyme-substrate, enzyme-inhibitor,
enzyme-substrate-inhibitor complexes, products, and regener-
ated enzyme at time ¢, then the chemical master equation'$: '
for the time-evolution of the joint probability P(ng, ngs, ngj,
ngst, np, ng'; t) for the Michalis-Menten mechanism in the
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presence of inhibitors is given by

/.
0P(ng,ngs,ngr, ngsy, np, Ng;t)
ot

=ki(ng+ DPng +1,ngs — 1, ngr, ngsy, np, ng;t)

+k% (ngs+ V) P(ng—1, ngs+1, ngr, ngsr, np, n'g;t)
+kd(nps+ D) P(ng, nps+1, ngp, ngsp,np—1, nly—1;1)
+hks(ng+1)P(ng+1, ngs,ngr—1, ngsi, np, n'g;t)
+k% (g +DPme—1, ngs, ng+1,ngsy, np, nlg;t)
+ks(nes+ D) P(ng,ngs+1,ngr,ngsi—1,np, ng;1)
+k94(nESI+1)P(nE,nEs—l,nEl,nESI+l,np,}’l/E;t)
—[(k1+k3)n5+(k91+k3+k4)nES
+k93nE1+k94nESI]P(nE’ NEs, NEL NESI, Np, NEsT),
4)

where k| = k?[S], k; = kg[l], and k4 = kff[l] are the pseudo
first-order rate constants.

In a recent work,2’ the CME for the Michaelis-Menten
kinetics in the absence of inhibitors has been solved exactly
to obtain the waiting time distribution for multiple enzymes.
The waiting time distribution of a single-enzyme is a special
case of the latter. The CME for multiple enzymes in the pres-
ence of inhibitors, Eq. (4), is difficult to solve analytically.
For a single-enzyme, however, the joint probabilities in Eq.
(4) are mutually exclusive as a single enzyme at any time
t can exist in only one of the four possible states implying
Pr()=P(1,0,0,0,0,0; 1), Pes(t) = P(0,1,0,0,0,0; 7), Pgi()
=P(0,0,1,0,0,0; 1), Pgsi(t) = P(0,0,0, 1, 0, 0; 1), and Pp(¢)
= P(0, 0, 0, 0, 1, 1; r). The last expression implies that the
product formation is always accompanied by enzyme regen-
eration. Since E' — Eis instantaneous, Pg/(¢) ~ 0 at all times.
For a single enzyme, therefore, the chemical master equation
reduces to the following set of coupled ordinary differential
equations:

@ = —(ki + k3) Pe(1) + k2 Pes(t)
+k% 3 P (1),
dP:l;:(f) = ki Pe(t) — (K°) + kS + ka) Pes(t)
+k% 4 Ppsi (1),
@ = k4 Pps(t) — k4 Pesi (1),
dpstl(t) = k3 Pp(t) — k° 3 Pe(1),
% = kY Pys(1). ©)

These probabilities satisfy the initial conditions Pg(0) = 1,
Pgs(0) = 0, Pgi(0) = 0, and Pgg;(0) = 0 at t = 0 along with
the constraint Pr(t) + Pgs(f) + Pgi(t) + Pesi(f) = 1.

The waiting time probability that an enzymatic turnover
occurs between t and 7 4 At is the same as the waiting time for
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the formation of product P between f and 7 4+ At, that is, f(f) At
= APp (Ref. 7). Therefore, in the limit of infinitesimal time
interval Az, the expression for the waiting time distribution is
given by

dP
£ty = d—”t(” — K Pes(). ©)

Equation (5) represents the temporal variation of the probabil-
ities of a single enzyme as it fluctuates between its active and
inhibited states. The solution of the above equations to obtain
the waiting time distribution for competitive, uncompetitive,
and mixed inhibitions is given in the Appendix.

