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Abstract: A simple and optimal method is suggested for the calculation of the set point weighting 

parameter in PID controllers for unstable FOPTD systems. This method requires equating the coefficients 

of s and s
3
 both in numerator and denominator of closed loop transfer function for a servo problem. This 

method gives an uncomplicated equation for the set point weighting parameters (β) and (𝛄𝛄). The 

performance of the proposed set point weighted controller that uses the β and 𝛄𝛄 is then compared with 

that of a method in which the β and 𝛄𝛄 values are obtained by two degrees of freedom controller design 

technique. The proposed method provides significantly improved closed loop performances when 

compared to the methods in the literature.  
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

1. INTRODUCTION 

Because of its basic structure, the proportional-integral-

derivative controller is commonly used in chemical 

processes. Nevertheless, time delay is inevitable in most of 

the chemical processes due to recycle loops and 

transportation delays. It is intractable for traditional PID 

controllers to guarantee the stability of time delay processes. 

In addition, it’s more difficult to design the PID controller for 

a process that exhibits a time delay, which is open-loop 

unstable.  Larger overshoots are obtained if the system is 

unstable. In such cases, set-point filter or set point weighting 

for PID controllers should be used to minimize the overshoot. 

 

The IMC-PID tuning rule has only one modifiable parameter.  

Quite a few tuning methods have been proposed based on the 

direct synthesis method and the IMC method for stable and 

unstable processes with time delay. Garcia and Morari (1982) 

IMC structure yields an apparent analysis of controller design 

and provides a basic parametrization of all stabilizing 

controllers for stable or unstable processes.  The development 

of PID tuning rules based on IMC was derived from Rivera et 

al. (1986). PID tuning rules improved by a first-order filter in 

series are derived for several classes of stable process with 

the aim at zero- and first-order pade approximation for time 

delay. Rotstein and Lewin’s (1991) work can be considered 

as the initial investigation of an IMC-PID tuning rule for an 

unstable process. Time delay was ignored in their work. Lee 

et al. (2000) demonstrated an extension to the unstable 

process with time delay.  They made use of Maclaurin series 

approximation as an alternative of a time delay 

approximation to the one originally derived from IMC to give 

an ideal controller.  The partial internal model control, which 

is capable of controlling both stable and unstable processes 

was proposed by Wang et al. (2001). Enhanced design of a 

PID filter (i.e., a PID cascade with a lead-lag element) of 

cascade control systems for unstable processes with time 

delay was instigated by Dasari et al. (2016).   

 

Chen et al. (2008) suggested the tuning rule for set-point 

weighting on the basis of the three-element control structure. 

In Prashanti and Chidambaram (2000), equations are 

proposed to calculate the set point weighting parameters for 

both proportional and derivative modes for unstable first 

order processes plus time delay systems. Sree and 

Chidambaram (2004) have suggested the calculation of the 

set point weighting parameter for unstable systems with a 

zero. Rao and Chidambaram (2006) further extended the 

work of Sree and Chidambaram (2004) to a PID controller 

integrated with a lead-lag compensator. 

 

In the previously mentioned works, the set point weighting 

on the derivative action is not taken into consideration (i.e., 

the derivative weighting parameter is set to unity). Nasution 

et al. (2011) considered derivative mode and made use of 

Optimal H2 IMC-PID controller with set point weighting for 

time delayed unstable processes. On the other hand, it can be 

demonstrated that the set-point tracking performance will be 

enhanced if we can determine the nearly optimal derivate 

mode weighting. Nasution et.al (2011) were able to 
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determine that but it is highly intricate. It can be derived in a 

simple way by using the equating coefficient method. In this 

paper, a simple method is proposed to calculate set point 

weighting parameters for unstable first order plus time delay 

systems. 

