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For a floating bubble, in the range of Bond numbers based on an equivalent spherical radius, 0 < Boe

< 1, we present analytical expressions for various shape parameters of the bubble as functions of Boe.

Expressions are obtained for the radius of the rim Rr , the radius of the thin film cap Rc, the height of

the top of the cap from the rim hcap, the height of the rim above the free surface hr , and the depth of the

bubble cavity from the free surface Zc. To obtain these expressions, we solve equations formulated in

terms of these shape parameters for the meniscus outside the bubble, the force balance of the bubble,

the pressure balance at the centre line of the bubble, and geometrical constraints, after neglecting the

deformation of the bubble cavity for Boe < 1. The obtained expressions are shown to match well with

our experimental measurements of the shape of the bubble. In addition to these expressions, we also

present simpler approximations that can be used accurately as scaling laws for these shape parameters

up to Boe < 0.5. Published by AIP Publishing. https://doi.org/10.1063/1.5052379

I. INTRODUCTION

Many of the dynamic phenomena involving bubbles float-

ing at liquid-gas interfaces are critically dependent on the

static shape of these floating bubbles. These dynamic phenom-

ena include collapse and ensuing jetting,1–4 aerosol formation

from the bubble cap,5 coalescence of multiple bubbles,6 the

approach of the bubbles close to a solid surface,7–9 and film

draining at the free surface (FS) in foams.10,11 Scaling laws of

these phenomena have been limited due to the non-availability

of the dependence of the parameters of the static shape of

the bubble on gravity and surface tension. In this paper, by

using equations of force balance and geometric constraints,

formulated in terms of the shape parameters, we obtain expres-

sions for these shape parameters of floating bubbles, which are

shown to be valid till gravitational forces start to substantially

deform the bubble cavity.

A. Background

The shape of a static bubble floating at a liquid-gas inter-

face is made up of the shape of its three interfaces, namely,

the thin film cap at the top of the bubble, the meniscus of the

liquid around the bubble that rises above the liquid surface,

and the bubble cavity that is submerged within the liquid, as

shown in Fig. 1(c). The thin film cap is spherical with a radius

Rc, if the weight of the film is negligible and the cap has the

same density gas on either of its sides; the equilibrium pres-

sure balance then results in pi = po + 4σ/Rc, where pi and po

are the internal and external gas pressures, respectively, and σ

is the liquid-gas interfacial tension. Neglecting the density of

the gas, the shape of the meniscus of the liquid is determined

by ρg(z − Zc) = σ(1/R1 + 1/R2), where R1 and R2 are the prin-

cipal radii of curvatures at the point with co-ordinates (r, z)

a)Present address: ICTS-TIFR, Bengaluru, India.

on the meniscus, with the origin at the bottom of the bub-

ble cavity, Zc is the depth of the cavity bottom from the free

surface, as shown in Fig. 1(e), ρ is the density of the liquid, and

g is the acceleration due to gravity. The bubble cavity shape

is decided by the pressure balance at any point (r, z) on the

cavity surface given by ρg(Zc − z) = σ(1/R1 + 1/R2). Replac-

ing the principal curvatures in terms of r and φ, the angle that

the tangent to the surface at the point (r, z) makes with the

horizontal, a set of two differential equations in terms of r and

φ are obtained for the meniscus and the cavity surface. Even

though no analytical solutions of these equations are available,

they have been solved numerically using appropriate bound-

ary conditions5,12–17 to obtain the complete shape of a floating

bubble and its associated meniscus.