It is to be noted that in the absence of E — E’ step, the
Michaelis-Menten (MM) kinetics is cyclic, and the temporal
variation of the concentration of ES, obtained from the de-
terministic MM equations, shows initial transient rise, which
after a time lag results in a steady-state flux. The initial time
lag corresponds to the time required for the enzyme-substrate
complex to reach its steady state value. In a single turnover
event, however, the presence of E — E’ step is crucial to ob-
tain the distribution of turnover times, the first moment of
which yields the mean turnover (waiting) time. The steady-
state flux in the former case yields the number of turnovers
per unit time, which is related to the reciprocal of the mean
turnover time in the latter case.?->

lll. RESULTS AND DISCUSSION

The waiting time distribution is a key quantity in discern-
ing the kinetics of a single enzyme. The first moment of the
distribution yields the mean waiting time, (t) = fooo tf(t)dt,
for the enzymatic turnover, the reciprocal of which, as we
show below, is related to the classical enzymatic velocity in
the presence of inhibitors. The latter quantity can be obtained
from deterministic kinetics.

The higher moments of the distribution contain informa-
tion about fluctuations that cannot be inferred from determin-
istic kinetics. The dimensionless variance of the distribution,
for instance, yields information about temporal fluctuations
around the mean waiting time, which can be characterized
by the randomness parameter, r = <'2>;2(’>2, the square root
of which is also referred to as the coefficient of variation
(CV).7-2324 The randomness parameter, r, can be viewed as a
kind of noise-to-signal ratio. For a distribution that decays as
mono-exponential, the randomness parameter is unity, imply-
ing that the reaction pathway is determined by a single time
scale—the time scale of the slowest step in the reaction path-
way. When the distribution decays as multi-exponential, there
are several competing time scales. This effect, known as dy-
namic disorder, leads to temporal fluctuations in the reaction
rate. The randomness parameter in the latter case is greater
than unity.’

The mean waiting time and the randomness parameter for
mixed, competitive, and uncompetitive inhibitions can be cal-
culated analytically from the waiting time distributions given
by Eqgs. (AS), (A7), and (A10), respectively. However, since
the resulting analytical expressions are unwieldy, we directly
solve Egs. (A4), (A8), and (All) numerically for the pa-
rameter values given in Table I to compute the waiting time
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TABLE 1. Parameter values for the rate constants.

Various dimensionless rate constants k; = k; / kg

Inhibition type kK K, K, K, K,
Competitive 1.0 3.0 0.5 . ...
Uncompetitive 1.0 ... e 3.0 0.5
Mixed I 1.0 1.0 1.0 3.0 0.5
Mixed 11 1.0 3.0 0.5 1.0 1.0

distributions from Eqs. (A5), (A7), and (A10). The results are
summarized below.

A. Competitive and uncompetitive inhibitions

Figures 1(a) and 1(b) show the temporal variation of the
dimensionless waiting time distribution for competitive and
uncompetitive inhibitions, respectively. On log-linear scale,
the temporal decay of the dimensionless waiting time distribu-
tions show multi-exponential decay characterized by a broad
distribution of the waiting time scales. In competitive inhi-

J. Chem. Phys. 137, 045102 (2012)

bition, the temporal variation of the dimensionless waiting
time distribution shows multi-exponential decay at low and
intermediate substrate concentrations, which becomes mono-
exponential at high substrate concentration. In contrast, the
temporal decay of the dimensionless waiting time distribution
in uncompetitive inhibition follows multi-exponential decay
at both intermediate and high substrate concentrations. The
multi-exponential decay profiles arise due to transitions be-
tween the active and inhibited states of an enzyme resulting
in multiple competing time scales in the reaction pathway. In
competitive inhibition, the dominance of the active state as
opposed to the inhibited state leads to mono-exponential de-
cay at high substrate concentration. In uncompetitive inhibi-
tion, in comparison, both the active and inhibited states dom-
inate even at high substrate concentration resulting in multi-
exponential behavior.