 

2. CONTROLLER DESIGN 

The structure of IMC control, where Gp(s) is the transfer 

function of the unstable process, Gm(s) is the corresponding 

transfer function model and QC is the transfer function of the 

IMC controller is demonstrated in Fig.1. Analytical tuning 

method has been developed for PID controller for unstable 

first order plus time delay (UFOPTD) processes based on 

optimal H2 framework by Nasution et al. (2011) recently. The 

The present method uses this methodology and hence is 

briefly discussed here.  
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Fig.1.IMC control 

 

 

Based on IMC principle, the IMC controller QC is equivalent 

to 
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Where, F is a filter which is used for altering the robustness 

of the controller. 

m m mG G G and v v v                                (3) 

Where the subscript “–“refers to minimum phase part and 

“+” refers to non-minimum phase part. The Blaschke product 

of RHP poles of Gm and v are defined as 
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Where 
i ip and p are the ith RHP pole and its conjugate 

respectively. Based on this, the H2 optimal controller is 

derived by using the following formula, Morari and Zafiriou 

(1989). 
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Where {...}|* is defined as the operator that operates by 

omitting all terms involving the poles of (Gm+)
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 after taking a 

partial fraction expansion. 

 

Here, F is the filter, which is selected as 
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Here,  is the closed loop tuning parameter. The value of  is 

obtained from the conditions of internal stability for IMC 

structure. The conditions to be followed for internal stability 

are  

Condition 1: QC must be stable and should cancel the right 

half plane poles of Gm 

 

Condition 2: QCGm should be stable 

 

Condition 3: (1-GmQC) at the RHP poles of the process 

should be zero 

The first two conditions are satisfied from the above design 

procedure and third condition can be applied as  
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Substituting QC, the value of  is obtained as 
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Now, this IMC controller is converted in to a unity feedback 

control system and the corresponding unity feedback 
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Vanavil et al. (2014) simplified the above form into a PID 

with lead-lag controller. In this work, it is simplified as a PID 

controller. To simplify this expression to a PID controller 

form, Maclaurin series or Laurent series can be used. To do 

that, let us define J(s) = s Gc(s). Expand J(s) using Maclaurin 

series expansion to obtain the controller Gc as 
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By considering this as a PID controller in the form   
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determine that but it is highly intricate. It can be derived in a 

simple way by using the equating coefficient method. In this 

paper, a simple method is proposed to calculate set point 

weighting parameters for unstable first order plus time delay 

systems. 

 

2. CONTROLLER DESIGN 

The structure of IMC control, where Gp(s) is the transfer 

function of the unstable process, Gm(s) is the corresponding 

transfer function model and QC is the transfer function of the 

IMC controller is demonstrated in Fig.1. Analytical tuning 

method has been developed for PID controller for unstable 

first order plus time delay (UFOPTD) processes based on 

optimal H2 framework by Nasution et al. (2011) recently. The 

The present method uses this methodology and hence is 

briefly discussed here.  
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G

τ s 1






                                                                  (1)                                     

 

 
 

Fig.1.IMC control 

 

 

Based on IMC principle, the IMC controller QC is equivalent 

to 

C CQ Q F                                                           (2)                             

Where, F is a filter which is used for altering the robustness 

of the controller. 

m m mG G G and v v v                                (3) 

Where the subscript “–“refers to minimum phase part and 

“+” refers to non-minimum phase part. The Blaschke product 

of RHP poles of Gm and v are defined as 

1 1

k k
i i

m v

i ii i

s p s p
b and b

s p s p 

   
 

                    (4)    

Where 
i ip and p are the ith RHP pole and its conjugate 

respectively. Based on this, the H2 optimal controller is 

derived by using the following formula, Morari and Zafiriou 

(1989). 

*

11 |}){()(
~







 vbGbvbGbQ vmmvmmC
                          (5) 

Where {...}|* is defined as the operator that operates by 

omitting all terms involving the poles of (Gm+)
-1

 after taking a 

partial fraction expansion. 