However, in the study of dynamic phenomena associated

with floating bubbles, to obtain scaling laws, it is not the com-

plete shape of the bubbles that is needed but expressions for

the important parameters that define the shape of such bub-

bles. For example, the velocity of jet that is ejected at the end

of the collapse of a floating bubble, normalized by the capil-

lary velocity, scales as the dimensionless depth of the cavity

Z+
c = Zc/Re, where Re is the equivalent spherical radius of the

bubble.1,18 The amount of aerosols generated in this process

is determined by the mass of the thin film cap 2πRchcaptcρ,

where, as shown in Fig. 1(e), hcap is the height of the top of

the thin film cap above the circle at which the three interfaces

join, which we refer to as the rim [see Fig. 1(c)] and tc is the

thickness of the thin film cap.5 The force of attraction along

the interface felt by a bubble floating close to another bubble

is πRσR̃2
r sin φr ,6 where R is the radius of the bubble cav-

ity, R̃r = Rr/R is the dimensionless radius of the rim Rr [see

Fig. 1(e)], and φr is the inclination angle with the horizontal

of the tangent to the free surface at the rim. Hereinafter, all

superscripts ∼ denote normalization with R, the radius of the

bubble cavity, while superscripts + indicate normalization with

1070-6631/2018/30(11)/112105/14/$30.00 30, 112105-1 Published by AIP Publishing.
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FIG. 1. [(a)–(d)] Side views of floating air bubbles at different Bond numbers. (a) Re = 0.175 mm, Boe = 0.004; (b) Re = 0.47 mm, Boe = 0.03; (c) Re = 1.99 mm,

Boe = 0.5; (d) Re = 3.61 mm, Boe = 2.46; (e) schematic of a floating bubble with the present notation hc = hcap + hr .

Re, the equivalent spherical radius of the bubble. The approach

of a bubble close to a horizontal solid surface is related to how

fast the horizontal film, of area πR2
r , between the bubble and

the solid surface drains.7,8 The thickness of the thin film dur-

ing its draining at a free surface is related to the surface area

of the thin film cap 2πRchcap.10 The relations for all of these

important dynamic phenomena associated with floating bub-

bles have shape parameters of the static bubbles floating at the

interface, namely, Rc, Rr , hcap, and Zc, in them; closed form

expressions for these would help in obtaining scaling laws for

these dynamic phenomena.

B. The Bo ≪ 1 limit

These shape parameters are functions of Bo since the

shape of a floating bubble depends on its Bond number

Bo = ρgR2/σ, as could be seen in Figs. 1(a)–1(d). Simple

relations for these parameters in the limit of Bo≪ 1 have been

obtained,5,6,14,17,19 with the large Bo limit explored recently.20

The two interfaces in the cap implies that pi − po = 4σ/Rc.

The pressure at the bottom of the bubble cavity in the liquid

pb = po + ρgZc due to the static pressure balance in the liq-

uid. After neglecting the density of gas compared to that of

the liquid, the pressure inside the bubble cavity at its bottom

pi − pb = 2σ/R due to a single interface at the bottom of the

cavity. These equations can then be combined to obtain

BoZ̃c =

(

4

R̃c

− 2

)

, (1)

where Z̃c = Zc/R is the dimensionless cavity depth and

R̃c = Rc/R is the dimensionless cap radius. In the limit of

Bo≪ 1, since the curvatures become quite large compared to

the cavity depth for small bubbles, (1) becomes19

R̃c = 2, (2)
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which also implies that Rc → 0 when Bo → 0. Since R = Re

for small bubbles, R+
c = 2, where R+

c = Rc/Re.

Similarly, in the limit of Bo ≪ 1, considering that the

vertical component of the surface tension force in the outer

interface of the cap balances the upward buoyant force of

the bubble, we obtain 4πR3
e ρg/3 = σ sin φr2πRr . Using

sin φr = Rr /Rc, and (2), we obtain R+
r = 2

√
Boe/3, where Boe

is the Bond number based on Re.5,6,14 Again, since R = Re for

small bubbles,

R̃r = 2
√

Bo/3. (3)

Since the inscribed angle at P by the arc TQ is φr /2 [see

Fig. 1(e)], the height of the thin film cap above the rim

hcap = Rr tan(φr /2), which becomes equal to Rr sin(φr /2) in the

limit of Bo≪ 1. Using sin φr = Rr /Rc and (3) in this equation,

we obtain14

h̃cap =
1

3
Bo, (4)

the same expression in terms of h+
cap and Boe being also valid

in the small Bo limit. Substituting (2) in (1), limBo≪1Zc = 0,

trivially so, since (2) has been obtained from (1) when

Zc → 0. A more realistic expression for Zc has been obtained

by Krishnan et al.1 by assuming that the whole floating bubble

remains spherical up to Bo ≈ 1 to get

Z+
c = 2

√

1 − 2

3
Boe, (5)

which however tends to a limit of 2 when Bo≪ 1; this limiting

value of Zc→ 0 as Re→ 0 when Bo→ 0. A better approxima-

tion to Zc was also obtained by Krishnan et al.1 by assuming

the bubble to be an oblate spheroid. These however remain

as geometric approximations with unclear physical basis and

do not match quite well with the experimental variations.1

The shape of floating bubbles very close to Bo = 0 was also

obtained by perturbation methods.15,21,22 In addition to being

at very small Bo, the resulting expressions of shape parameters

cannot be evaluated since they are in terms of other unknown

shape parameters; furthermore, such expressions are available

only for few of the shape parameters.

