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The nonlinear steepening of a finite amplitude disturbance in a quiescent gas with very high specific

heat in its near-critical regime is analyzed. The atypical phenomenon of rarefaction shocks are found

to occur in the region where the nonlinearity parameter is negative. The undisturbed medium is

assumed to be at rest with entropy gradients (temperature gradients). The steepening of the wave

front in such a nonhomentropic medium, where a variation in the nonlinearity parameter is present,

is investigated using the technique of wave front expansion. A calorically imperfect gas governed by

an arbitrary equation of state is considered. An exact closed form solution is obtained for the

evolution of the slope of the disturbance. In particular, results have been discussed for a van der

Waal’s fluid in its gaseous phase in the near-critical region. The distortion of both compression and

rarefaction wave forms are examined and the corresponding shock formation distances are

calculated. © 2004 American Institute of Physics. [DOI: 10.1063/1.1795272]

I. INTRODUCTION

The nonlinear distortion of a wave in a single phase gas

was found to depend critically on the nonlinearity parameter

G,
1

where

G =
1

a
F ] srad

] r
G

s

s1d

and

a2 = S ] p

] r
D

s

. s2d

In the derivation of shock inequalities in gas dynamics, it is

implicitly assumed that G is positive. It can be shown from

thermodynamic arguments that only compression shocks can

occur in such fluids.
2

In fact, for a polytropic gas, G can

easily be reduced to sg+1d /2, where g=cp /c
v
. The sign of G

being positive, forbids the existence of rarefaction shocks in

such gases. However, Bethe,
3

and Zeldovich and Raizer
4

proposed the existence of gases for which G indeed, attains

negative values. They found that for a van der Waal’s gas

with high specific heats sCy /R.17d, such a transition hap-

pens in the near critical region. This results in an inverse

behavior leading to the reversal of most of the shock in-

equalities. Contrary to the behavior when G is positive, it

turns out that a compression shock is unstable in a gas in the

region of negative nonlinearity sG,0d and splits up imme-

diately into a centered compression fan. In such cases, the

only stable solutions for jump discontinuities of the flow

parameters is that of the rarefaction shock. Thompson
5

was

the first to recognize the importance of G and demonstrated

the requirement of an antithroat to accelerate negative non-

linearity fluids to supersonic speeds. Thomson and

Lambarkis
6

were the first to specify examples of hydrocar-

bons and fluorocarbons for which G attains negative values

in the near critical region. Further, Cramer
7

listed out seven

such hydrocarbons which are used for commercial purposes.

The fluids for which G,0 are also known as Bethe–

Zeldovich–Thompson (BZT) fluids. BZT fluids are in gen-

eral characterized by high molecular weights and specific

heats.

A number of interesting phenomena which are not pos-

sible when G is strictly positive or strictly negative are found

to occur in the vicinity of the region where G changes sign. A

detailed study of these cases including their dissipative na-

tures have been discussed by Cramer and co-workers in a

sequel of papers.
8–11

The usage of BZT fluids in the region

around G=0 significantly reduces the effects due to nonlin-

earity, thus delaying the formation of shock. As indicated by

Cramer,
12

this reduction in nonlinearity can benefit processes

such as acoustically enhanced solubility, diffusion, heat

transfer, and agglomeration. Elimination of harmonic genera-

tion, nonlinear resonance, and chaos due to the reduction in

nonlinearity may again find applications in gasdynamic

springs and shock absorbers.
12

The suppression of shock in-

duced separation of the laminar boundary layer on an adia-

batic flat plate has been demonstrated by Cramer.
13

Further,

Monaco et al.
14

have demonstrated the possibility of shock-

free supersonic cascade flows. The disintegration of com-

pression shocks in the negative nonlinearity region was

found to decrease the adverse pressure gradients, which are

otherwise responsible for boundary layer separation and

shock irreversibilty. Brown and Argrow
15

have discussed the

advantages of using BZT fluids in realistic turbine cascades
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of organic Rankine cycle engines where they are found to

increase the overall efficiency. The above mentioned advan-

tages are much ascribed to the natural dynamics of BZT

fluids and do not demand excessive redesign of the turbine

cascades exemplifying the potential advantages of the usage

of BZT fluids.