 

Here, F is the filter, which is selected as 

3( ) ( 1) / ( 1)F s s s   
 Substitute F(s) in Eq. (2), the IMC controller is obtained as 

  /
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k s
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
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Here,  is the closed loop tuning parameter. The value of  is 

obtained from the conditions of internal stability for IMC 

structure. The conditions to be followed for internal stability 

are  

Condition 1: QC must be stable and should cancel the right 

half plane poles of Gm 

 

Condition 2: QCGm should be stable 

 

Condition 3: (1-GmQC) at the RHP poles of the process 

should be zero 

The first two conditions are satisfied from the above design 

procedure and third condition can be applied as  

1/(1 ) | 0
PC m sQ G  

 
Substituting QC, the value of  is obtained as 

    2
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Now, this IMC controller is converted in to a unity feedback 

control system and the corresponding unity feedback 

controller GC is obtained as 
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Vanavil et al. (2014) simplified the above form into a PID 

with lead-lag controller. In this work, it is simplified as a PID 

controller. To simplify this expression to a PID controller 

form, Maclaurin series or Laurent series can be used. To do 

that, let us define J(s) = s Gc(s). Expand J(s) using Maclaurin 

series expansion to obtain the controller Gc as 
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𝑢𝑢(𝑡𝑡) = 𝑘𝑘𝑐𝑐 [𝑒𝑒𝑝𝑝(𝑡𝑡) + (1\𝜏𝜏𝐼𝐼) ∫ 𝑒𝑒 𝑑𝑑𝑑𝑑 + 𝜏𝜏𝐷𝐷
𝑑𝑑𝑒𝑒𝑑𝑑
𝑑𝑑𝑑𝑑 ]                      (14) 

Where 

 𝑒𝑒𝑝𝑝 = 𝛽𝛽𝑦𝑦𝑟𝑟 − 𝑦𝑦      𝑒𝑒 = 𝑦𝑦𝑟𝑟 − 𝑦𝑦    𝑒𝑒𝑑𝑑 = γ𝑦𝑦𝑟𝑟 − 𝑦𝑦                   (15) 

Here y is the system output, yr the set point, β and γ are set 

point weighting parameters.  

Let us consider the UFOPTD process as   

𝐺𝐺𝑝𝑝(𝑠𝑠) = [𝑘𝑘𝑝𝑝𝑒𝑒−ө𝑠𝑠]
[(𝜏𝜏𝑝𝑝𝑠𝑠−1)]                                                                 (16) 

The controller is assumed to be a PID. The transfer function 

relating y to yr is then given by  

𝑦𝑦
𝑦𝑦𝑟𝑟

= [𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝛽𝛽𝛽𝛽+𝑚𝑚+γ𝑠𝑠2)𝑒𝑒−ө𝑠𝑠]
[𝑠𝑠(𝜏𝜏𝑝𝑝𝑠𝑠−1)+𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝑠𝑠+𝑚𝑚+𝑠𝑠2)𝑒𝑒−ө𝑠𝑠]                                        (17) 

Due to the presence of delay term in the numerator, there is a 

delayed response in y.  Instead, the above expression can be 

first considered without this term in the numerator in order to 

simplify the mathematical treatment. Using first order Pade’s 

Approximation for 𝑒𝑒−ө𝑠𝑠 in the denominator, Eq. (17) 

becomes  

𝑦𝑦
𝑦𝑦𝑟𝑟

= [𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝛽𝛽𝛽𝛽+𝑚𝑚+γ𝑠𝑠2)(1+0.5ө𝑠𝑠)𝑒𝑒−ө𝑠𝑠]
[𝑠𝑠(𝜏𝜏𝑝𝑝𝑠𝑠−1)(1+0.5ө𝑠𝑠)+𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝑠𝑠+𝑚𝑚+𝑠𝑠2)(1−0.5ө𝑠𝑠)]         (18) 