The dimensionless waiting time distribution shows a
broad distribution of the waiting times suggesting significant
temporal fluctuations about the mean waiting time. The tem-
poral fluctuations about the mean can be characterized by
the randomness parameter r. Figures 1(c) and 1(d) show the
variation of the randomness parameter as a function of the

f'(1)
f'(1)

—2 —1 0 1 2 3 4 ) _2 _1 0 1 2 3
I'°91o(k1) Logw(k;)

FIG. 1. The dimensionless waiting time distribution f'(t) = f(z)/ kg as a function of the dimensionless time t = kg t for different dimensionless
k? = k?[S] / kg on log-linear scale for (a) competitive and (b) uncompetitive inhibitions show multi-exponential decay due to transitions between the active
and inhibited states of enzymes. In both cases, the waiting time distributions have large dimensionless variance signaling significant temporal fluctuations about
the mean waiting time. These fluctuations are quantified by the randomness parameter, r = ((t2) = (t))/(z)? for (c) competitive and (d) uncompetitive inhibi-
tions. In competitive inhibition, significant temporal fluctuations (» > 1) about the mean occur at intermediate substrate concentrations, which subside at high
substrate concentrations. In contrast, uncompetitive inhibition shows significant temporal fluctuations at both intermediate and high substrate concentrations. At
very low substrate concentration (k! < 0.1), the randomness parameter is unity for both competitive and uncompetitive inhibitions, but for uncompetitive inhi-
bition, there occurs a slight decrease from unity with a small increase in k{. The pink and blue curves correspond to the dimensionless rate constants tabulated
in Tables I and II, respectively. These parameter values show that increase in k(z) leads to enhanced temporal fluctuations. The dots in (c) and (d) correspond to
the ki values in (a) and (b) for the parameter values tabulated in Table I.
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substrate concentration for competitive and uncompetitive in-
hibitions, respectively.

In competitive inhibition at very low substrate concentra-
tions (k7 < 0.1), Fig. 1(c), the binding of the substrate to the
enzyme is the rate determining step, which occurs at a rate
much slower than the rapid transitions between active and
inhibited states of the enzyme. Due to slow substrate bind-
ing, the effects of the rapid transitions are averaged out re-
sulting in a single dominating time scale—the time scale of
the substrate binding. This effect is manifested in the ran-
domness parameter, which is unity implying that the distribu-
tion is mono-exponential with the square of the mean equal
to its variance. The increase in the substrate concentration
suppresses the inhibited state of enzyme resulting in mono-
exponential decay at high substrate concentration. As a result,
the randomness parameter follows a non-monotonic variation
with a pronounced maximum (7 > 1) at intermediate substrate
concentration, which decays to unity at high substrate
concentrations.

In uncompetitive inhibition at very low substrate concen-
trations, the randomness parameter is unity because the sub-
strate binding is the rate determining step. However, a slight
increase in the substrate concentration leads to a small de-
crease in the randomness parameter from unity. This is be-
cause at very low substrate concentrations, the probability
that an enzyme exists in the enzyme-substrate state Pgg(f) is
very small, making the probability of transitions between the
enzyme-substrate (ES) and enzyme-substrate-inhibitor (EST)
states very small. As a result, the square of the mean wait-
ing time, which is long due to slow rate of dissociation of
the enzyme-substrate complex, is larger than the variance re-
sulting in 7 < 1. Alternatively, the decrease in r can be un-
derstood by viewing the uninhibited kinetics of a single en-
zyme as a two-step linear cascade process. For very small ki,
there is a single rate determining step resulting in a mono-
exponential waiting time distribution. However, with the in-
crease in k;, when k; is closer to kY, the enzymatic cascade
becomes a multi-step process with the waiting time distribu-
tion approaching a gamma distribution.>>?® The dimension-
less variance in the latter case is less than unity, r < 1. In the
presence of inhibitors at very small ki, the effect of uncom-
petitive inhibition is small and the waiting time distribution is
governed by mono-exponential decay resulting in r = 1. In the
presence of inhibitors, therefore, the combined effect of the
decrease in r due to the multi-step cascade and the increase in
r due to dynamic disorder leads to a non-monotonic variation
of r as a function of k;. When k; becomes very large, k3 is
the rate determining step and decrease in r due to multi-step
cascade is absent. In the latter case, the presence of inhibitors
results in the increase of r due to dynamic disorder.

The increase in the substrate concentration leads to en-
hanced temporal fluctuations due to transitions between active
and inhibited states of the enzyme-substrate complex result-
ing in r > 1 at intermediate and high substrate concentrations.
The value of r > 1 indicates dynamic disorder in the reaction
pathway, signaling significant temporal fluctuations in the re-
action rates.