C. Present work

From the discussion above, it is clear that even though

the complete shapes of floating bubbles can be obtained

numerically, no expressions for the important parameters that

define the shape of such bubbles are available, except in the

Bo≪ 1 limit. Shape equations of a point on the three interfaces

of a floating bubble, in terms of r and φ, can only be solved

numerically, failing to give explicit expressions for these shape

parameters. These shape parameters critically decide many of

the dynamic phenomena involving floating bubbles like col-

lapse and jetting, coalescence, aerosolisation of the cap, and

approach to a surface. The present work originated in our

earlier work,1 wherein we found that the dimensionless jet

velocity from bubble collapse at a free surface scales as Zc/Re;

however, no accurate closed form expressions for Zc, or for

other shape parameters, valid for 0 < Bo < 1 were available.

In this paper, we overcome this deficiency by obtaining expres-

sions for the important shape parameters of a floating bubble

for 0 < Bo < 1. Using the force balances of the meniscus

and the entire bubble, pressure balance at the vertical centre

line, and geometric constraints, we first formulate equations

explicitly in terms of the shape parameters of a floating bubble

for Bo ≤ 1. Solving these equations, we then obtain analyti-

cal expressions for the shape parameters of floating bubbles

in terms of Bo that are valid up to Bo ≤ 1; these expressions

are then verified by comparing with our measurements and

the results from the literature. In addition, by using asymptotic

expressions for some of these shape parameters in the relations

between these parameters, we obtain simpler, but approximate,

scaling laws for these shape parameters that are valid up to

Bo ≤ 0.5. These expressions for the shape parameters of float-

ing bubbles can now be used to obtain scaling laws for many

of the dynamic phenomena involving floating bubbles.

II. EXPERIMENTS

The experiments to measure the shape parameters of

floating bubbles were conducted in a transparent acrylic tank

of 3.5 × 5 cm2 cross-sectional area and in a glass tank of

5 × 5 cm2 cross-sectional area. The tanks were fixed on a

leveling board and were filled up to the brim to avoid menis-

cus effects. We used distilled water, glycerol-water mixtures

of 48%, 55%, 68%, and 72% glycerin concentration (here-

inafter referred to as GW48, GW55, GW68, GW72), ethanol,

and 2-propanol; the properties of all these fluids23 are given in

Table I. The liquids were changed after each run to minimize

surface contamination. Gas bubbles in the range of equivalent

spherical radii 0.18 mm < Re < 4.1 mm were produced by

pumping air into glass capillary tubes of different sizes using

a syringe pump operated at a constant discharge rate. The flow

rate in the capillaries was selected so that the bubble detach-

ment was within the periodic bubbling regime.24 Capillaries

were carefully fixed in the same alignment through out the

TABLE I. Properties of the fluids and the range of equivalent radii and Bond numbers.

Symbol Fluid Re (mm) Boe σ (kg s☞2) ρ (kg m☞3)

⊳ Ethanol (20 ◦C) 0.19–1.16 0.013–0.47 0.022 789

+ 2-propanol (20 ◦C) 1.46–2.41 0.9–2.4 0.018 781

△ Water (20 ◦C) 0.18–4.08 0.004–2.27 0.072 1000

☆ GW48 (30 ◦C) 0.42–3.4 0.029–1.9 0.068 1115

☆ GW48 (20 ◦C) 0.81–1.96 0.1–0.62 0.068 1120

◽ GW55 (20 ◦C) 0.71–2.3 0.083–0.88 0.067 1140

▽ GW68 (30 ◦C) 0.48–2.3 0.041–0.89 0.066 1170

♦ GW72 (30 ◦C) 0.6–3.6 0.063–2.36 0.064 1181
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experiments to avoid variations in bubble sizes.25 The experi-

ments were conducted in a temperature controlled laboratory

after the temperature stabilized to the set values of 20 ◦C or

30 ◦C.