Eq. (18) can be rewritten as 

𝑦𝑦
𝑦𝑦𝑟𝑟

= [𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝑚𝑚+𝑐𝑐1s+𝑐𝑐2𝑠𝑠2+𝑐𝑐3𝑠𝑠3)(1+0.5ө𝑠𝑠)exp (−ө𝑠𝑠)]
[−𝑠𝑠+𝑐𝑐4𝑠𝑠2+𝑐𝑐5𝑠𝑠3+𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝑚𝑚+𝑠𝑠𝑐𝑐6+𝑠𝑠2𝑐𝑐7+𝑠𝑠3𝑐𝑐8)]           (19) 

Where  

𝑐𝑐1 = 𝛽𝛽 + 0.5𝑚𝑚ө                                                                 (20) 

𝑐𝑐2 = 0.5𝛽𝛽ө + γ𝜏𝜏𝐷𝐷                 (21) 

𝑐𝑐3 = 0.5γ𝜏𝜏𝐷𝐷                          (22) 

𝑐𝑐4 = 𝜏𝜏𝑝𝑝 − 0.5ө                    (23) 

𝑐𝑐5 = −0.5ө𝜏𝜏𝑝𝑝               (24) 

𝑐𝑐6 = 1 − 0.5ө𝑚𝑚                     (25) 

𝑐𝑐7 = 𝜏𝜏𝐷𝐷 − 0.5ө                    (26) 

𝑐𝑐8 = −0.5𝜏𝜏𝐷𝐷ө                      (27) 

The set point weighting parameter is selected here based on 

the numerator and denominator as polynomial in s and s
3
 

coefficients. 

Let L1 be defined as the ratio of corresponding coefficient of 

s in the numerator to that in the denominator when there is no 

set point weighting (β=1) 

 

𝐿𝐿1 = [𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(1+0.5𝑚𝑚ө]
[−1+𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(1−0.5𝑚𝑚ө)]                                      (28) 

If 𝐿𝐿1 > 1, then we equate the corresponding coefficient of s 

in the numerator to that in the denominator i.e. 

 

𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝛽𝛽 + 0.5𝑚𝑚ө) = (−1 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(1 − 0.5𝑚𝑚ө))         (29) 

From Eq. (29), we get 

 

𝛽𝛽 = 1 − 1
𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝

− ө
𝜏𝜏𝐼𝐼

       (30) 

If 𝐿𝐿1 ≤ 1, then equate the corresponding coefficient of s in 

the numerator to 𝐿𝐿1 times that in the denominator i.e. 

𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(𝛽𝛽 + 0.5𝑚𝑚ө) = 𝐿𝐿1(−1 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(1 − 0.5𝑚𝑚ө)) 

It is found by simulation on various transfer function models 

that 𝛽𝛽 = 0.7𝐿𝐿1 gives the reduced overshoot. 

 

Let L2 be defined as the ratio of corresponding coefficient of 

s
3
 in the numerator to that in the denominator when there is 

no set point weighting (γ=1) 

 

𝐿𝐿2 = 𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝[0.5𝜏𝜏𝐷𝐷ө]
[0.5ө𝜏𝜏𝑝𝑝+𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(−0.5𝜏𝜏𝐷𝐷ө)]                                                  (31) 

If 𝐿𝐿2 > 1, then we equate the corresponding coefficient of s
3
 

in the numerator to that in the denominator i.e. 

𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝[0.5γ𝜏𝜏𝐷𝐷ө] = [0.5ө𝜏𝜏𝑝𝑝 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(−0.5𝜏𝜏𝐷𝐷ө)]      (32) 

From Eq. (32), we get 

 

 γ = −1 + 𝜏𝜏𝑝𝑝
𝜏𝜏𝐷𝐷𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝

                                                                (33) 

If 𝐿𝐿2 ≤ 1, then equate the corresponding coefficient of s
3
 in 

the numerator to 𝐿𝐿2 times that in the denominator i.e. 

 

𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝[0.5γ𝜏𝜏𝐷𝐷ө] = 𝐿𝐿2[0.5ө𝜏𝜏𝑝𝑝 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑝𝑝(−0.5𝜏𝜏𝐷𝐷ө)]             (34) 

It is found by simulation on various transfer function models 

that γ = 0.3𝐿𝐿2 gives the reduced overshoot. 