Experimental confirmation of the existence of rarefac-

tion shock in the single phase gas regime does not exist to

the best of the authors’ knowledge. However, Fergason et

al.
16

have described a procedure which provides a starting

point for the experimental verification of the nonclassical

phenomenon. They have also given examples of cases where

G is positive both upstream and downstream of a rarefaction

shock. However, the above possibility is subject to the con-

dition that the adiabat curve connecting the states must pass

through the negative nonlinearity region. Further, they have

simulated the evolution of a rarefaction shock wave by inte-

grating the two-dimensional Euler equations for FC-70

(perfluro-tripentlyamine) using van der Waal’s equation of

state confirming their conceptual model. While Fergason et

al.
16

begin with a rarefaction shock wave (RSW) and de-

scribe its dynamics, the present study concerns the formation

of a RSW from a finite amplitude nonshock wave.

The propagation of a wave in a uniform homentropic

medium have been investigated by several authors.
6,9,11

Klu-

wick and Cox
17

have analyzed the evolution of small ampli-

tude waves in a medium having temperature stratification.

They analyzed the local evolution of a wave in the medium

using perturbation techniques. In the present study, however,

the interest is on the global evolution of the wave, and more-

over, there is no restriction on the amplitude of the wave. An

exact, closed form solution is obtained for the steepening of

the wave front of a finite amplitude wave traveling in a qui-

escent medium with density or temperature gradients. Such a

case may often be encountered in a duct having BZT fluids

with an axial temperature variation. The steepening of a dis-

turbance in the medium is followed using the technique of

wave front expansion (Whitham).
18

Lin and Szeri,
19

and

Tyagi and Sujith
20

have investigated the effect of entropy

gradients and area variation on the nonlinear distortion of a

wave. They consider a finite amplitude wave having a first

order discontinuity at the wave front and follow its motion.

Their analysis, however, is valid only for the case of a poly-

tropic gas. Since the assumption of ideal gas breaks down in

the near-critical region, a more general analysis is required.

Hence, in the present paper, the analysis is further general-

ized to describe the case of a gas with an arbitrary equation

of state with varying specific heats, i.e., specific heat is a

function of both temperature and pressure. The study of

shock formation in an inhomogeneous medium, i.e., entropy

or temperature gradients, for a gas exhibiting a region of

negative nonlinearity in its near critical regime is the primary

goal of this work.

The rest of the paper is organized as follows: In Sec. II,

the method of wave front expansion is used to determine the

time evolution of a wave front. A brief discussion of the

results for a homentropic case is presented in Sec. III A. In

Sec. III B, the steepening of the wave in a nonhomentropic

environment is discussed. The effect of variation in G on the

distortion of the wave and the corresponding shock forma-

tion distances are presented for some interesting cases.

II. THEORY

A. Governing equations

The governing equations describing the flow of an invis-

cid, nonconducting, isentropic gas are the following:

Continuity,

] r

] t
+ u

] r

] x
+ r

] u

] x
= 0; s3d

momentum,

] u

] t
+ u

] u

] x
+

1

r

] p

] x
= 0; s4d

energy,

] s

] t
+ u

] s

] x
= 0. s5d

Equations (3)–(5) form a hyperbolic system and with the

equation of state, they completely describe the flow. The un-

disturbed medium is assumed to be at rest. To study the

propagation and distortion of a wave in the medium, Eqs.