The increase in the value of kg leads to an increase in the
number of competing pathways since the rate of product for-
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TABLE II. Parameter values for the rate constants.

Various dimensionless rate constants k; = k; / kg

Inhibition type K, K, K, K} kK,
Competitive 0.4 1.2 0.2 .
Uncompetitive 0.4 ... ... 1.2 0.2
Mixed I 0.4 0.4 0.4 1.2 0.2
Mixed I 0.4 1.2 0.2 0.4 0.4

mation is no more the rate determining step. This results in an
increase in the randomness parameter [Figs. 1(c) and 1(d)]. It
is to be noted that in the present study, the low, intermediate,
and high substrate concentration ranges roughly correspond
t00.1 Sk) S 1,1 Sk} S 10, and k| > 10, respectively, and
have been defined with respect to the parameters chosen in
Table I. It is clear from Figs. 1(c) and 1(d) that for larger k‘z)
[Table II] dynamic disorder can arise even at very low sub-
strate concentrations.

The first moment of the distribution yields the mean wait-
ing time for the enzymatic turnover. The mean waiting time
can be compared with the reciprocal of the enzymatic ve-
locity v, Eq. (2), in the presence and absence of inhibitors.
Figure 2 shows the double reciprocal plot for the variation

150 v v v T l
] with inhibitor (stochastic) r
125 | = = = with inhibitor (classical) ’.zr
= = = without inhibitor (classical) = A
100 =
- r
N
e 75} J.«"
A
- =
50 v
P g
A
251 - - = 1
2 - wm = -
» -— ==
OF - = i
0 2 4 6 8 10
1/k1
30 r z r v
u with inhibitor (stochastic) ’l
= == == with inhibitor (classical) - ,.’.
= = = without inhibitor (classical) a=™
20} e _-"
| -
~ -
-~ P -
£ ,.’. -~
A -
A -
P -
0 = -
r -
| ¢ - -
-
-
-
-
-
-
0 .
0 2 4 6 8 10
1K,

1

FIG. 2. Double-reciprocal plots for competitive (top) and uncompetitive
(bottom) inhibitions show that the reciprocal of the dimensionless mean wait-
ing time (1) = k(z’ () obtained from the first moment of the waiting time dis-
tribution is the same as the classical enzymatic velocity v/ kg in the presence
and absence of inhibitors. The parameter values are tabulated in Table I.
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f'(1)

251 (d)

-2 -1 0 1 2 3
Log1°(k1)

FIG. 3. Dimensionless waiting time distributions f'(t) = f(t)/ k(z) as a function of the dimensionless time, T = kgt, for different dimensionless ki = k(l)[S] / k(z)
on log-linear scale for mixed inhibition show multi-exponential decay for both (a) mixed inhibition I (kg > kg) and (b) mixed inhibition IT (ké > kz"). Random-
ness parameter as a function of the substrate concentration for mixed inhibition for (c) mixed inhibition I and (d) mixed inhibition II shows r > 1 for inter-
mediate and high substrate concentration signaling dynamic disorder in the reaction pathway. The pink and blue curves correspond to the dimensionless rate
constants tabulated in Tables I and II, respectively. These parameter values show that increase in kg leads to enhanced temporal fluctuations. The dots in (c) and
(d) correspond to the k| values in (a) and (b), respectively, for the parameter values tabulated in Table I.

of the dimensionless mean waiting time (7) = kg (t) with the
reciprocal of the substrate concentration for competitive and
uncompetitive inhibitions. While the red dashed line shows
the variation of kg /v as a function of 1/[S] (Eq. (2)) in the
presence of inhibitors for @ =7, B = 1 (competitive); ¢ =1, 8
= 7 (uncompetitive), the blue squares represent the first
moment of the waiting time distribution for competitive,
Eq. (A7), and uncompetitive inhibition, Eq. (A10). The
two curves fall exactly on each other implying v = 1/(¢).
The green dashed line in the same figure represents the
Lineweaver-Burk plot for kg /v versus 1/[S] (Eq. (2)) in the
absence of inhibitors, « = = 1. The presence of competitive
inhibitors only increases the slope of the linear curves with-
out affecting the y-intercept at high substrate concentration.
In contrast, uncompetitive inhibitors change the y-intercept
without affecting the slope. This is because in uncompeti-
tive inhibition, the increase in the mean waiting time is solely
due to the average time delay caused by the transition of the
enzyme-substrate complex to its inhibited state (ESI), and is
independent of the substrate concentration.