The bubbles rose to the free surface and stayed at the free

surface for a short time after its initial oscillations had died

down, before bursting. The elliptical shape of the rising bub-

bles26 was photographed using high speed cameras (La Vision

ProHS for fps ≤19 000 fps and Photron SA4 for fps ≤100 000)

using high intensity light-emitting diode (LED) back lighting.

The bubble volumes were calculated from these images, from

which the equivalent spherical radii Re were calculated. The

shape of the bubble at the free surface was also captured using

the same cameras. The shape parameters were measured only

from those images which were captured after the oscillations

of the bubble died down and before they burst. There were no

shape changes in the bubbles after they became static at the

free surface and before they burst. This time of the stationary

state of the bubble at the free surface was ts = 91 ms for the

smallest bubble in our experiments (water, Boe = 4.2 × 10−3),

which increased to more than ts = 1 s with increasing Boe.

The time of acquisition of the images for these bubbles var-

ied from ti = 10 µs (1/100 000 fps) to 0.25 ms (1/4000 fps).

Since ts/ti ≥ 4000, shape changes occurred only after time

durations greater than 4000 times the time of image acquisi-

tion; there were no shape changes during the image acquisition

period.

The lowest resolution and the highest resolution of the

images were 27 µm/pix and 3.4 µm/pix, respectively, while

the smallest length measured was about 47.6 µm at a reso-

lution of 6.8 µm/pix. The length scales were measured after

calibrating the images with micrometer scales in both the air

and liquid regions; for large bubbles, coarse grids were used

as the background [see Fig. 1(d)]. Measurements were per-

formed either in air or in the liquid region and not across the

interface. An estimated error of ±2 pixels is expected in the

length measurements, the corresponding error bars are shown

in the following figures.

III. THEORETICAL RELATIONS FOR SHAPE
PARAMETERS

Consider a bubble in static equilibrium at the horizontal

surface of a fluid, as shown in Fig. 1(e). We choose the coor-

dinates r and z along the directions shown in Fig. 1(e). The

bubble creates three interfaces. The thin film cap PTQ separat-

ing the bubble from the atmosphere is spherical and centered

at C2 with a radius of Rc. The bubble displaces the liquid close

to itself upwards from the initially horizontal free surface FS

to form a meniscus QS all around it. The third interface is the

interface of the submerged part of the bubble or in other words

the bubble cavity POQ.

A. Assumptions

For any submerged spherical cavity of radius R, the dif-

ference in hydrostatic pressure over a depth R, which causes

departure of the shape of the cavity from a spherical form, is

ρgR. The internal pressure due to the surface tensionσ is 2σ/R.

The bubble cavity will be nearly spherical when 2σ/R > ρgR,

i.e., when the Bond number Bo = ρgR2/σ = (R/lc)2 < 2,

where lc =
√

σ/(ρg) is the capillary length. Since our analysis

is limited to Bo < 1, we neglect the deviation of the shape of

the bubble cavity from spherical for the present analysis. We

hence assume that POQ, the bubble cavity submerged below

the free surface and centered at C1, to be spherical with a radius

equal to R.

We also assume that the slope of the meniscus is small

so that (dz/dr)2 ≪ 1 at all points of the meniscus for Bo < 1.

The maximum value of dz/dr of the meniscus occurs at r = Rr ,

which from geometry is

dz

dr

���r=Rr

= − Rr
√

R2
c − R2

r

. (6)

From our experimental measurements, at Boe = 1, Rr /Re ≈ 0.85

(see Sec. III F), while Rc/Re ≈ 1.425 (see Sec. III G);

(dz/dr)2 ≈ 0.55 < 1. Thus the maximum value of dz/dr, at

the maximum limit of the present analysis, i.e., at Bo ≤ 1,

does not quite satisfy the condition (dz/dr)2 ≪ 1. However,

the average slope of the meniscus would indeed be less than

one over its full length even for this maximum Bo. For lower

values of Bo, less than one, even dz/dr
���r=Rr

≪ 1, the average

slope being even lower.

