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[1] This study explores the potential of the neurofuzzy computing paradigm to model the
rainfall-runoff process for forecasting the river flow of Kolar basin in India. The
neurofuzzy computing technique is a combination of a fuzzy computing approach and an
artificial neural network technique. Parameter optimization in the model was performed by
a combination of backpropagation and least squares error methods. Performance of the
neurofuzzy model was comprehensively evaluated with that of independent fuzzy and
neural network models developed for the same basin. The values of three performance
evaluation criteria, namely, the coefficient of efficiency, the root-mean-square error, and
the coefficient of correlation, were found to be very good and consistent for flows
forecasted 1 hour in advance by the neurofuzzy model. The value of the relative error in
peak flow prediction was within reasonable limits for the neurofuzzy model. The
neurofuzzy model forecasted 47.95% of the total number of flow values 1 hour in advance
with less than 1% relative error, while for the neural network and fuzzy models the
corresponding values were 36.96 and 18.89%, respectively. The forecasts by the
neurofuzzy model at higher lead times (up to 6 hours) are found to be better than those
from the neural network model or the fuzzy model, implying that the neurofuzzy model
seems to be well suited to exploit the information to model the nonlinear dynamics of the
rainfall-runoff process.
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1. Introduction

[2] River flow forecasting has always been one of the
most important issues in hydrology and it is an essential
measure in water resource development and planning.
Forecasting a river flow provides a warning of impending
stages during floods and assists in regulating reservoir
outflows during low river flows for water resource man-
agement. To date, a plethora of rainfall-runoff models
belonging to different categories is available for flow
forecasting purposes. Most of the rainfall-runoff models
have been developed based either on physical considera-
tions of the process or on a systems theoretic approach. In
the physical approach, the primary motivation is the study
of physical phenomena and their understanding, while in the
system theoretic approach the concern is with the system
operation, not the nature of the system by itself or the
physical laws governing its operation.
[3] Although the conceptual (physics based) models

provide reasonable accuracy, the implementation and cali-
bration of conceptual models can typically present various
difficulties [Duan et al., 1992], requiring sophisticated
mathematical tools, a significant amount of calibration data,
and some degree of expertise and experience with the
model. The need for a system theoretic approach arises in

many instances, primarily from the complexities inherent in
the physical approach and a belief that the system behavior
may be approximated by major physical factors, thus
permitting the neglect of minor features and exact spatial
features of the physical parameters [Sudheer, 2000]. In this
context data-driven models, which can discover relation-
ships from input-output data without having the complete
physical understanding of the system, may be preferable.
While such models do not provide any physics of the
hydrologic processes, they are in particular, very useful
for river flow forecasting where the main concern is with
making accurate predictions of flow at specific watershed
locations.
[4] Traditionally, autoregressive moving average

(ARMA) models have been used for modeling and fore-
casting water resource time series because such models are
accepted as a standard representation of a stochastic time
series [Maier and Dandy, 1997]. The method that is based
on a statistical approach makes use of classical statistics to
analyze the historical data with an objective to develop
methods for the formulation of flood forecasts [e.g., Box
and Jenkins, 1976; Salas and Obeysekera, 1982; Sharma,
1985]. However, such models do not attempt to represent
the nonlinear dynamics inherent in the transformation of
rainfall to runoff and therefore may not always perform well
[Hsu et al., 1995]. Owing to the difficulties associated with
nonlinear model structure identification and parameter esti-
mation, very few truly nonlinear system theoretic watershed
models have been reported [Jacoby, 1966; Amorocho and
Brandstetter, 1971; Ikeda et al., 1976]. In most cases,
linearity or piecewise linearity has been assumed [Hsu et
al., 1995]. Therefore it seems necessary that the conven-

1National Institute of Hydrology, Deltaic Regional Centre, Siddartha
Nagar, Kakinada, India.

2Department of Civil Engineering, Indian Institute of Technology
Madras, Chennai, India.

3National Institute of Hydrology, Roorkee, India.

Copyright 2005 by the American Geophysical Union.
0043-1397/05/2004WR003562

W04004

WATER RESOURCES RESEARCH, VOL. 41, W04004, doi:10.1029/2004WR003562, 2005

1 of 16



tionally applied modeling techniques be refined or comple-
mented to achieve improved performance by implementing
new or different technologies.
[5] During the last two decades, the tools that engineers

and scientists work with have improved significantly. The
rapid growth of computing power has enabled the research-
ers to develop effective modeling tools. One of the most
exciting ideas that emerged from the vast pool of computer-
based research is the thought of emulating the low-level
mechanism of the human brain through artificial neural
networks (ANN). Already, useful applications have been
designed, built and commercialized, and much research
continues in the hope of extending this success [Haykin,
1994]. Similarly, the fuzzy rule based approach in model-
ing, introduced by Zadeh [1965], is also being widely used
in various fields of science and technology [Chang and
Chang, 2001; Nayak et al., 2004]. The reason for such an
increasing interest resides in their intrinsic generality, flex-
ibility, and global performance in most applications where
other models either tend to fail or become cumbersome
[Shamseldin et al., 2002]. Both these intelligent computing
methods have far-reaching potential as building blocks in
today’s computational world.
[6] Artificial neural networks (ANN) are essentially

semiparametric regression estimators and are well suited
for hydrologic modeling [Connor et al., 1994; Atiya et al.,
1999; Babovic and Keijzer, 1999], as they can approximate
virtually any (measurable) function up to an arbitrary degree
of accuracy [Hornik et al., 1989]. The emergence of neural
network technology has provided many promising results in
the field of hydrology and water resource simulation [ASCE
Task Committee on Application of Artificial Neural Net-
works in Hydrology, 2000a, 2000b; Dawson and Wilby,
2001]. Fuzzy rule based modeling is a qualitative modeling
scheme where the system behavior is described using a
natural language [Sugeno and Yasukawa, 1993]. The last
decade has witnessed a few applications of fuzzy logic in
water resource forecasting [Fujita et al., 1992; Zhu and
Fujita, 1994; Zhu et al., 1994; Stuber et al., 2000; See and
Openshaw, 2000; Hundecha et al., 2001; Xiong et al.,
2001]. A number of research papers in the past few years
[Minns and Hall, 1996; Khondker et al., 1998; Solomatine
et al., 2000; Sudheer and Jain, 2004] have shown that using
these data-driven techniques to model hydrologic processes,
such as rainfall-runoff forecasting, flash flood forecasting
and prediction of surge water levels, are promising.
[7] These intelligent computational methods offer real

advantage over conventional modeling, including the ability
to handle large amounts of noisy data from dynamic and
nonlinear systems, especially when the underlying physical
relationships are not fully understood. While both these