B. Mixed inhibition

In mixed inhibition, an enzyme can fluctuate between
the enzyme state, the enzyme-substrate state, the enzyme-
inhibitor state, or the enzyme-substrate-inhibitor state.

Figures 3(a) and 3(b) show the temporal variation of the di-
mensionless waiting time distribution for mixed-inhibition
I (k) > k%) and mixed-inhibition II (k} > k}), respectively,
where k} = k3/ k9 and k, = k4/ k). In both cases, the presence
of multiple competitive pathways leads to multi-exponential
temporal decay. The multi-exponential form of the decay pro-
file makes the randomness parameter greater than unity in
both these limits (Figs. 3(c) and 3(d)). However, at high sub-
strate concentrations, the randomness parameter is greater for
mixed-inhibition II compared to mixed-inhibition I. This is
because in mixed inhibition II, apart from the dominant effect
of transitions between ES and ESI states (uncompetitive in-
hibition) at high substrate concentration, transitions between
E and EI states (competitive inhibition) act as an additional
source of dynamic disorder resulting in greater randomness
parameter compared to mixed inhibition L.

At very low substrate concentration, the randomness pa-
rameter is unity for mixed inhibitions I and II. However, in
mixed inhibition I, a small increase in the substrate concen-
tration leads to a slight decrease in the randomness parameter
from unity. This is because of the dominating effect of un-
competitive inhibition in mixed inhibition I. In mixed inhibi-
tion I, in contrast, the dominance of competitive inhibition at
very low substrate concentration leads to r = 1.

The double reciprocal plot for mixed-inhibition I and
mixed-inhibition II is presented in Fig. 4. The comparison
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FIG. 4. Double reciprocal plots for mixed inhibition show that the reciprocal
of the dimensionless mean waiting time, () = kg (1), obtained from the first
moment of the waiting time distribution is the same as the classical enzymatic
velocity v/ kg in the presence and absence of inhibitors. Points (blue squares)
are the first moment of Eq. (6) for mixed inhibition I (top) and mixed inhibi-
tion II (bottom), respectively; red dashed lines are the solutions of Eq. (2) for
o =2,8="7(top), and @ = 7, B = 2 (bottom), respectively; green dashed
lines are the solutions of Eq. (2) for « = 1, 8 = 1. The parameter values are
tabulated in Table I.

shows that the dimensionless mean waiting time, (t) = kg ()
for the former case is less than the latter because the forma-
tion of the EI complex prolongs the formation of product. In
mixed inhibition I, both the slope and the y-intercept for the
inhibited case are different from that of the uninhibited one.
In mixed inhibition II, the y-intercept is the same as that of
the uncompetitive inhibition. However, for the parameter val-
ues ky = k9/4 =1.0atl/k| = 1072 in Fig. 4, the difference in
(t) for uncompetitive inhibition ((r) = 2.0) and uninhibited
kinetics ((r) = 1.0) is very small.

These results show that for a single-enzyme kinetics, the
mean waiting time is related to reciprocal of the classical en-
zymatic velocity in the presence of inhibitors. However, there
are significant temporal fluctuations in the waiting time for the
turnover of a single enzyme. The magnitude of these fluctua-
tions strongly depends on the type of inhibition mechanism,
the concentrations of the substrates and inhibitors, and the rate
of the catalytic step.