(3)–(5) are manipulated and written along their characteris-

tics in the st ,xd plane:
21

r
d+u

dt
+ a

d+r

dt
= S ] p

] s
D

r

sx on C+:
d+x

dt
= u + a , s6d

r
d−u

dt
− a

d−r

dt
= S ] p

] s
D

r

sx on C−:
d−x

dt
= u − a , s7d

dp

dt
− a2

dr

dt
= 0 on C0:

dx

dt
= u . s8d

In the above set of equations, d+ /dt, d− /dt, and d /dt are

derivatives taken along the C+, C−, and C0 characteristics,

respectively.

In the present problem, a finite amplitude wave with a

compact support having a discontinuity in its first derivative

at the wave front is considered. It can then be shown that the

leading edge of the wave propagates along the characteristics

C+ and C− with velocities a and −a, respectively.
18

Since the

undisturbed medium is at rest, C0 characteristics are absent at

the wave front. The rate of steepening of the leading edges is

followed using the technique of wave front expansion. A

shock forms when the slope at the leading edge becomes

infinity. The disadvantage of the present method is that it

neglects the possibility of formation of shock in the middle

of the wave. It, however, illustrates the effect of variation in

G on the nonlinear distortion of the wave. Besides, the

method yields a closed form solution which is of valued

significance.
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B. Wave front expansion

In the neighborhood of the wave front, a different coor-

dinate system, j=x−Xstd, is defined, where Xstd is the posi-

tion of the wave front. Physically, j represents the distance

measured from the wave front. Hence, (i) j=0⇒x=Xstd, de-

scribes the motion of the wave front; (ii) j.0 is the region

of the undisturbed quiescent medium into which the wave

propagates; and (iii) j,0 is the region behind the wave front

where the flow is unsteady. As mentioned in the preceding

section, the motion of the leading edge of the right running

wave is governed by the following equation:

Ẋstd = a0fXstdg , s9d

where “·” indicates time derivative and the subscript “0”

indicates the value of the flow variable in the undisturbed

medium. Henceforth, the analysis is performed for the right

running wave. The left running wave can be analyzed in a

similar fashion. As the wave propagates, a flow variable l

for j,0 can be expanded in terms of its derivatives at the

wave front as shown below.
18

lsj,td = l0fXstdg + jl1std +
j2

2
l2std + ¯ , s10d

where l indicates p, r, or u, and l1, l2, . . . denote the cor-

responding spatial derivatives behind the wave front. Since

j.0 is an undisturbed region, u0fXstdg=0. Further, to

clarify, since a discontinuity in the first and the higher de-

rivatives are present at the wave front,

l1std Þ l08fXstdg, l2std Þ l09fXstdg, . . . , s11d

where “
8

” indicates spatial derivatives. Here the left-hand

side of the inequalities in Eq. (11) are derivatives behind the

wave front (disturbed region) and right-hand side are deriva-

tives in front of the wave front (undisturbed region). It is also

known from thermodynamics that a=asp ,rd. Hence,

asp,rd = a0fXstdg + jp1S ] a0

] p
D

r

+ jr1S ] a0

] r
D

p

+ ¯ .

s12d

The derivatives with respect to t can be obtained using

F ]

] t
G

x

= F ]

] t
G

j

+ F ] j

] t
G

x

F ]

] j
G =

]

] t
− a0fXstdg

]