techniques are proven to be effective when used on their
own, the individual strengths of each approach can be
exploited in a synergistic manner for the construction of
powerful intelligent systems by effectively combining the
techniques. In recent years, the integration of neural net-
works and fuzzy logic has given birth to a new research field
called neurofuzzy systems. Neurofuzzy systems have the
potential to capture the benefits of each individual field into a
single framework. Neurofuzzy systems eliminate the basic
problem in fuzzy system design (i.e., obtaining a set of fuzzy
if-then rules) by effectively using the learning capability of
an ANN for automatic fuzzy if-then rule generation. As a
result, these systems can utilize linguistic information from a
human expert as well as measured data during modeling. In
contrast to pure neural or pure fuzzy methods, the neuro-
fuzzy hybrid method possesses (1) the advantages of both the
fields (2) the learning and adaptation capabilities of a neural
network, and (3) the inference approach of a fuzzy reasoning
mechanism that enables approximate human reasoning ca-
pabilities. Neurofuzzy applications have been developed for
signal processing, automatic control, information retrieval,
database management, etc. (e.g., Jang, 1993]. However,
there is little discussion, in the literature, on more pragmatic
hydrologic application of this hybrid computing system.
[8] This paper demonstrates the applicability of neuro-

fuzzy systems in developing effective nonlinear models of
the rainfall-runoff process for short-term flood forecasting.
A neurofuzzy model, that forecasts hourly flood discharge at
a given streamflow gauge station at different lead times, has
been developed for the river Kolar (a tributary of Narmada)
in India. The paper also aims at an extensive evaluation of
neurofuzzy model with a pure ANN and a pure fuzzy rule
based model for rainfall-runoff modeling, and critically
comment on their relative merits and limitations.

2. Neurofuzzy Model

[9] The basic concepts that comprise the neural network
approach or fuzzy theory, such as weights, learning algo-
rithm, fuzzy set, membership functions, the domain parti-
tions, and fuzzy if-then inference rules are not reproduced in
the body of this paper as that have been introduced in
numerous hydrological papers and text books [Haykin,
1994; Hundecha et al., 2001; Xiong et al., 2001]. However,
as the integration of both techniques is a relatively new
concept, brief details of the method are presented in the
following sections.
[10] Neurofuzzy modeling refers to the way of applying

various learning techniques developed in the neural network
literature to fuzzy modeling or a fuzzy inference system
(FIS). The basic structure of a FIS (Figure 1) consists of

Figure 1. Fuzzy inference system.
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three conceptual components: A rule base, which contains a
selection of fuzzy rules; a database which defines the
membership function (MF) used in the fuzzy rules; and a
reasoning mechanism, which performs the inference proce-
dure upon the rules and a given condition to derive a
reasonable output conclusion. A FIS implements a nonlin-
ear mapping from its input space to an output space. A FIS
can utilize human expertise by storing its essential compo-
nents in a rule base and database, and perform fuzzy
reasoning to infer the overall output value. The derivation
of if-then rules and corresponding membership functions
depends heavily on the a priori knowledge about the system
under consideration. However there is no systematic way to
transform experience of knowledge of human experts to the
knowledge base of a FIS. On the other hand, ANN learning
mechanisms do not rely on human expertise. Because of the
highly parallel structure of an ANN it is hard to extract
structured knowledge from either the weights or the con-
figuration of the ANN. The weights of the ANN represent
the coefficients of the hyperplane that partition the input
space into two regions with different output values. If
one can visualize the hyperplane structure from the training
data then the subsequent learning procedures in an ANN
can be reduced. On the contrary, a priori knowledge is
usually obtained from the human experts and it is most
appropriate to express the knowledge as a set of fuzzy if-
then rules.
[11] To a large extent, the drawbacks of these two

approaches seem to be complementary. Therefore it is
possible to consider building an integrated system combin-

ing the concept of FIS and ANN modeling. A common way
to apply a learning algorithm to a FIS is to represent it in a
special ANN architecture. However the conventional ANN
learning algorithms (e.g., gradient descent) cannot be ap-
plied directly to such a system as the function of the
inference system is usually non differentiable. This problem
can be tackled by using differentiable functions in the
inference system or by not using the standard neural
learning algorithm. In the present study, a class of adaptive
networks [Brown and Harris, 1994] that act as a funda-
mental framework for adaptive fuzzy inference systems is
employed. The procedure of developing a FIS using the
framework of adaptive neural networks is called an adaptive
neurofuzzy inference system (ANFIS).

3. ANFIS

[12] The selection of a FIS is the major concern while
designing an ANFIS to model a specific target system.
Various types of FIS are reported in the literature [e.g.,
Mamdani and Assilian, 1975; Tsukamoto, 1979; Takagi and
Sugeno, 1985] and each is characterized by their consequent
parameters only. The current study used a Takagi-Sugeno-
Kang (TSK) fuzzy inference system [Takagi and Sugeno,
1985] since the conclusion of a fuzzy rule is constituted by a
weighted linear combination, and the parameters can be
estimated by a simple least squares error method.
[13] Consider that the FIS has two inputs x, y and one

output z. Figures 2a and 2b illustrate a TSK fuzzy inference
system and its corresponding ANFIS architecture respec-

Figure 2. Schematic of fuzzy and neurofuzzy paradigm: (a) Fuzzy inference system and (b) equivalent
ANFIS architecture.

W04004 NAYAK ET AL.: FLOOD FORECASTING WITH A NEUROFUZZY MODEL

3 of 16

W04004



tively when each input (x and y) is assigned two member-
ship functions. For a first-order TSK model, a common rule
set with two fuzzy if-then rules can be written as follows:
rule 1, if x is A1 and y is B1, then f1 = p1x + q1y + r1, and
rule 2, if x is A2 and y is B2, then f2 = p2x + q2y + r2, where
the ‘‘if’’ statement is the antecedent, the ‘‘then’’ statement is
the consequent, x and y are linguistic variables and A1, A2,
B1, B2 are corresponding fuzzy sets, and p1, q1, r1 and p2,
q2, r2 are linear parameters. The functionality of each layer
in the ANFIS is as follows [Jang, 1993].

3.1. Layer 1

[14] Each node in this layer generates membership grades
of an input variable. The node output OPi

1 is defined by

OP1
i ¼ mAi xð Þ for i ¼ 1; 2 ð1Þ

or

OP1
i ¼ mBi�2 yð Þ for i ¼ 3; 4 ð2Þ

where x (or y) is the input to the node; Ai (or Bi�2) is a
fuzzy set associated with this node, characterized by the
shape of the MFs in this node and can be any appropriate
functions that are continuous and piecewise differentiable
such as Gaussian, generalized bell shaped, trapezoidal
shaped and triangular shaped functions. Assuming a
Gaussian function as the MF, the output OPi

1 can be
computed as

OP1
i ¼ mAi xð Þ ¼ e

�1
2

x�ci
si

� �2

ð3Þ

where {ci, si} is the parameter set that changes the shapes of
the membership function with maximum equal to 1 and
minimum equal to 0. These parameters are called premise
parameters or antecedent parameters.

3.2. Layer 2

[15] Every node in this layer multiplies the incoming
signals, denoted as �, and the output OPi

2 that represents the
firing strength of a rule is computed as,

OP2
i ¼ wi ¼ mAi xð ÞmBi yð Þ; i ¼ 1; 2: ð4Þ

3.3. Layer 3

[16] The ith node of this layer, labeled as N, computes the
normalized firing strengths as

OP3
i ¼ wi ¼

wi

w1 þ w2

; i ¼ 1; 2: ð5Þ

3.4. Layer 4

[17] Node i in this layer computes the contribution of the
ith rule toward the model output, with the following node
function:

OP4
i ¼ wifi ¼ wi pixþ qiyþ rið Þ ð6Þ

where w is the output of layer 3 and {pi, qi, ri} is the
parameter set. Parameters in this layer will be referred to as
consequent parameters.