 

 

4. SIMULATION RESULTS 

Simulation studies have been performed on different unstable 

FOPTD processes and the closed loop performances are 

compared with modern and more accepted PID tuning 

method Nasution et al. (2011). Integral of absolute error 

(IAE) of the controlled variable as well as total variation 

(TV) of manipulated variable at a particular value of 

maximum sensitivity are measured as performance indices 

for fair assessment. λ needs to be chosen appropriately for all 

the methods in order to compare the closed performances. In 

this case, λ for all the methods is selected for same value of 

Ms so that the desired robustness index is same. It is 

important to note that all the methods allow for λ to be 

suitably selected. By using these controller settings and using 

eqns. 30 and 33, the set-point weighting parameters (β and γ) 

are obtained.  

Example-1: Let us consider the UFOPTD process as   

14

4
)(

2






s

e
sG

s

p

 

According to Dasari et al. (2016), λ is obtained as 4.5 which 

corresponds to Ms Value of 2.68. Table – 1 shows the 

corresponding controller settings. By using these controller 

settings and using eqns. 30 and 33, the set-point weighting 

parameters are obtained. The control system is simulated by 

giving a unit step change in set point. The corresponding 

closed loop and control action response is illustrated in Fig. 
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2. To analyse the performances of the all the methods for 

robustness, perturbations of, +10% in time delay and -10% in 

time constant, are considered and the consequent responses 

are shown in Fig. 3. It can be seen that the present method 

provides enhanced performances with smoother control 

action. The corresponding IAE and TV values for perfect 

model condition and perturbed condition are given in Table – 

1.   

 

 

Fig. 2. Comparison of closed loop servo response for perfect 

condition for example 1, solid - Proposed method, dash – 

Nasution et.al. 

 

 
 

Fig. 3. Comparison of closed loop servo  response for 

perturbations of +10% in time delay and -10% in time 

constant for example 1, solid - Proposed method, dash – 

Nasution et.al, 

 

Example-2: Let us consider the UFOPTD process as   
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Here, λ is selected as 3.28 corresponding to Ms value of 9. 

Note that smaller Ms values cannot be obtained for delay 

dominant unstable systems. The corresponding controller 

settings are given in Table – 1. By using these controller 

settings and using eqns. 30 and 33, the set-point weighting 

parameters are obtained. The control system is simulated by 

giving a unit step change in set point. The corresponding 

closed loop and control action response is shown in Fig. 4. 

To analyse the performances of the all the methods for 

robustness, perturbations of, +5% in time delay and -5%, in 

time constant are considered and the corresponding responses 

are shown in Fig. 5. It can be observed that the present 

method provides improved performances with smoother 

control action. The corresponding IAE and TV values for 

perfect model condition and perturbed condition are given in 

Table – I.   

 

 

Fig. 4. Comparison of closed loop servo response for perfect 

condition for example 2, solid - Proposed method, dash – 

Nasution et.al. 

 

Fig. 5. Comparison of closed loop servo  response for 

perturbations of +10% in time delay and -10% in time 

constant for example 2, solid - Proposed method, dash – 

Nasution et al. 
 

Example-3: Let us consider the UFOPTD process as   
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Here, λ is considered as 2.56 for an Ms Value of 3.78. The 

corresponding controller settings are shown in Table – 1. By 

using these controller settings, and by making use of eqns. 30 

and 33, the set-point weighting parameters are calculated. 

The control system is simulated by giving a unit step change 

in set point. The corresponding closed loop and control action 

response is shown in Fig. 6. To analyse the performances of 

the all the methods for robustness, perturbations of, -10%in 

process gain,+10% in time delay and -10% in time constant 

are considered and the corresponding responses are shown in 

Fig. 7. It can be observed that the present method provides 

robust performances with smoother control action. The 

corresponding IAE and TV values for perfect model 

condition and perturbed condition are given in Table – 1. 