] j
. s13d

The flow terms in Eqs. (3)–(5) are expanded using Eqs. (10),

(12), and (13). Comparing the coefficients of j0 and j1, one

finds

j0 terms,

sr08 − r1dẊstd + r0u1 = 0; s14d

p1 = r0u1Ẋstd; s15d

sp08 − p1dẊstd − sr08 − r1dẊstda0
2 = 0; s16d

j1 terms,

fṙ1 − r2Ẋstdg + r0u2 + 2r1u1 = 0; s17d

r0u2Ẋstd + r1u1Ẋstd − r0u̇1 − r0u1
2 − p2 = 0; s18d

fṗ1 − p2Ẋstdg + p1u1 = 2a0Sp1

] a

] p
+ r1

] a

] r
Dsr08 − r1dẊstd

+ a0
2fṙ1 − r2Ẋstd + r1u1g . s19d

The matrix formed by the coefficients of first derivatives in

Eqs. (14)–(16) is singular. Hence, the first set of equations

reduces to p08=0, which is as expected in a stationary undis-

turbed flow. Similarly, coefficients of the second derivatives

in Eqs. (17)–(19) form a singular matrix. Hence, on elimina-

tion of the second derivatives, Eqs. (17)–(19) yields

du1

dt
+ u1

2F1 +
r0

a0

S ] a

] r
D

p

+ r0a0S ] a

] p
D

r

G
+ u1F Ẍstd

2Ẋstd
+

r08Ẋstd

2r0

+ r08S ] a

] r
D

p
G = 0. s20d

This is a nonlinear Riccati equation. A change of the thermo-

dynamic state description variables from sr , pd to sr ,sd is

performed using

F ]

] r
G

p

= F ]

] r
G

s

− a2F ]

] p
G

r

. s21d

The coefficient of u1
2 in Eq. (20), then precisely reduces to G

in its classical form [Eq. (1)]. The last term in the coefficient

of u1 reduces to ]a /]x as the pressure is a constant in the

undisturbed medium. To trace the evolution of the wave front

as function of its propagation distance, a change of variable,

t to y=Xstd is performed.
20

As a result, Eq. (20) reduces to

du1

dy
+

G0syd

a0syd
u1

2 + u1F3a08syd

2a0syd
+

r08syd

2r0syd
G = 0, s22d

which can be further reduced to its linear form:

d

dy
S 1

u1

D − F3a08syd

2a0syd
+

r08syd

2r0syd
G 1

u1

=
G0syd

a0syd
. s23d

The solution to this equation with an initial slope of u1s0d at

the leading edge can be written as

1

u1syd
=

IFs0d

IFsydu1s0d
+

1

IFsyd
E

0

y
IFsŷdG0sŷd

a0sŷd
dŷ , s24d

where

IFsyd = a0syd−3/2r0syd−1/2.

The above expression describes the evolution of the leading

edge of a traveling wave into a stationary gas governed by an

arbitrary equation of state in the presence of entropy gradi-

ents. A shock forms when u1syd→`. If ys indicates the shock

formation distance, then the shock formation time can be

obtained from
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ts = E
0

ys dy

a0syd
.

Thus, both the time and the location of shock formation are

obtained. The above derivation is applicable for the case of

constant area duct. An area variation term for a nonuniform

duct can be easily included as shown in Appendix A.

III. EXAMPLES

A. Homentropic environment

An infinite homentropic medium is considered first to

illustrate the effect of G on the distortion of a wave. For a

uniform medium (G=G0=constant), Eq. (24) reduces to

u1std =
u1s0d

1 + G0u1s0dt
. s25d

For the formation of shock, u1 must become singular in finite

time. If G0.0, a compression wave steepens into a shock

and rarefaction wave relaxes. On the other hand, if G0,0,

compression wave relaxes and rarefaction wave steepens into

a shock. Hence, the sign of G is found to dictate the nature of

evolution of a wave. Further, the rate of steepening of the

leading edge is obtained by differentiating Eq. (25):

u̇1std = − G0u1
2std . s26d

It is seen from the above expression that uGu decides the

extent of nonlinear distortion. In particular, it is to be noted

that when the quiescent medium is in vicinity of G=0, there

is very little steepening at the wave front. However, in these

cases, it is interesting to note that the local values of G within

the waveform varies between positive and negative values

leading to highly nonclassical behavior. The order of com-

plicacy involved in solving the problem for shock formation

further increases. Although the steepening of the leading

edge of the wave is still exactly given by Eq. (25), the as-

sumption of shock formation, first at the leading edge, may

not hold true anymore. The local evolution of the wave can-

not be neglected in these cases.