An interesting behavior emerges when the rate constant
for product formation, k(z), is very small. Figure 5 shows the
temporal variation of the waiting time distribution for mixed

J. Chem. Phys. 137, 045102 (2012)
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FIG. 5. The variation of the dimensionless waiting time distribution f/(7)
= f(v)/ kg as a function of dimensionless time, T = kgt, for different di-
mensionless k| = kV[S]/k) for mixed inhibition I for & < 1. When the time
scale of product formation is longer than the time scales of transitions be-
tween the active and inhibited states of an enzyme, the waiting time distri-
bution shows distinct transitions between different states before decaying as
a single exponential at long times (top). The randomness parameter is (ap-
proximately) unity at all values of the substrate concentration signaling the
absence of dynamic disorder (bottom). The dots in the bottom figure corre-
spond to k; = 20, 50, 100, and 7500. All the rate constants have been non-
dimensionalized with respect to k9, and are given by kj = 40, kj = 150,

kY, = 40,7, =40, k", = 60.

inhibition I. At short times, transitions between different en-
zymatic states are slow and appear as the oscillatory rise and
fall of Pgg. Since the time scale of product formation is large,
transitions between different enzymatic states are well sep-
arated such that each curve rises and falls as a single expo-
nential. At long times, the dimensionless waiting time dis-
tribution follows a single exponential decay governed by the
slowest step of the reaction. Since there is only one time scale
governing the course of reaction, the randomness parameter
(Fig. 5) is (approximately) unity for all values of substrate
concentrations. In this limit, therefore, the reaction pathway
shows no dynamic disorder.

In a previous study, the presence of dynamic disorder
in single-enzyme Michaelis-Menten kinetics in the absence
of inhibitors has been explained by including interconver-
sions between enzyme’s conformers, which occur on time
scales longer than or comparable to the catalytic step.” It has
been assumed that dynamic disorder is manifested only in
the catalytic step through a distribution for kg. When such
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a distribution is considered for the rate constant for sub-
strate release (k_;), the randomness parameter does not ex-
ceed unity implying that dynamic disorder due to protein con-
formational fluctuations manifests only in the catalytic step.
In the present study, in contrast, dynamic disorder arises due
to transitions between the active and inhibited states of en-
zymes, which occur on time scales longer than or comparable
to the catalytic step. From the exact solution of the waiting
time distribution, we find that dynamic disorder is not man-
ifested in any particular step of the reaction, and therefore
does not require an a priori assumption for the form of dis-
tribution for kg or any other rate constants. The multiexpo-
nential decay, for instance, is governed by the effective rate
constants (A, B, C, and D) that are non-trivial combinations
of the rate constants for inhibitor and substrate binding and
release.

In the present work, the first moment of the wait-
ing time distribution yields the mean waiting time for en-
zyme turnover, the reciprocal of which is the same as the
classical enzymatic velocity in the presence of inhibitors.
The dimensionless variance (randomness parameter) of the
multi-exponential distribution, however, shows significant
fluctuations in the waiting time signifying that more than one
time-scale govern the turnover statistics of an inhibited en-
zyme. This behavior is in contrast to turnover statistics of
multiple enzymes in the absence of inhibitors, where multi-
exponentiality of the waiting time distribution leads to sig-
nificant deviation of the reciprocal of the mean waiting time
from the classical enzymatic velocity.?’

In a recent experiment, inhibition kinetics of single-
B-galactosidase in the presence of the inhibitor D-galactal
and the substrate resorufin-8-D-galactopyranoside was stud-
ied using fluorescence spectroscopy.'> B-galactosidase is a
tetrameric enzyme molecule with four binding sites and five
inhibition states. In this reaction, the rate constant for the cat-
alytic step is much larger than the rate constants for inhibi-
tion release and binding. For competitive inhibition mech-
anism, it was found that the autocorrelation functions for
single-enzyme substrate turnovers showed single exponential
decay when the substrate concentration (100 M) was taken
to be much larger than the inhibitor concentration (20 uM).
Although the present study does not directly calculate the
autocorrelation of substrate turnovers at different times, it
shows that for competitive inhibition mechanism, the dimen-
sionless variance (randomness parameter) of the waiting time
distribution for a repeated turnover of a single enzyme be-
comes unity at large substrate concentration clearly indicat-
ing that the turnover statistics of a single-enzyme is governed
by a mono-exponential distribution (single-exponential) with
a single time-scale of decay. Since the variance of the waiting
time distribution is an equal-time autocorrelation of the devia-
tion of the enzyme turnover time from the mean, (87%) with 8¢
=t — (1), the dimensionless variance of the distribution (ran-
domness parameter) is a good indicator of dynamic disorder,
as has been pointed out in previous studies.®’ Interestingly,
the single-exponential decay of autocorrelation function sug-
gests that protein conformational fluctuations do not affect the
turnover statistics of a single enzyme even at high substrate
concentrations.