B. The meniscus surrounding the bubble

At any point (r, z) on the meniscus surrounding the rim of

the bubble, the height of the liquid above the free surface will

be z − Zc and the principal radii of curvature are given by

1

R1

+
1

R2

=

d2z/dr2

(1 + (dz/dr)2)3/2
+

dz/dr

r
√

1 + (dz/dr)2
. (7)

For (dz/dr)2 ≪ 1, (7) reduces to

1

R1

+
1

R2

≈ d2z

dr2
+

1

r

dz

dr
=

1

r

d

dr

(

r
dz

dr

)

. (8)

By equating the pressure drop in crossing the meniscusσ(1/R1

+ 1/R2) with the hydrostatic pressure at any point at a height

of z − Zc above the level FS, we obtain

1

r

d

dr

(

r
dz

dr

)

=

ρg(z − Zc)

σ
. (9)

In the dimensionless form, (9) becomes the modified Bessel

equation of order zero,

1

r̃

d

dr̃

(

r̃
dz̃

dr̃

)

= Bo(z̃ − Z̃c), (10)

where r̃ = r/R, z̃ = z/R, and Z̃c = Zc/R. The only solution of

(10) which tends to Z̃c as r̃ → ∞ is

z̃ = Z̃c + CK0

(

r̃
√

Bo
)

, (11)

where C is a constant that needs to be determined from the

boundary conditions and K0 is the modified Bessel function

of the second kind of order zero.

Now that the boundary condition at infinity is satisfied,

we need to find C that satisfies the boundary condition at the

rim radius r̃ = R̃r , where R̃r = Rr/R. From the geometry of
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the cap shown in Fig. 1(e), the slope of the thin film cap PTQ

at r̃ = R̃r is IQ/IC2, giving us

dz̃

dr̃

���r̃=R̃r

= − R̃r
√

R̃2
c − R̃2

r

. (12)

Since this slope has to be the same as the slope of the meniscus

at r = Rr , taking the derivative of (11) with respect to r̃, and

equating the result to (12), we obtain

C =
R̃r

√

Bo
(

R̃2
c − R̃2

r

)

K1(R̃r

√
Bo)

, (13)

where K1 = −K0
′, with ′ representing the first derivative of K0

with respect to its argument.

C. Force balance of the entire bubble

The vertical force balance on the bubble between the net

upward buoyancy force B and the force of surface tension

σ2πRr acting downwards on the ring of radius Rr at an angle

φr gives

σ2πRr sin φr = B. (14)

The net upward buoyancy force in (14)

B =

∫
A

pdAz −
∫

A′
pdA′z − paπR2

r , (15)

where A is the surface area of the bubble cavity below FS, A′ is
the surface area of the bubble cavity above FS and below PQ,

and the subscript z denotes the components of the elemental

areas dA and dA′ perpendicular to the z axis [see Fig. 1(e)].

Since the pressure on the bubble surface at the level FS is

atmospheric, the pressures on the points on the bubble surface

at distances h+ and h− below and above the free surface level

[see Fig. 1(e)] are pa + ρgh+ and pa − ρgh−, respectively.

Substituting these values of pressures in (15), we obtain

B = pa

(∫
A

dAz −
∫

A′
dA′z

)

+ ρg

(∫
A

h+dAz +

∫
A′

h−dA′z

)

− paπR2
r . (16)

Let us denote the volume of the bubble below the rim PQ to be

V, the volume below the level FS to be V ′, and that between

PQ and FS excluding the cylindrical volume πR2
r hr to be V ′′,

V ′′ = V − V ′ − πR2
r hr , (17)

where hr is the height of the rim from the free surface level

FS [see Fig. 1(e)]. Since h+dAz = dV ′, h−dA′z = dV ′′, and

∫A dAz − ∫A′ dA′z = πR2
r , by using (17), we obtain

B = ρg

(∫
V ′

dV ′ +

∫
V ′′

dV ′′
)

= ρg(V − πR2
r hr). (18)

Equation (18) implies that due to the negative pressures on the

surface of the bubble cavity between PQ and FS, the net buoy-

ancy force is less than ρgV, the weight of the liquid displaced

by the bubble cavity.

The bubble cavity below PQ, assumed spherical, of depth

h and radius R, has a volume

V =
πh2

3
(3R − h), (19)

where h = R +

√

R2 − R2
r . The dimensionless depth

h̃ = h/R = 1 +

√

1 − R̃2
r , (20)

using which

V =
πR3

3

(

h̃2(3 − h̃)
)

. (21)

Rewriting (21) in terms of R̃r using (20), we obtain

V =
2πR3

3

(

1 +

(

1 +
R̃2

r

2

)
√

1 − R̃2
r

)

. (22)