If a shock forms, the time of shock formation and the

distance traveled by the wave before it turns into a shock are

given by

t̄ = −
1

u1s0dG0

, x̄ = −
a0

u1s0dG0

. s27d

It is clear from the above expression that the present problem

does not have any natural length or time scales. However,

before proceeding to the discussion of nonhomentropic envi-

ronment, Eqs. (3)–(5) are nondimensionalized with a refer-

ence length L0, velocity a0, and density r0. Hence,

a* = a/a0, u1
* = u1L0/a0, x* = x/L0,

t* = ta0/L0, r* = r/r0, p* = p/sr0a0
2d .

B. Nonhomentropic environment

In the present section, the formation of shock in a non-

homentropic environment is investigated. Since the pressure

is a constant in the quiescent medium, variation of any one

of the properties, say temperature or density, completely de-

scribes the quiescent medium. The derivation in Sec. II B,

though valid for a general equation of state, the gas model in

the present paper is taken to be of that defined by van der

Waal’s equation of state. Further, a power law variation of

specific heat
6

is assumed. The details of the thermodynamic

model and the symbols used are given in Appendix B. The

results shown henceforth are for FC-70. The critical

values for FC-70 are pc=10.2 atm, Tc=608.2 K, C
v` /R

=118.7, and n=0.4930 obtained from Cramer.
7

Further, Eqs.

(23) and (24) are nondimensionalized with a0=10 m/s, r0

=rc, and L0=10 m.

It is seen from Eq. (24) that steepening of a wave de-

pends explicitly on the variation of sound speed, density, and

G of the undisturbed medium. Discussion of a few examples

will show that the effect of variation in G dominates over the

effects due to variation of other thermodynamic properties on

the distortion of the wave.

1. Rarefaction wave

In general, a rarefaction wave steepens in a region where

G,0 and relaxes in a region where G.0. The variation of

the properties is chosen such that both behaviors can be well

illustrated. For the present illustration, a linearly increasing

temperature variation of 1.02Tc to 1.1Tc is chosen across a

length of 10 m.

A right running rarefaction wave su1
*.0d originating at

x*=0 will evolve in an increasing temperature field. Figure 1

illustrates the evolution of leading edge of rarefaction waves

at different pressures for the above mentioned variation in

temperature. At Pr=1.04Pc, the wave steepens throughout its

FIG. 1. [van der Waals gas sFC-70d.] Evolution of the leading edge of

rarefaction waves in a medium having a linearly increasing temperature

variation of 1.02Tc to 1.1Tc [i.e., Tsx*=0d=1.02Tc and Tsx*=1d=1.1Tc] at

different pressures are plotted. A shock forms when 1/u1
*
→0.
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period of evolution before turning into a shock. As the pres-

sure increases, one finds a region where the wave relaxes

before the steepening begins and then eventually turns into a

shock. The relaxation of the wave can be correlated with the

fact that G is positive [see Fig. 2(b)] in the region. As the

pressure is increased furthermore, the wave form just misses

to form a shock and is seen as a tangent to the x axis. At the

location of tangency, both 1/u1
* and ds1/u1

*d vanish. It is seen

from Eq. (24) that this is possible only when G=0 at the

location of tangency. This also shows that G must be nega-

tive at the location of formation of a rarefaction shock for the

wave form of the nature considered having a discontinuity in

its first derivative at the wave front, to steepen into a shock.

However, the location of minimum u1
*, is slightly offset from

the location where G turns negative. In such a narrow region,

interestingly, a rarefaction wave continues to relax even

when G is negative. This is due to the effect of variation in

sound speed and density, affecting the first term of Eq. (24)

explicitly. Except in this narrow region, the behavior of the

wave, i.e., whether it steepens or relaxes, is much decided by

the sign of G and other properties indeed have a minor influ-

ence.

Figure 3 illustrates the evolution of wave with different

u1
*s0d. As the strength of the wave decreases, the shock for-

mation distance increases. A wave with a critical strength

just misses to form a shock and is seen as tangent to the x

axis. Thus the initial strength of the wave must be above a

certain value for it to develop into a shock within the region

of interest.