J. Chem. Phys. 137, 045102 (2012)

IV. CONCLUSION

We conclude that the presence of inhibitors in single-
enzyme Kinetics can result in significant fluctuations in the
waiting time for enzymatic turnover in all three modes of inhi-
bitions. Crucially, the time scale of catalytic reaction step gov-
erns the magnitude of temporal fluctuations in the enzymatic
turnover time. When the time-scale of catalytic step is compa-
rable to or shorter than the time-scale of transitions between
the active and inhibited states of enzymes, the waiting time
distributions follow multi-exponential decay with a broad dis-
tribution of the waiting times for uncompetitive and mixed
inhibitions. In contrast, the waiting time distribution for com-
petitive inhibition is multiexponential at low and intermedi-
ate substrate concentrations and becomes single-exponential
at large substrate concentrations. When the time-scale of cat-
alytic step is longer than the time-scale of transitions between
different enzymatic states, the temporal decay profile is gov-
erned by a single time-scale with no dynamic disorder in the
reaction pathway. Our results imply that dynamic disorder in
the presence of inhibitors can arise even when protein con-
formational fluctuations do not influence the catalytic rate,
that is, when they act on time scales shorter than the catalytic
step. A single-exponential decay for autocorrelation function
of substrate turnovers in competitive inhibition, observed in a
recent experiment, suggests that protein conformational fluc-
tuations do not affect the turnover statistics of a single enzyme
even at high substrate concentrations. The waiting time distri-
bution calculated in the present study can, therefore, provide
reliable estimates of the effective rate constant for the turnover
statistics of a single enzyme at the different concentrations of
inhibitors and substrates for competitive, uncompetitive, and
mixed inhibitions, especially when the decay profile is gov-
erned by more than one time-scale of decay.

The presence of protein conformational fluctuations can
be an additional source of stochasticity in turnover statistics of
an inhibited enzyme. Recent fluorescence spectroscopy mea-
surements on uninhibited kinetics of a single-enzyme show
that dynamic disorder due to interconversions between dif-
ferent conformers occurs at high substrate concentrations (k;
~ 1000 s~ ') (Ref. 5). However, the present study reveals that
in the presence of inhibitors, depending on the time scale of
the catalytic step, dynamic disorder can arise even at low and
intermediate substrate concentrations due to transitions be-
tween active and inhibited states of enzymes. At such low
and intermediate substrate concentrations, where the effects
of dynamic disorder can arise solely due the inhibition mech-
anism, the results of the present study can be verified using
fluorescence spectroscopy measurements. At high substrate
concentrations, where protein conformational fluctuations can
act as an additional source of dynamic disorder, the present
study can be extended to include the effects of interconver-
sions between different active and inhibited enzyme conform-
ers. Work is underway to explore these possibilities.
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APPENDIX: EXACT SOLUTION OF THE WAITING TIME
DISTRIBUTION FROM CME

1. Mixed inhibition

In mixed inhibition, an enzyme can exist in the enzyme
state, the enzyme-substrate state, the enzyme-inhibitor state,
or the enzyme-substrate-inhibitor state. The underlying mech-
anism is given by

K 0 A
2 / ’
E+S<=ES—>P+E,E —>E,
K,

k3
E+I1<=EI,
K,

Q
ES+I1<=ESI.

K0,

(AD)

The coupled differential equations for mixed inhibition,
Eq. (5), can be solved exactly for Pgg(f) by carrying out the
Laplace transform. Taking the Laplace transform of Pg(?),
Pgs(?), Pesi(f), and Pg(¢) in Eq. (5) and applying the initial
conditions yield, after simplification, the following expression
for Prg:
ki(s 4+ Kk25) (s + £2,)
S4 + )\-]S3 + )\.2S2 + )\.35 + )\.4.
The inverse Laplace transform of the above equation yields,
eM(A+ KA+ K2
(A—B)A—-C)A—-D)
eP'(B+K2)(B +K2,)
(A—B)B —C)B—D)
eCt(C + k0_3)(C + k0_4)
(A-C)YB—-C)C—-D)
eP'(D + k2;)(D + k2,
(A—D)D —-C)D - B)
where A, B, C, and D are the effective rate constants, which

can be obtained from the solutions of the quartic equation s*
+ A15® + Aos? + Azs + A4 = 0 with