 

Example-4: Let us consider the UFOPTD process as   
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In this case, λ is selected as 0.8 corresponding to Ms Value of 

2.8. The corresponding controller settings are given in Table 

– I. 
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2. To analyse the performances of the all the methods for 

robustness, perturbations of, +10% in time delay and -10% in 

time constant, are considered and the consequent responses 

are shown in Fig. 3. It can be seen that the present method 

provides enhanced performances with smoother control 

action. The corresponding IAE and TV values for perfect 

model condition and perturbed condition are given in Table – 

1.   
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Here, λ is selected as 3.28 corresponding to Ms value of 9. 

Note that smaller Ms values cannot be obtained for delay 

dominant unstable systems. The corresponding controller 

settings are given in Table – 1. By using these controller 

settings and using eqns. 30 and 33, the set-point weighting 

parameters are obtained. The control system is simulated by 

giving a unit step change in set point. The corresponding 

closed loop and control action response is shown in Fig. 4. 

To analyse the performances of the all the methods for 

robustness, perturbations of, +5% in time delay and -5%, in 

time constant are considered and the corresponding responses 

are shown in Fig. 5. It can be observed that the present 

method provides improved performances with smoother 

control action. The corresponding IAE and TV values for 
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Here, λ is considered as 2.56 for an Ms Value of 3.78. The 

corresponding controller settings are shown in Table – 1. By 

using these controller settings, and by making use of eqns. 30 

and 33, the set-point weighting parameters are calculated. 

The control system is simulated by giving a unit step change 

in set point. The corresponding closed loop and control action 

response is shown in Fig. 6. To analyse the performances of 

the all the methods for robustness, perturbations of, -10%in 

process gain,+10% in time delay and -10% in time constant 

are considered and the corresponding responses are shown in 

Fig. 7. It can be observed that the present method provides 

robust performances with smoother control action. The 

corresponding IAE and TV values for perfect model 

condition and perturbed condition are given in Table – 1. 
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Fig. 6. Comparison of closed loop servo response for perfect 

condition for example 3, solid - Proposed method, dash – 

Nasution et.al 

 

Fig. 7. Comparison of closed loop servo  response for 

perturbations of +10% in time delay and -10% in time 

constant for example 3, solid - Proposed method, dash – 

Nasution et.al, 

 

By using these controller settings and with the use of eqns. 30 

and 33, the set-point weighting parameters are obtained. The 

control system is simulated by giving a unit step change in 

set point. The corresponding closed loop and control action 

response is shown in Fig. 8. To analyse the performances of 

the all the methods for robustness, perturbations of,-10%in 

process gain, +10% in time delay and -10% in time constant 

are considered and the corresponding responses are shown in 

Fig. 9. It can be observed that the present method provides 

more robust performances with smoother control action. The 

corresponding IAE and TV values for perfect model 

condition and perturbed condition are given in Table – 1.   

 

Fig. 8. Comparison of closed loop servo response for perfect 

condition for example 4, solid - Proposed method, dash – 

Nasution et.al. 

 

Fig. 9. Comparison of closed loop servo  response for 

perturbations of +10% in time delay and -10% in time 

constant for example 4, solid - Proposed method, dash – 

Nasution et.al, 

4. CONCLUSIONS 

The proposed method is simple for the calculation of the set 

point weighting parameters β and γ of a PID controller for 

unstable first order systems with time delay. From the 

simulation results, it can be observed that the overshoot and 

undershoot are reduced considerably by the proposed 

method. Comparison of the proposed method with that of the 

Nasution et al. (2011) illustrates that, though the methods 

give similar performances, the proposed method is simpler to 

carry out as β and γ can be obtained by simple hand 

calculations. An additional advantage of the proposed method 

over existing methods is its ability to provide improved stable 

closed loop response even when there are large amount of 

perturbations in the process parameters. Quantitative 

comparison is carried out using IAE and TV values. 

Furthermore, the control action being smoother and providing 

low TV values which is recommended for any control 

system.  
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