Figure 4 depicts the variation in shock formation dis-

tances with changes in the value of the initial slope fu1
*s0dg at

various pressures. The effect of pressure change is seen more

clearly with an initial decrease and then a sudden increase in

the shock formation distances at higher pressures. This is due

to the rapid variation of G in the corresponding region [see

Fig. 2(b)] due to small changes in pressure. The very high

sensitivity of G to the changes in pressure for the region

discussed is clearly depicted in Fig. 5. It is seen that drastic

changes in the shock formation distances can be much attrib-

uted to the initial region of evolution, where the temperature

is around 1.02Tc, which is characterized by very high values

of s]G /]pdT. Since the value of G has a direct bearing on the

shock formation distances, the region discussed here is

highly sensitive to variation in pressures.

The calculations performed for the steepening of left

running waves did not show any qualitative differences from

that of right running waves. The sign and the magnitude of G

was again found to be the dominating parameter in deciding

the nature and the extent of nonlinear distortion.

FIG. 2. (a) [van der Waals gas sFC-70d.] G vs X* is plotted for the same

variation of temperature and pressures as in Fig. 1. At higher pressures and

lower temperatures, G.0. At high pressures, the region of negative G is

sandwiched between the regions of positive G. Also, drastic changes in the

value of G is observed for lower temperatures and higher pressures. (b) The

values of G from x*=0 to x*=0.1 is scaled up and plotted again for clarity.

FIG. 3. [van der Waals gas sFC-70d.] Steepening of the leading edges of

rarefaction waves having different initial strength f1/u1
*s0dg is plotted for the

linear variation of temperature as in Fig. 1. The pressure of the quiescent

medium is 1.03 Pc. As u1
* increases, the shock formation distance decreases.
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2. Compression wave

The behavior of the compression waves is based on the

same principles as that of the rarefaction wave except for a

change in sign. Hence, only two cases have been investigated

below. A right running compression wave su1
*,0d is chosen

to evolve in a linearly decreasing temperature field with tem-

perature variation of 1.08Tc to 1.02Tc within the length of

10 m.

The evolution of the leading edge of the wave at differ-

ent pressures is shown in Fig. 6. As the pressure is increased,

the shock formation distance increases and above a critical

pressure the waves start relaxing in the region of lower tem-

peratures, consequently not developing into a shock. This

happens because of the increase in the spread of the region in

which G is negative with the increase in the pressure. How-

ever, as the pressure is increased further more, since a region

of positive G develops at lower temperatures, the relaxing

waves steepen again to form a shock. This is seen as a sud-

den increase in the shock formation distances at higher pres-

sures as depicted in Fig. 7.

The above examples examine the results in a quiescent

flow with a linear variation in temperature for some interest-

ing cases. A medium having any smooth variation of tem-

perature or density can be analyzed in a similar fashion, sub-

FIG. 4. [van der Waals gas sFC-70d.] Shock formation distance of right

running rarefaction waves at different pressures for the same linear tempera-

ture variation as in Fig. 1 is plotted against the inverse of the initial strength

of the wave f1/u1
*s0dg. The disturbances originate at x*=0 and travel into the

medium. A sudden increase in the shock formation distances at higher pres-

sures is observed.

FIG. 5. Variation of s]G /]prdT is plotted for the same variation of tempera-

ture and pressures as in Fig. 1. The sensitivity of G for changes in pressure

at low temperatures and high pressures is depicted.

FIG. 6. [van der Waals gas sFC-70d.] Steepening of the leading edges of

right running compression waves is plotted for different pressures. The ini-

tial strength of the waves are −0.03. The quiescent medium has a linearly

decreasing temperature field of 1.08Tc to 1.02Tc.

FIG. 7. [van der Waals gas sFC-70d.] Shock formation distances of right

running compression waves are plotted against the inverse of its initial

strength f1/u1
*s0dg for different pressures. The temperature variation is same

as that in Fig. 6. The waves originate at x*=0.
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ject to the only restriction that the range of temperatures in

the medium should not enter the liquid or the two phase

regime.