Pps(s) = (A2)

Pps(t) = k1|:

}, (A3)

M=k kG kg ks + kO K+ KO,

Ao = kO k05 + (K0 + k05) (ki + &9 + ks + ks + &°,)
(ki 4 ks) (K2 4 k3 + ka)
— (K kg + K2 ky + K0 5K3)),

Ay = k0K (ki + K5 + ks + Ky + K2)) + (ki + k3)
(K + kg + kD) (K2, + K°5)
— (K9 + kg + K0 + K24k 3ks
— (K2 + k25)k2 ky — (ks + Ky + K23)K2 4ka,

Ay = (ky + k3) (kY| + kS + ka)k25K°,
—ksk® K05 (KO + k9 + ka) + KO, k0 k0 5Ky

(K1 A+ s DK 3k — KO ykaksk,. (Ad)
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Substituting Eq. (A3) into (6) yields the following expression

for the waiting time distribution for mixed inhibition:
eA(A+KO)(A+ K2,

(A—B)A—-C)A—-D)

£ = Kk, [

eBt(B + k(13)(B + k(14)
" (A—B)YB—C)B—D)

e (C+k2)(C + k%))
(A—C)(B —C)C - D)
eP'(D +K°)(D +&°))
(A—D)D - C)D - B)}'

The specific cases of competitive and uncompetitive inhibi-
tions are given below.

(A5)

2. Competitive inhibition

In competitive inhibition, the inhibitor molecule is a
structural analogue of the substrate. Its binding site is the
same as the substrate molecule. Hence, it binds to the ac-
tive site of the enzyme, thereby inhibiting the attachment of
the substrate. A competitive inhibition is usually reversible if
sufficient substrate molecules are available to displace the in-
hibitor. The underlying mechanism is

K Y] A
E+S=ES>P+E,E SE,
K,

K
E+I1<EI

K,

(A6)

In the limit of k4 = k° 4+ = 0, Egs. (A3)—(AS) yield the follow-
ing expression for the waiting time distribution for competi-
tive inhibition:

MA+K  PBHEY)
(A—B)YA-C) (A-B)B-0)

eC’(C +k0_3)
(A—-C)B — C)}

)= k1k§[

(A7)

where A, B, and C are the solutions of the cubic equation 53

+ 1182 4 Aos + A3 = 0 with
M=k k) + ks + k0 + k0,
Ay =k (ki + K + ks + K2)) + (ki + k) (2, +K9)
— (k2 k1 + k2 5k3),
Ay = (ki + k) (K2 + k9)k%,

— (k3 4+ K2, )k ks — k25K 1Ko (A8)

3. Uncompetitive inhibition

In this type of inhibition, the inhibitor has no structural
analogy with the substrate. The inhibitor binds to a site other
than the active site only if the substrate is already present.
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Unlike competitive inhibition, uncompetitive inhibition can-
not be reduced by adding more substrate molecules. The un-
derlying mechanism is

kY K A
E+S<ES->P+EESE,

ES+I1<=ESI. (A9)

In the limit of k3 = k93 = 0, Egs. (A3)—-(AS) yield the fol-
lowing expression for the waiting time distribution for non-
competitive inhibition:
eMA+K2) eB (B + k%))
(A—-B)(A—-C) (A-B)B-0)
eCt(C + k(i4)
A-OB-07

f) = klk‘;[

(A10)

where A, B, and C are the solutions of the cubic equation $3

+ A18% + A2s + A3 = 0 with
M=k kY ks K+,
o = K0y (ki + K9+ ka + K2 ) + ki (k) + K + k)
— (K 4ks + K2 k1),
Ay = ki (kO + ks + K3)K0,
—k° k0 ky — ki kO k. (A11)

Equations (A5), (A7), and (A10) are the waiting time distribu-
tions for mixed, competitive, and uncompetitive inhibitions,
respectively.
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