Substituting (22) in (18) and the resulting equation in (14),

after simplifying, we obtain

B =
2

3
πR3ρg

(

1 +

(

1 +
R̃2

r

2

)
√

1 − R̃2
r −

3

2
R̃2

r h̃r

)

, (23)

where h̃r = hr/R. As can be seen from Fig. 1(e),

h̃r = z̃
���r̃=R̃r

− Z̃c. (24)

Equations (24) and (11) imply that

h̃r = CK0(R̃r

√
Bo). (25)

Substituting (25) in (23), replacing B using (14), with

sin φr = Rr /Rc, substituting the value of C from (13), and

rearranging give us

R̃2
r =

R̃c

3
Bo

*..
,
1 +

(

1 +
R̃2

r

2

)
√

1 − R̃2
r −

3R̃3
r µ

2

√

Bo(R̃2
c − R̃2

r )

+//
-
, (26)

where

µ =
K0(R̃r

√
Bo)

K1(R̃r

√
Bo)

. (27)

As we show later by comparing with the numerical solutions

of (26), neglecting the second and the third order terms in R̃r

in (26) does not cause significant error in the estimate of R̃r

up to Bo ∼ 1. Hence, by dropping the second and third order

terms in R̃r in (26), we obtain

R̃2
r =

R̃c

3
Bo

(

1 +

√

1 − R̃2
r

)

. (28)

In (28), since R̃c and R̃r are both unknown, we need two more

equations to solve for both of them, which we now obtain from

the pressure balance at the centerline of the bubble and from

geometric constraints.

D. Pressure balance at the centre line

Since the spherical cap at the top, of radius Rc, consists of

two interfaces, the pressure excess inside the bubble is 4σ/Rc.

The pressure excess above the atmospheric pressure at the

outer surface of the bubble at its lowest point O is ρgZc since

this point is at a depth of Zc from the horizontal free surface.

Therefore, the pressure excess inside the bubble at its lowest

point is ρgZc + 2σ/R. Since the density of the gas in the bubble

is negligible compared to the density of the liquid outside, both

these excess pressures have to be the same, implying

4σ

Rc

=

2σ

R
+ ρgZc. (29)
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In the dimensionless form, (29) becomes

4

R̃c

= 2 + BoZ̃c, (30)

the same equation as (1), which gives us another equation for

R̃c. Equations (28) and (30) still cannot be solved since there

are three unknowns R̃r , R̃c, and Z̃c. Hence, we need one more

equation to obtain closed form expressions for R̃r , R̃c, and Z̃c,

which we now obtain from the geometrical relation for the

depth of the bubble cavity.

E. Geometric constraint

From the geometry of the bubble shown in Fig. 1(e), we

obtain

Zc = R +

√

R2 − R2
r − hr , (31)

which, in dimensionless form, is

Z̃c = 1 +

√

1 − R̃2
r − h̃r . (32)

Substituting h̃r from (25) and C from (13) in (32), we obtain

Z̃c = 1 +

√

1 − R̃2
r −

R̃r µ
√

Bo
(

R̃2
c − R̃2

r

)

. (33)

We now have three Eqs. (28), (30), and (33) in three unknowns

R̃r , R̃c, and Z̃c, which can hence be solved to obtain expressions

for these variables as functions of Bo.

F. The dimensionless rim radius R̃r

For Bo < 1, the terms in (32) have progressively smaller

magnitudes with the last term of (32) being of order 0.1 since

hr ≪ R, while the first two terms are of order one. As our

results later show, neglecting h̃r in (32) for Bo < 1 does not

result in significant error in the estimate of R̃r . Hence, we drop

the last term in (33) when we estimate R̃r and not anywhere

else. Substituting Z̃c from (33), without the last term, in (30),

and using the resulting expression for R̃c in (28), rearranging

and simplifying, we obtain

η2Bo2 − 12(Bo + 1)η + 48 = 0, (34)

FIG. 2. Variation of the dimensionless rim radius R+
r with the Bond number. Black open triangles, water; black open stars, GW48; black open squares, GW55;

black open inverted triangles, GW68; black open diamonds, GW72; black open left-pointing triangles, ethanol; black plus, 2-propanol; light blue filled circles,

Princen;14 blue filled squares, Medrow and Chao;15 blue solid line, (36); red dotted-dashed line,
√

2Bo/3 (39); blue dotted line, 2
√

Bo/3 (3); green dashed

line, (40).
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where

η = 4 − 3R̃2
r . (35)