3.5. Layer 5

[18] The single node in this layer computes the overall
output of the ANFIS as:

OP5
1 ¼ Overall output ¼

X

i

wifi ¼

X

i

wifi

X

i

wi

ð7Þ

The parameters for optimization in an ANFIS are the
premise parameters {ci, si}, which describe the shape of the
MFs, and the consequent parameters {pi, qi, ri}, which
describe the overall output of the system. ANFIS makes use
of a mixture of backpropagation (to learn the premise
parameters) and least mean square estimation (to determine
the consequent parameters). A step in the learning
procedure has two parts: in the first part the input patterns
are propagated forward assuming random initial values for
the premise parameters, and the optimal consequent
parameters are estimated by an iterative least mean square
procedure, while the premise parameters are assumed to be
fixed for the current cycle through the training set; in the
second part the patterns are propagated back to modify the
premise parameters using the backpropagation algorithm,
while the consequent parameters remain fixed. This
procedure is then iterated till a predefined error goal is
reached.

4. Rainfall-Runoff Model Development

[19] Consider modeling a river flow time series, where it
is required to forecast the value of flow (yt+i) at time t + i,
where i is the lead time. The inputs to the ANFIS are
typically chosen as the values of the time series up to time t
and the output will be the forecast value. It may be noted
that if the aim of the model is prediction, the output vector
must be mapped against available input information only. In
other words, any model that forecasts a flow yt+i at time t + i
can use input information up to time t only. In addition to
previous values of the time series, one can utilize the values
or forecasts of other time series (or external variables) as
inputs that have a correlated or causal relationship with the
series to be forecasted. For a river flow forecasting problem
such exogenous time series could be the rainfall, evapora-
tion and/or temperature over the basin. The functional form
of this type of model is:

ytþi ¼ f yt ; yt�1; . . . ; yt�j; zt ; zt�1; . . . ; zt�k

� �

where f is the unknown function mapped by the model, i is
an index representing lead time, and j and k are the
maximum number of time steps in the past considered
important in modeling yt+i and zt�k is the exogenous
variable considered as an input. The appropriate values of j
and k are not known a priori, and are usually determined by
a trial and error procedure [Maier and Dandy, 2000].
Instead, a data driven approach proposed by Sudheer et al.
[2002] has been explored in the current study for general
guidance in selecting the inputs. Separate models result

4 of 16

W04004 NAYAK ET AL.: FLOOD FORECASTING WITH A NEUROFUZZY MODEL W04004



when these models are developed for different lead times i =
1, 2, 3, ., etc. A suitable transformation of the historic runoff
series has been performed prior to model building as it aids
in improving the model performance [Sudheer et al., 2003].
In the current study, a logarithmic transformation is applied
to the data. The deterministic component in the runoff and
rainfall series is also removed and both the variables are
scaled between zero and one, prior to developing each of the
models.
[20] For the bulk of the study, rainfall and runoff data on

an hourly interval for Kolar basin (Figure 3) in India during
the monsoon season (July, August, and September) for three
years (1987–1989) are used (Figure 4). The Kolar river is a
tributary of the river Narmada that drains an area of about
1350 sq km before its confluence with Narmada near
Neelkanth. In the present study the catchment area up to
the Satrana gauging site is considered, which constitutes an
area of 903.87 sq km. The 75.3 km long river course lies
between north latitude 21�090 to 23�170 and east longitude
77�010 to 77�290. Topographically, the Kolar subbasin can
be divided into two zones. The upper four fifths having
elevations ranging from 300 to 600 m, is predominately
covered by deciduous forests. Soils are skeletal to shallow
except near canals where they are relatively deep. In this
area the rocks are weathered and deep fissures are visible.
The channel beds are rocky or graveled. General response

of this upper part of the basin to rains is quick. The lower
one fifth of the basin consists of a flat-bottomed valley
narrowing toward the outlet and having elevations ranging
from 300 to 350 m. The area is predominately cultivable
and soils are deep and have flat slopes and as such response
of this area to rainfall is likely to be quite slow. The rainfall
data available were in the form of areal average values in
the basin. The total available data has been divided into two
sets, calibration set (data during the years 1987–1988) and
validation set (data during the year 1989). Different models
for lead times of up to 6 hours have been developed in the
study. The parameters of the model are identified using the
calibration data set, and the model is tested for its perfor-
mance on the validation data set. The resulting hydrographs
from the model is analyzed statistically using various
evaluation measures.

4.1. Selection of Inputs to the Model

[21] One of the most important steps in the model
development process is the determination of significant
input variables. Usually, not all of the potential input
variables will be equally informative since some may be
correlated, noisy or have no significant relationship with the
output variable being modeled [Maier and Dandy, 2000].
Generally, some degree of a priori knowledge is used to
specify the initial set of candidate inputs [e.g., Campolo et

Figure 3. Map of the Kolar basin, India.
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al., 1999; Thirumalaiah and Deo, 2000]. Although a priori
identification is widely used in many applications and is
necessary to define a candidate set of inputs, it is dependent
on an expert’s knowledge, and hence is very subjective and
case-dependent. Intuitively, the preferred approach for de-
termining appropriate inputs and lags of inputs, involves a
combination of a priori knowledge and analytical approaches
[Maier and Dandy, 1997]. When the relationship to be
modeled is not well understood, then an analytical technique,
such as cross correlation, is often employed [e.g., Sajikumar
and Thandaveswara, 1999; Luk et al., 2000; Silverman and
Dracup, 2000; Coulibaly et al., 2000, 2001; Sudheer et al.,
2002]. The major disadvantage associated with using cross
correlation is that it is only able to detect linear dependence
between two variables. Therefore cross correlation is unable
to capture any nonlinear dependence that may exist between
the inputs and the output, and may possibly result in the
omission of important inputs that are related to the output
in a nonlinear fashion. Bowden et al. [2004], while
reviewing the current state of input selection procedures
in water resources applications, report that the cross-
correlation methods represent the most popular analytical
techniques for selecting appropriate inputs. It follows that
there is good scope for addressing this issue in future
studies.
[22] The current study employed a statistical approach

suggested by Sudheer et al. [2002] to identify the appropriate
input vector. The method is based on the heuristic that the
potential influencing variables corresponding to different
time lags can be identified through statistical analysis of
the data series that uses cross correlation, autocorrelation,
and partial autocorrelation between the variables in question.
The cross correlation between the runoff and rainfall series
at various lags (Figure 5) showed significant correlation
at 7, 8 and 9 hours of rainfall lag on the flow at any time.
The autocorrelation and partial autocorrelation function

(Figure 5) suggests a significant correlation, at 95% confi-
dence level up to 1 hour of runoff lag. Note that this
correlogram is for the stochastic component of the runoff
series, i.e., after removing the deterministic components
from the original series. Therefore a total number of 4
variables (3 rainfall and 1 runoff) are identified as inputs
according to Sudheer et al. [2002]. As stated earlier, three
kinds of models were developed in this study, namely, ANN,
FIS and ANFIS, all of them built using the same input
variables.