IV. SUMMARY

The effect of variation of G on the nonlinear steepening

of the wave front of a finite amplitude wave in a quiescent

medium in the presence of entropy gradients has been ana-

lyzed. A closed form solution is obtained for the steepening

of the leading edge of wave using the method of wave front

expansion. The analysis has been carried out for a single

phase fluid whose behavior is defined by a general equation

of state with varying specific heats. In particular, the results

have been discussed for a van der Waal’s gas with a power-

law variation in specific heats in the near-critical region. The

effect of variation in pressure and temperature, resulting in

the variation of G, on the evolution of both compression and

rarefaction wave forms have been investigated. Unlike in the

classical case of positive G, rarefaction shocks emerge out as

a natural consequence of the phenomenon of negative non-

linearity sG,0d. Except in a very narrow region, the sign of

G was found to be the dominating factor in deciding whether

a wave steepens or relaxes. In this narrow region, a rarefac-

tion wave continues to relax even if G,0. This is due to the

effect of variation in sound speed and density on the distor-

tion of the wave. Further, certain regions were found to be

highly sensitive to changes in pressure. Such regions are in

turn characterized by rapid variation of G, resulting in a sud-

den change in the shock formation distances. It was also

found that for a medium having a given variation in tempera-

ture, and a given pressure, the strength of a wave (both com-

pression, and rarefaction wave) must be above a critical

value for it to develop into a shock within the region of

interest.
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APPENDIX A: VARIABLE AREA DUCTS

The above analysis can easily be extended to a nonuni-

form duct.
20

The continuity equation has an added term

fsru /AdsdA /dxdg, where A=Asxd, is the variation in area. In

writing the governing equations for such a system, the flow

is still assumed one dimensional, with a planar wave front.

Such an assumption will be approximately true as long as the

variation in the area is gradual. Then, following similar steps

of derivation as done before in Sec. II B, one finds that the

only change required to be made is in Eq. (24),

IFsyd = a0syd−3/2r0syd−1/2A0syd−1/2.

APPENDIX B: THERMODYNAMIC MODEL

1. van der Waal’s equation of state

Pr =
8Tr

3nr − 1
−

3

nr
2

. sB1d

Zc, the critical compressibility, is assumed to be a universal

constant with a value 3/8 for a van der Waal’s gas. In Eq.

(B1), Pr= P / Pc ,Tr=T /Tc, and nr=n /nc are the reduced pres-

sure, temperature, and specific volume, respectively. In the

near critical region, variation in specific heat is found to

approximately obey power law.
6

2. Power law of specific heats

cn`sTrd = cn`s1dTr
n, sB2d

where cn`sTrd is the zero pressure specific heat at a given

temperature, and n is the power law exponent. The specific

heat of van der Waal’s gas is independent of the pressure and

is a function of temperature only.
6

Further, to compute G, it is

found useful to write G in the following form:

G = −
nr

2

S ]
2pr

] nr
2 D

s

S ] pr

] nr

D
s

. sB3d

With the knowledge of the state equation in the from p

= psnr ,Trd ,G and a can be computed easily using

S ]
2Pr

] nr
2 D

s

= S ]
2Pr

] nr
2 D

T

− 3ZceTrS ] Pr

] Tr

D
n

]
2Pr

] nr ] Tr

+ 3Zc
2e2Tr

2S ] Pr

] Tr

D
n

2S ]
2Pr

] Tr
2 D

n

+ Zc
2e2TrS ] Pr

] Tr

D
n

3F1 −
Tr

cn

S ] cn

] Tr

D
n

G sB4d

and

S ] Pr

] nr

D
s

= S ] Pr

] nr

D
T

− ZceTrS ] Pr

] Tr

D
n

2

, sB5d

where e=R /cn`sTcd.
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