Solving the quadratic equation (34) for η and using the result-

ing expression in (35), we obtain R̃2
r as a series in Bo in the

form

R̃2
r =

4

3
− 2

(

1

Bo
+

1

Bo2

)

+

√

− 4

3Bo2
+

8

Bo3
+

4

Bo4
. (36)

If we define β =

√

−4/(3Bo2) + 8/Bo3 + 4/Bo4 and α =

2(1/Bo + 1/Bo2), with

Γ = α − β − 1/3, (37)

(36) could be rewritten as

R̃r =

√
1 − Γ. (38)

Expression (36) has the appropriate limit of R̃r → 0 as Bo→ 0.

The theory predicts that R̃r → 2/
√

3 for Bo → ∞, implying

a linear variation of Rr with R. Even though this may not be

a valid limit since the analysis is valid only up to Bo ≃ 2, the

measurements do show an approximate constant R̃r at Bo ≈ 3

(see Fig. 2).

Figure 2 shows the variation of R̃r from (36) along

with our experimental measurements, the earlier numerical

solutions,14,15 the spherical approximation,1,9,17,27

R̃r =

√

2Bo/3, (39)

the power law approximation (3) using the low Bo asymptote

(2),6 and the perturbation solution by Howell,22

R+
r = R+

c

(

sin 2s̃

2
+ BoeR+2

c

(

5 sin 2s̃ − sin 4s̃

48
− s̃ cos 2s̃

8

))

,

(40)

where s̃ ∼ π/2−√BoeR+
c /2
√

3 + πBoeR+2

c /16. Among coincid-

ing numerical results,13,15 only one15 of them is included for

comparison hereafter. To compare our theoretical results that

are normalized with R, the bubble cavity radius, with our exper-

imental results and the results from the literature, which are

normalized with the equivalent spherical radius of the bubble

Re, we need to convert the former to the latter. Since R̃r ≈ R+
r

for our theoretical expressions for Boe < 1 (see Appendix A),

we plot R̃r of theory along with R+
r from our experiments and

the literature in Fig. 2; the same is performed for other variables

hereinafter.

Figure 2 makes it clear that, in general, there is no power

law variation of R̃r valid over the whole range of 0 < Boe < 1,

as is also shown by (36). However, up to Boe < 0.1, the variation

of R̃r with Boe predicted by (36) shows a power law with an

exponent of half, the same as that given by (3), (39), and (40);

the same behavior is shown by our experimental measurements

and all the earlier numerical solutions.14,15 The experimental

trend of R+
r with Boe plateaus at larger Boe (36) agrees well

with this trend till Boe ∼ 1, with the deviation of (36) with

the experimental data being within the 2 pixel measurement

error shown in the figure. The proposed expression (36) also

approximates the numerical solutions14,15 well for Bo < 1,

even though it slightly underpredicts, with the underprediction

being about 8% at Bo ∼ 1. The perturbation solution (40) can-

not be evaluated since the variation of R+
c with Boe in (40) is

not known. We however evaluate (40) using our expression of

R̃c, given later as (42), to show (40) as the green dashed line

in Fig. 2; (40) deviates from the trend at around Boe ∼ 0.1. For

0 < Boe < 1, (36) is then a good approximation for R̃r , which

has the limit (3) for Boe → 0.1, shown by the dotted line in

Fig. 2. Equation (3) can then be used as a simple scaling law

to predict R̃r up to Boe < 0.1, while (36) can be used so up to

Boe < 1. The spherical approximation (39) underpredicts the

rim radius values at low Bo and overpredicts them at higher

Bo. At larger Boe, any assumed power law approximation of

R̃r with Boe will have only a very small range of validity.

G. The dimensionless cap radius R̃c

Substituting (33) in (30), we obtain

R̃c =
4

2 + Bo

(

1 +

√

1 − R̃2
r − R̃r µ/

√

Bo
(

R̃2
c − R̃2

r

)

) , (41)

which can be solved for R̃c, as shown in Appendix B, to obtain

R̃c =
4 + R̃r µ

√
Bo

2 + Bo

(

1 +

√

1 − R̃2
r

) , (42)

where R̃r is given by (36). Substituting (36) in (42), we obtain

the expression for R̃c in terms of Bo as

R̃c =
4 + µξ

√
Bo

2 + Boζ
, (43)

where

ξ =
√

1 − Γ, (44)

ζ = 1 +
√
Γ, (45)

with Γ given by (37) and µ given by (27).