4.2. Model Structure Identification

[23] It may be noted that in theory, all these models
(ANFIS, ANN, and FIS) in comparison are capable of
fitting a nonlinear function to any arbitrary accuracy.
Selection of model architecture is one decisive factor in
the simulation and comparison. The identification of the
optimal network geometry is one of the major tasks in
developing an ANN model. While the number of input-
output nodes is problem dependant, there is no direct and
precise way of determining the optimal number of hidden
nodes. The model architecture of an ANN is generally
selected through a trial-and-error procedure [Sudheer and
Jain, 2004], as currently there is no established methodol-
ogy for selecting the appropriate network architecture prior
to training [Coulibaly et al., 2001]. On the other hand, a
fuzzy inference system can be viewed as a partition in the
multidimensional feature space, where the number of par-
titions in each dimension corresponds to the number of
fuzzy sets and the corresponding membership function that
are defined in that dimension. Consequently, the input space
partitioning plays a major role in the optimal architecture of
the model. Input space partitioning is carried out in different
ways: grid and scattering partitioning. A clear drawback of
grid partitioning is that the number of rules grows expo-
nentially. Moreover, the optimization of antecedent param-

Figure 4. Rainfall and runoff series of the Kolar basin.
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eter becomes complex if grid partitioning is employed.
Consequently, while developing an FIS, scattering partition-
ing is commonly employed [Setnes, 2000] for FIS structure
identification as the antecedent parameters are obtained
directly from the fuzzy clusters. A limitation of this clus-
tering based FIS models is that if any data point falls away
from the cluster centre or outside the clusters the model
performance may not be satisfactory. However, grid parti-
tioning method represents the whole range of the input
space, and if the complex optimization of antecedent
parameters can be properly addressed, the resulting FIS
may perform better than clustering based FIS. This is
precisely one of the advantages of the ANFIS. In the current
investigation, the optimization of antecedent parameters is
addressed through the backpropagation algorithm. How-
ever, it is not advisable to use grid partitioning in ANFIS
when the input dimension is more than six [Nayak et al.,
2004] due to curse of dimensionality.
[24] The trail and error procedure of determining the

optimal number of hidden nodes in ANN requires huge
amount of time as each time a new hidden node is added (or
deleted) the model requires being retrained and evaluated.
The major parameter that requires trial and error evaluation
in FIS development is the cluster radius that specifies the
range of influence of the cluster centre of each input and
output dimension. As the subtractive clustering algorithm
[Chiu, 1994] that is used in the current work is a non-
iterative procedure, the time taken to reach the final FIS
architecture by trail and error is less compared to ANN. In
the case of ANFIS, the number of MF associated with each
input variable is to be fixed by trail and error. A major
drawback of the ANFIS is that the number of parameters
grows exponentially with the number of MF resulting in
large training time. Nonetheless, ANFIS converges faster
than the typical feed forward ANN as the first three layers
of the ANFIS are not fully connected (see Figure 2) and the
backpropagation is limited to the layer 3 alone. The hybrid
algorithm that is used for optimizing the parameters of the

ANFIS in the current study, which is a combination of
backpropagation and least squares error method, allows a
significant reduction in the number of training epochs. The
computational burden for developing these models with
respect to the current study is discussed in section 6.

4.3. ANFIS Model Development

[25] The ANFIS rainfall-runoff model is developed fol-
lowing the procedure described in section 2. As the choice
of membership function of the ANFIS architecture is not
momentous to the model performance [Nayak et al., 2004],
Gaussian membership functions (equation (3)) are selected
for the model. Note that in the grid partitioning method,
ideally for n domains (rules) and p input variables there
could be np different if-then rules. Consequently, increasing
the number of membership functions on the input variables
will increase the number of fuzzy if-then rules; simulta-
neously it increases the model complexity and hence affects
the model parsimony. Moreover, a fuzzy model with a large
number of rules often encounters the risk of over fitting the
data [Babuska, 1998; Yen and Wang, 1999]. In the current
study, the number of MFs assigned to each input variable
has been varied from 2 (16 rules) to 4 (256 rules). No
significant improvement in model performance is observed
with respect to the change in number of MFs. However, as
the number of MFs increases, the time taken for model
training also increases considerably. Consequently, by the
principle of parsimony, the model with 2 MFs was selected
for further analysis.

4.4. ANN Model Development

[26] To have a true comparison between models, the input
and the output vector to the ANN model are kept as the
same as that of the ANFIS. Single hidden layer with
sigmoid function nodes is used in the ANN. The sigmoid
activation function is considered in the output layer also. As
the sigmoid transfer function has been used in the model,
the input-output data have been scaled appropriately to fall

Figure 5. Correlogram plots of the data series: (a) Autocorrelation function (ACF), (b) partial
autocorrelation function (PACF), and (c) cross-correlation function (CCF) between runoff at different lags
of rainfall.
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within the function limits. A standard back propagation
algorithm with adaptive learning rate and momentum factor
has been employed to estimate the network parameters. The
number of hidden neurons in the network, which is respon-
sible for capturing the dynamic and complex relationship
between various input and output variables was identified
by various trials [Eberhart and Dobbins, 1990; Maier and
Dandy, 2000]. The trial and error procedure started with two
hidden neurons initially, and the number of hidden neurons
was increased up to 10 with a step size of 1 in each trial. For
each set of hidden neurons, the network was trained in batch
mode to minimize the mean square error at the output layer.
In order to check any overfitting during training, a cross
validation was performed by keeping track of the efficiency
of the fitted model. The training was stopped when there
was no significant improvement in the efficiency, and the
model was then tested for its generalization properties. The
parsimonious structure that resulted in minimum error and
maximum efficiency during training as well as testing was
selected as the final form of the ANN model. The final
structure of the ANN model is: 4 input neurons, 3 hidden
neurons and 1 output neuron.

4.5. FIS Model Development

[27] A Takagi-Sugeno fuzzy inference system has been
developed using the subtractive clustering [Chiu, 1994]
algorithm integrated with a linear least squares estimate
algorithm for the rainfall-runoff model. The FIS model has
been developed based on the assumption that the cluster
estimation method when applied to a collection of input and
output data produces cluster centers where, each cluster
center is in essence a prototypical data point that represents
a characteristic behavior of the system. Hence each cluster
center can be used as the basis of a rule that illustrates the
system behavior.
[28] Consider a set of c cluster centers {x1*, x2*,. . ... . ., xc*}

in an M dimensional space. Let the first N dimensions
corresponds to input variables and the last M-N dimensions
correspond to output variables. Each vector xi* may be
decomposed into two component vectors yi* and zi*, where
yi* contains the first N elements of xi* (i.e., the coordinates
of the cluster center in input space) and zi* contains the last
M-N elements (i.e., the coordinates of the cluster center in
output space).
[29] Each cluster center xi* may be considered as a fuzzy

rule that describes the system behavior. Given an input
vector y, the degree to which rule i is fulfilled is defined as

mi ¼ e�a y�yi*k k
2

ð8Þ

where a is a function of cluster radius (i.e., a constant for a
specific FIS). The output vector z may be computed as

z ¼

X

c

i¼1

mizi*

X

c

i�1

mi

ð9Þ

Equations (8) and (9) provide a simple and direct way to
translate a set of cluster center into a FIS. This computa-
tional scheme may be viewed in terms of a FIS using
traditional fuzzy if-then rules. Each rule has the following
form: If y1 is A1 and y2 is A2 and . . . then z1 is B1 and z2 is

B2. . ., where yi is the ith input variable and zj is the jth
output variable; Ai is a fuzzy set defined by an exponential
membership function and Bj is a singleton. This computa-
tional scheme is equivalent to an inference method that uses
multiplication as the AND operator, weights the output of
each rule by the rule’s firing strength and the overall output
is determined as the weighted average of each rule output.
For more details on the FIS model development, readers are
referred to Nayak et al. [2005].
[30] In this case also, the input-output vector has been

fixed as the same as that of ANFIS and ANN models. The
major parameter that needs to be identified in FIS model is
the clustering radius. Please note that the radius specifies the
range of influence of the cluster centre of the each input and
output dimension. Assuming that the cluster radius falls
within the hyper box of unit dimension, a smaller cluster
radius will yield more cluster in a data and hence a greater
number of rules. Simultaneously it increases the model
complexity and decreases parsimony. The clustering radius
is identified through a trial-and-error procedure by varying
the clustering radius from 0.05 to 0.5 with an increment of
0.05. For each radius, the variance explained by the FIS
model was computed. The explained variance varied from
25.77% for a radius of 0.05 to 94.63% for a radius of 0.2.
With further increase in radius the explained variance was
found to deteriorate (93.23% corresponding to a radius of
0.3 and 92.34% corresponding to a radius of 0.5). The
model that explained maximum variance was selected for
further analysis. The selected FIS model had 3 clusters with
a cluster radius of 0.2 (implying 3 rules).

5. Model Evaluation

[31] Quantitative assessments of the degree to which the
model simulations match the observations are used to
provide an evaluation of the model’s predictive abilities.
Frequently, evaluations of model performance utilize a
number of statistics and techniques, usually referred to as
‘‘goodness of fit’’ statistics. Many of the principal measure-
ments that are used in the hydrological literature have been
critically reviewed by Legates and McCabe [1999]. Still,
there is diversity in the use of global goodness of fit statistics
to determine how well models forecast flood hydrographs.
As a single evaluation measure is not available [Sudheer and
Jain, 2003], a multicriteria assessment was performed in the
current study with various goodness of fit statistics. These
measures can be grouped into two types: relative and
absolute. Relative goodness of fit measures are nondimen-
sional indices, which provide a relative comparison of the
performance of one model against another. In contrast,
absolute goodness of fit statistics are measured in the units
of the flow measurement. The criteria that are employed are
the root-mean-square error (RMSE) between the observed
and forecasted values, the coefficient of efficiency [Nash
and Sutcliffe, 1970], the standard error of estimate (SEE), the
noise to signal ratio and the mean absolute error (MAE). The
definition of these evaluation criteria is provided in Table 1.

6. Results and Discussions

6.1. Forecasts at 1 Hour Lead Time

[32] The values of the performance indices for the 1-hour
ahead forecast of all the models are presented in Table 2.
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The correlation statistics, which evaluate the linear correla-
tion between the observed and computed runoff, is consis-
tent for all models during calibration as well as the
validation period. The model efficiency that evaluates the
capability of the model in predicting runoff values away
from the mean is found to be more than 93% during the
calibration and validation periods for all models, which
according to Shamseldin [1997], is very satisfactory. The
RMSE statistic, which indicates a quantitative measure of
the model error in units of the variable, was good for all
models as is evidenced by the low values. Overall, for a
1-hour ahead forecast, the performance of all the models was
comparable. However, it is worth mentioning that the ANFIS
model has the lowest noise to signal ratio and SEE.

6.2. Forecasting at Longer Lead Times (>1 Hour)

[33] The variation of RMSE with different lead times is
presented in Figure 6. As was expected, all the models show

an increase in RMSE with lead time. However, it is evident
that the slope of the RMSE vs. prediction time horizon is the
minimum for the ANFIS model during calibration as well as
validation. While the ANFIS model forecasted the flows
with a RMSE of 77.52 m3/s at 6 hours, the ANN and FIS
models forecasted the flows with an RMSE of 100.38 and
96.48 m3/s respectively.
[34] Figure 7 depicts the noise to signal ratio of all

models at different lead times. It is evident that while all
the models have comparable value of this performance
index at 1 hour lead time, the performance of all the models
was found to deteriorate at higher lead times. Note that the
ANFIS model also has a minimum rate of change for this
parameter. It is worth mentioning that the value of the noise
to signal ratio did not exceed unity for the ANFIS model up
to a 5 hour lead time, while the other models exceeded the
limiting value after a 3 hour lead time.
[35] The variation of efficiency along the forecast horizon

is presented in Figure 8, from which it is clear that the
performance of ANFIS is far superior to the two other
models at all lead times. It is to be noted that the efficiency
statistic is consistent during training and validation for the
ANFIS model, which indicates a good generalization prop-
erty for the model.
[36] The performance of the models in terms of correla-

tion between the forecasted and observed values of flows is

Table 1. Performance Evaluation Criteriaa

Evaluation Criteria Definition

Coefficient of correlation (R)

R ¼

X

n

i¼1

yoi � yo
� �

yci � yc
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

yoi � yo
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

yci � yc
� �2

s

2

6

6

6

6

4

3

7

7

7

7

5

Coefficient of efficiency (E)

E ¼ 1�

X

n

i¼1

yoi � yci
� �2

X

n

i¼1

yoi � yo
� �2

Root-mean-square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

yoi � yci
� �2

n

v

u

u

t

Standard error of estimate (SEE)

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

yoi � yci
� �2

n

v

u

u

t

Mean bias error (MBE) MBE ¼
1

n

X

n

i¼1

yci � y0i
� �

Noise to signal ratio NS ¼
SEE

sy

aNote yi
o and yi

c are the observed and computed flow values at time t,
respectively, yo and yc are the mean of the observed and computed flow
values corresponding to n patterns, n is the number of degrees of freedom,
and sy is the standard deviation of the observed flow. Normalized values of
these statistics are obtained by dividing the value by the observed mean.

Table 2. Performance Statistics of All Models at 1-Hour Lead

Forecasting

Performance Index

Calibration Validation

ANFIS ANN FIS ANFIS ANN FIS

R 0.9812 0.9775 0.98 0.9824 0.9687 0.9837
E 0.9628 0.9554 0.9591 0.9651 0.935 0.9661
RMSE 40.13 43.9 42.06 24.64 33.65 24.31
Normalized RMSE 0.62 0.68 0.65 0.77 1.05 0.76
SEE 40.21 43.94 42.1 24.73 33.71 24.36
Normalized SEE 0.623 0.681 0.651 0.749 1.053 0.758
MBE �1.18 �1.39 �1.83 0.04 �0.6 �0.49
Normalized MBE �0.02 �0.02 �0.03 0 �0.02 �0.02
NS 0.312 0.366 0.337 0.121 0.167 0.124
MAE 7.21 7.69 7.4 3.44 5.18 3.33

Figure 6. Variation of RMSE along the forecast time
horizon.

Figure 7. Variation of noise to signal ratio along the
forecast time horizon.
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similar to that in terms of the efficiency statistic (Figure 9).
It is to be noted that even at a 6 hour lead time, the
forecasted values have good correlation with the observed
values in the case of the ANFIS model.
[37] An analysis to assess the potential of each of the

models to preserve the statistical properties of the historic
flow series reveals that the flow series computed by the
ANFIS model reproduces the first three statistical moments
(i.e., mean, standard deviation and skewness) better than
that computed by the other two models. The values of the
first three moments for the historic and computed flow
series are presented in Table 3 for comparison. It is to be
noted that the ANFIS model preserved the skewness at all
lead times compared to the ANN and the fuzzy models. This
observation is significant as the skewness of the data
plays an important role in the overall model performance
[Sudheer et al., 2003].
[38] The above discussed error statistics provide relevant

information on overall performance of the models, but do
not provide specific information about model performance
at high flow, which is of critical importance in a flood-
forecasting context. Hence two additional storm-specific
evaluation measures were also considered: percentage error
in predicted peak flow and percent error in total runoff
volume. Both these evaluation measures are computed as

the ratio of predicted and observed values expressed as a
percentage. The results suggest that the value of the percent
error in peak flow prediction, which is a useful index in
simulating events such as floods, is within reasonable limits
for the ANFIS model. The forecast error on a few typical
peak flows during the period of the analysis is presented in
Table 4 during the validation period. Note that these peak
flows were observed at different periods of time, and do not
correspond to the same flood event. It is observed that the
ANFIS model was able to forecast most of the peaks with
reasonable accuracy even up to 6 hours in advance, while

Figure 8. Variation of efficiency along the forecast time
horizon.

Figure 9. Variation of coefficient of correlation along the
forecast time horizon.

Table 3. Summary Statistics of Forecasts up to 6 Hours by All the

Models

Calibration
Forecast

Lead Time

Validation

Average STD Skew Average STD Skew

Observed 64.69 207.98 6.80 32.04 132.01 11.74
ANFIS 63.51 203.99 7.04 1 32.08 128.87 11.76
ANFIS 61.63 195.93 7.37 2 31.96 123.78 11.55
ANFIS 59.31 182.93 7.42 3 31.95 120.08 11.33
ANFIS 56.92 168.79 7.43 4 32.02 119.49 11.32
ANFIS 54.27 150.77 7.11 5 31.76 116.79 11.35
ANFIS 51.80 135.18 7.04 6 31.25 111.72 11.49
ANN 63.30 201.98 7.03 1 31.45 120.19 11.47
ANN 61.33 192.27 7.26 2 30.48 103.75 10.46
ANN 59.05 181.38 7.73 3 29.99 92.91 9.63
ANN 55.53 157.58 7.86 4 29.02 82.95 9.15
ANN 52.82 137.02 6.66 5 28.42 76.35 8.64
ANN 52.13 138.14 7.45 6 29.20 92.26 10.14
FIS 62.86 196.80 6.70 1 31.55 124.73 11.51
FIS 60.19 180.21 6.54 2 30.82 114.09 11.16
FIS 57.28 162.36 6.35 3 29.94 102.92 10.72
FIS 54.44 145.25 6.14 4 29.05 92.39 10.24
FIS 51.85 130.14 5.93 5 28.14 83.20 9.79
FIS 49.41 116.11 5.70 6 27.23 74.66 9.30

Table 4. Comparison of Error in Model Forecasted Peak Flows at

Different Forecast Lead Times During Validation Period

Forecast
Lead Time

Observed
Peak Flow

Percent error in Forecasted
Peak Flow

ANFIS ANN FIS

1 hour 61.11 9.31 6.37 5.32
1 hour 235.28 �2.23 5.18 �8.89
1 hour 393.67 �0.50 2.02 �7.97
1 hour 2028.98 �1.85 �9.10 �10.29
2 hours 61.11 13.87 21.45 10.57
2 hours 235.28 1.30 2.88 �17.81
2 hours 393.67 �10.10 �17.81 �17.45
2 hours 2028.98 �2.46 �12.35 �19.18
3 hours 61.11 10.76 66.31 14.71
3 hours 235.28 �22.48 �22.23 �26.87
3 hours 393.67 �24.22 �32.21 �27.27
3 hours 2028.98 �13.16 �30.91 �30.88
4 hours 61.11 6.59 8.31 19.26
4 hours 235.28 �29.20 �29.78 �37.46
4 hours 393.67 �19.51 �38.12 �46.38
4 hours 2028.98 �21.70 �44.72 �42.58
5 hours 61.11 9.52 19.36 17.35
5 hours 235.28 �17.02 �40.91 �38.98
5 hours 393.67 �24.00 �44.80 �46.69
5 hours 2028.98 �24.43 �56.98 �52.70
6 hours 61.11 5.94 9.12 16.27
6 hours 235.28 �18.21 �36.79 �40.54
6 hours 393.67 �21.16 �31.18 �48.82
6 hours 2028.98 �13.09 �34.48 �60.42
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for both the ANN and FIS the error increased drastically
with an increase in prediction lead time. It is worth
mentioning that the ANFIS was able to forecast the peak
flows with minimum relative error, irrespective of the
magnitude of the peak flow. However, for the ANN and
the FIS, as the magnitude of peak flow increases the forecast
error also increases, which gives less confidence in the
developed models.
[39] Table 5, which depicts the relative error in the

forecasted value of the total discharge from the basin for
two typical hydrographs during the validation period, sug-
gests that the ANFIS model was far superior to the other
two models. However, the error is found to be increasing as
the forecast horizon increases. It is evident from Table 5 that
the FIS has failed to preserve the time to peak flow in both
flood events. It can be seen that the ANFIS also failed to
preserve the time to peak characteristics of a hydrograph,
but note that the value of flow forecasted at the observed
time of peak was with minimum error in the case of the
ANFIS (Table 5). The results indicate that the ANFIS fails
to identify the recession process accurately. One of the
reasons for this appears to be related to the small number of
training examples present in the subdomain represented by
rules corresponding to a higher-flow range, from which a
generalized nonlinear behavior of the process cannot be
assessed. Note that the low- and medium-flow events are
more influenced by local topography, soil moisture status,
infiltration properties, and several other characteristics,
often resulting in a complex rainfall-runoff relationship
[Zhang and Govindraju, 2000]. During the high-flow
events, rainfall dominates the discharge at the stream, and
other factors tend to have a minor role in the collective
response. In order to assess the transformation of rainfall
into runoff in such cases, more example data are required. It
may also be noted that the models used spatially averaged
rainfall information to forecast the flows. The results also
suggest that the global evaluation measures (e.g., RMSE,

SEE, Efficiency etc.) are not good indicators for peak flow
predictions. Shifting the focus to the peak prediction has
also highlighted significant variation in the forecasting
power of the three modeling approaches.
[40] It appears that while assessing the performance of a

streamflow forecasting model for its applicability in fore-
casting streamflows at larger lead time, it is not only
important to evaluate the average prediction error but also
the distribution of prediction errors. It is important to know
whether the model is predicting higher- or lower-magnitude
flows poorly, which may help in further refining the model.
The statistical performance evaluation criteria employed so
far in this study are global statistics and do not provide any
information on the distribution of errors. It is to be noted
that the coefficient of efficiency can be high (80 or 90%)
even for poor models, and the best models do not produce
values which, on first examination, are impressively higher
[Garrick et al., 1978; Legates and McCabe, 1999]. The
RMSE statistic indicates only the model’s ability to predict
a value away from mean [Hsu et al., 1995]. Moreover, the
models are trained by minimizing the sum squared error at
the output layer that is similar to the RMSE. The correlation
statistics provide information only on the strength of rela-
tionship between the observed and the computed values.
Therefore, in order to test the effectiveness of the model
developed, it is important to test the model using some other
performance evaluation criteria such as average absolute
relative error (AARE) and threshold statistics [Jain et al.,
2001; Jain and Ormsbee, 2002]. The AARE and threshold
statistics (TS) not only give the performance index in terms
of predicting flows but also the distribution of the prediction
errors.
[41] These criteria can be computed as

AARE ¼
1

n

X

n

i¼1

REtj j ð10Þ

Table 5. Comparison of Model Estimated Hydrograph Characteristics of Two Typical Flood Events During

Validation Period

Model
Forecast

Lead Time, hours

Event 1a Event 2b

Percent EVc Estimated Peak
Time Difference
to Peak Flow Percent EVc Estimated Peak

Time Difference
to Peak Flow

ANFIS 1 2.59 2063.23 1 �4.99 420.05 1
ANFIS 2 6.32 2043.47 2 �4.57 431.88 2
ANFIS 3 9.34 1981.49 1 �3.33 435.06 2
ANFIS 4 10.00 1945.98 2 4.17 434.60 3
ANFIS 5 13.86 1934.56 1 14.27 414.57 4
ANFIS 6 18.74 1981.49 1 23.63 391.36 5
ANN 1 10.94 1935.56 1 �14.66 467.22 2
ANN 2 22.18 1663.95 2 �17.56 485.59 2
ANN 3 32.07 1334.21 3 �21.62 481.55 3
ANN 4 38.80 1235.63 4 �7.47 481.99 2
ANN 5 43.78 1128.85 5 14.29 427.14 5
ANN 6 49.23 923.90 6 41.31 338.76 6
FIS 1 5.36 1847.83 2 �1.26 393.27 1
FIS 2 13.30 1726.85 2 1.24 384.92 2
FIS 3 21.85 1532.22 3 6.90 371.51 3
FIS 4 30.11 1348.40 4 15.84 353.85 4
FIS 5 37.73 1187.78 5 30.06 331.73 5
FIS 6 44.95 1039.88 6 47.25 307.26 6

aObserved peak flow: 2028.98 m3/s.
bObserved peak flow: 393.67 m3/s.
cPercentage error in volume under estimated hydrograph.
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in which

REt ¼
yot � yct

yot
* 100

where REt is the relative error in forecast at time t expressed
as a percentage, yt

o is the observed streamflow at time t, yt
c is

the computed streamflow at time t, and n is the total number
of testing patterns. Clearly, the smaller the value of AARE
the better is the performance.

[42] The threshold statistic for a level of x% is a measure
of the consistency in forecasting errors from a particular
model. The threshold statistics are represented as TSx and
expressed as a percentage. This criterion can be expressed
for different levels of absolute relative error from the model.
It is computed for x% level (TL) as

TSx ¼
Yx

n
* 100 ð11Þ

Figure 10. Distribution of forecast error across different error thresholds for all the models.
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where Yx is the number of computed streamflows (out of n
total computed) for which the absolute relative error is less
than x% from the model.
[43] The distribution of errors is presented in Figure 10,

which gives a clear indication of better performance by
the ANFIS model. It can be observed from Figure 10 that
the ANFIS and FIS perform almost similarly in terms of the
distribution of the errors. It is worth noting that the ANFIS
model forecasted 47.95%of the total number of flow values at
1 hour in advance with less than 1% relative error, while for
ANN and FIS the corresponding values were 36.96% and
18.89% respectively. However, it is apparent that an evalua-
tion based on relative error over the entire range of flow may
cause significant weighting bias to the low-flow values.
Hence, in order to assess the strengths and weaknesses of
differentmodels in predicting differentmagnitudes of flows, a
‘‘partitioning analysis’’ [Jain and Srinivasulu, 2004] is car-
ried out by dividing the total flow range into low-, medium-,
and high-magnitude flows, and then separately computing the
AARE statistic on each of these clusters. The partitioning of
the data was based on the relative spread of the flows from the
mean, and a careful examination of the distribution of flows in
terms of different statistical measures (Table 3). The criteria
for partitioning and the data counts in each range are pre-
sented in Table 6. It is evident from the Table 6 that any

evaluation based on the whole range of data will be biased
toward low-flow values as about 82% of the data points fall in
this range.
[44] The threshold andAARE statistics for different ranges

of flow computed from all the three models are presented in
Table 7 for comparison. It can be observed fromTable 7 that in
low-flow range all the three models show comparable per-
formance in terms of AARE, while in case of medium and
high ranges of flow, FISmodel is found to be efficient than the
other two. However, the distribution of error is seen to be
better for the ANFIS model in low-flow range as 54.68% of
the low-flow counts are predicted by ANFIS within 1% error
compared to 19.45% for FIS. Even though onlyANFIS is able
to predict some high-flow ranges within 1% error, the results
in Table 7 do not give any conclusive evidence that any
specific model is superior to the other, as the values of AARE
are comparable for all models.
[45] As the forecast accuracy is the main concern in river

flow forecasting context, two more event specific evaluation
criteria, namely peak flow and low-flow criteria (PFC and
LFC), have been employed further. These criteria provide a
more accurate measure of themodel performance on low- and
high-flow ranges. They can be computed as follows:

PFC ¼

X

Tp

t¼1

Qo
t � Qc

t

� �2
Qo2

t

 !1=4

X

Tp

t¼1

Qo2

t

 !1=2
ð12Þ

LFC ¼

X

Tl

t¼1

Qo
t � Qc

t

� �2
Qo2

t

 !1=4

X

Tp

t¼1

Qo2

t

 !1=2
ð13Þ

Table 7. Threshold and AARE Statistics for Different Models

During Validation Period

1-Hour Lead, % 3-Hour Lead, % 6-Hour Lead, %

ANFIS ANN FIS ANFIS ANN FIS ANFIS ANN FIS

Low Flow
AARE 0.07 0.07 0.07 0.08 0.08 0.08 0.12 0.12 0.13
TS1 54.68 37.27 19.45 30.05 29.57 11.94 15.60 17.75 7.59
TS5 85.19 84.63 84.20 66.10 65.15 55.68 53.54 49.94 39.38
TS10 93.21 92.51 93.03 81.44 81.10 79.79 70.70 68.74 66.39
TS15 96.13 95.72 96.40 87.72 87.46 88.40 80.54 78.25 79.34
TS20 97.59 97.52 98.31 92.25 92.11 92.08 85.38 82.54 82.46

Medium Flow
AARE 0.08 0.07 0.06 0.40 0.38 0.39 0.80 0.79 0.66
TS1 18.16 17.60 17.47 6.58 7.14 7.77 6.80 6.42 1.91
TS5 53.39 59.73 55.11 32.63 30.69 26.57 22.17 25.43 17.46
TS10 74.25 76.80 79.84 48.68 51.32 46.62 34.51 37.78 34.45
TS15 84.01 88.27 90.86 60.53 61.64 57.64 44.33 48.64 43.78
TS20 90.24 93.07 94.35 67.89 69.31 68.17 55.92 57.53 54.55

High Flow
AARE 0.24 0.29 0.22 0.72 0.66 0.58 1.21 0.91 0.64
TS1 4.35 0.00 0.00 0.00 0.00 0.00 3.85 0.00 0.00
TS5 26.09 16.67 4.17 4.55 3.45 0.00 7.69 3.23 2.33
TS10 26.09 23.33 29.17 9.09 10.34 3.57 7.69 6.45 18.60
TS15 52.17 33.33 54.17 22.73 10.34 21.43 19.23 6.45 27.91
TS20 56.52 41.67 58.33 22.73 24.14 25.00 26.92 12.90 32.56

Figure 11. Peak and low-flow criteria for ANFIS, ANN,
and FIS model during validation.

Table 6. Number of Data Points in Low-, Medium-, and High-

Flow Categories (Validation Period)a

Category
Number of
Points

Percentage of
the Total Data

Low (x < m) 1783 81.97
Medium (m 	 x 	 m + 2s) 369 16.97
High (x > m + 2s) 23 1.06
Total 2175 100

aNote m is the mean, and s is the standard deviation.
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in which Tp is the number of peak flows greater than one third
of themean peak flow observed; Tl is the number of low flows
lower than the one third of the mean low-flow observed; Qt

o,
Qt
c are observed and computed flows for the time period t

respectively.
[46] The PFC and LFC for different models along the

forecast horizon are presented in Figure 11. It is observed
from Figure 11 that the ANFIS performs better at lower
forecast horizons. As the forecast horizon increases the FIS
outperforms the other two. It is evident that the ANN model

performance is not comparable to the other two in both the
cases.
[47] The distribution of forecast errors by all models for a

typical flood event is presented in Figure 12 from which it is
evident that the ANFIS performs better than the other two
models. It can be observed from Figure 12 that the forecast
errors of the ANFIS model is clustered around the rapid
rising limb near the peak flow, while for both the ANN and
the FIS no specific clustering is observed. The reason for
such a clustering by the ANFIS can be attributed to the

Figure 12. Distribution of forecast error across the full range of a typical flood hydrograph (1-hour lead
forecast).
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underestimation of the gradient of the rising limb and its
rate of variation. Since only one antecedent runoff event is
provided as input to the model, it appears that an inadequate
representation of the state of saturation of the basin is given
to the model. Campolo et al. [1999] point out that infor-
mation about the changing state of saturation of a basin is
vital in order to correctly predict the flow.
[48] The foregoing discussions clearly illustrate that the

ANFIS model performs better than the ANN and FIS
models in modeling the rainfall-runoff process. The perfor-
mance of these models was comparable at a 1-hour lead
time, but only the ANFIS tends to preserve the performance
at higher lead times compared to the others. Although the
preliminary concepts of the FIS and the ANN were devel-
oped on a different basis, they are essentially rooted in the
same concepts of data driven modeling. In other words, the
FIS as well as the ANN approach is based on the concept of
reconstruction of a single-variable series in a multidimen-
sional phase-space to represent the underlying dynamics,
and a local approximation method is used for making
predictions. The basic concept of a FIS resides in the idea
that the combined (or averaged) estimators may be able to
exceed the limitation of a single estimator, which is fol-
lowed in an ANN. This heuristic is essentially found to be
true in the current study, as the FIS is found to perform
better than the ANN in terms of most of the performance
statistics. It is evident from Table 4 (and Table 5) that the
ANN is not able to preserve the nonlinear dynamics at
different ranges of flow; the percent error in forecasted
flood hydrograph is relatively higher for all the flood events
analyzed in the case of ANN. The FIS, on the other hand,
specializes for low-, medium- and higher-flow events by
considering the data in three subdomains. The performance
of the ANFIS as illustrated in earlier discussions confirms
that it is able to preserve the advantages of the FIS. In a
conventional FIS, the efficiency of the model largely
depends on the antecedent parameters of the MFs, which
is usually derived by using clustering techniques. However,
when the learning principles of the ANN are employed to
derive the antecedent parameters of the FIS, the resulting
ANFIS model with 16 subdomains is able to represent the
nonlinear behavior of the data series better than a conven-
tional FIS. This is also one of the reasons for the better
performance of the ANFIS model at higher lead times.
[49] ANFIS appears to be one of the best tradeoff

between neural and fuzzy systems providing smoothness
(due to fuzzy clustering interpolation) and adaptability (due
to neural network backpropagation). From the numerical
experiments presented in this paper, it is observed that
ANFIS takes less computational time in optimizing the
parameters (40 s for the finally selected architecture in a
normal Pentium IV processor, while it was 55 s and 48 s for
ANN and FIS respectively), implying that the amount of
time required for the trial and error evaluation to reach the
final architecture will be considerably less for the ANFIS. In
general, ANFIS can be easily implemented by any flexible
neural network simulator, and hence it is attractive for
developing application. One of the major advantages of
ANFIS (and FIS) over ANN is the transparency. ANN
models receive the major criticisms that they do not
consider/explain the underlying physical processes in a
watershed, resulting in them being labeled as black box

models. On the contrary, knowledge in terms of fuzzy if-
then rules can be extracted from ANFIS (and FIS). One can
interpret the rules of the ANFIS to infer the system
dynamics represented by the model. This suggests new
and promising research areas for future studies.

7. Summary and Conclusions

[50] The paper addresses the problem of forecasting the
river flow on the basis of rainfall and runoff data. The
objective of the paper was twofold: one was to demonstrate
the potential of the neurofuzzy computing paradigm in
modeling the rainfall-runoff process; and second was to
evaluate the relative merits and demerits of this paradigm
with reference to already popular ANN and fuzzy modeling
approaches. The study suggests that the ANFIS model is
able to capture the inherent nonlinearity in the rainfall-
runoff process better than the other two, and is able to
forecast flows satisfactorily up to 6 hours in advance. A very
close fit was obtained between computed and observed
flows up to 1 hour in advance for all models, but only the
ANFIS model tends to preserve this performance at higher
lead times. A comparative analysis of prediction accuracy of
these models in different ranges of flow indicates that the
FIS is better than the ANN. The very short computer time
required for a single forecast (a fraction of a second when
using a normal Pentium processor) does not lead to any
constraints in the use of the method for real time flood
forecasting. The results of the study are highly encouraging
and suggest that an adaptive neurofuzzy approach is viable
for developing short-term forecasts of river flow series.
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