Figure 3 shows the present analytical solution (43) along

with the variation of R̃c measured from our experiments and

the numerical solutions.14,15 The present theory matches our

experimental measurements well for Boe < 1. At around

Bo ∼ 1, the experimental measurements of Rc deviates from

the trend of the experimental data till then, as well as from

(43). One possible reason could be the increasing importance

of drainage in the thin film at larger Bo,5 which could change

the shape of the thin film cap from the assumed spherical one

in the theory.

The numerical computations14,15 however deviate strongly

from the present experimental data and (43) from Boe as low

as 0.02. Deviations of the actual shape of the bubble from the

assumed spherical shape of the cap and the cavity, as well as

the assumed low slope of the meniscus, in the theory will not

even be noticeable up to Bo < 0.1; the deviations are expected

to be significant only when Bo > 1. Hence the cause for these

surprising deviations of Rc in theory from that in simulations is

unlikely to be due to the assumptions in theory since the devia-

tions start at very low Bo, and at these low Bo, the assumptions

in the theory are supported well by experiments. Similarly, the

higher order terms that are dropped in the theory affect mostly

the derivation of Rr [see (28) and (34) in Secs. III C and III F].

The expression for Rr (36) obtained in this way matches fairly
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FIG. 3. Variation of the dimensionless cap radius with the Bond number. Experimental measurements in black open triangles, water; black open stars, GW48;

black open squares, GW55; black open diamonds, GW72; black open left-pointing triangles, ethanol; light blue filled circles, Princen;14 blue filled squares,

Medrow and Chao;15 blue solid line, (43), the analytical root of (B5) using γ from (B10); green dashed line, the numerical root of (B1); black solid line, the

analytical root of (B5) usingγ from (B11). Larger numerical and analytical roots alone are shown. Pink dotted line, the simpler scaling law, (47); red dotted-dashed

line, the Bo→ 1 limit (46). The inset shows the spherical cap for a bubble of Re = 1.64 mm in GW48 at Boe = 0.4326 along with the circle corresponding to

R̃c = 1.75 predicted by numerical simulations (blue circle) and R̃c = 1.5 measured in experiments (white dashed circle).

well with the experiments. Hence, even though the approxi-

mate expression of Rr (36) is used in the final expression for

Rc (41), since Rr matches fairly well with experiments, this

cannot be the reason for the deviation of the theoretical results

of Rc from the simulations.

Furthermore, and most importantly, the numerical solu-

tion also deviates from the experimental measurements, far

beyond the range of error in the experiments. To verify this,

we show in the inset of Fig. 3 the blue circle of radius R̃c = 1.75

predicted by the numerical solutions for Boe = 0.4326, along

with the white dashed circle from which R̃c = 1.5 was mea-

sured for an image in GW48 at the same Boe. The circle from

the latter coincides with the spherical cap, while that corre-

sponding to the predictions of numerical solutions is much

larger and unrealistic. We hence expect that the deviation of

(43) from the numerical simulations is not due to the approx-

imations made in the theoretical analysis but due to some-

thing missing in the numerical simulations. We are unable to

comment on the exact reason for this discrepancy in simula-

tions since we do not know the details of the simulations.

Equation (43) shows that there is no simple power law

expression for R̃c as a function of Bo for 0 < Bo < 1. As per

(42), R̃c → 2 when Bo ≪ 1, in agreement with (2) obtained

based on the physical argument19 for the limiting case of small

bubbles. Figure 3 shows that R̃c = 2 is however valid only for

very small bubbles up to Boe < 0.01. In the limit Boe → 1,

R+
c = 1.24Bo

−1/4
e (46)

fits the variation of R+
c with Boe for 0.3 < Boe < 1, as shown

in Fig. 3. As per (43), R̃c ∼ µ
√

Bo/Bo for Bo→ 1; (46) is an

approximate limiting form of (43) since µ scales as Bo1/4 for

Bo→ 1.

A non-power law scaling, much simpler than (43), could

also be obtained by substituting (32) without the last term in

(30), replacing R̃r with (3), and rearranging to obtain
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R̃c =
4

2 + Bo(1 +
√

1 − 4Bo/3)
. (47)

Figure 3 shows that (47) is quite accurate in the range 0 < Boe

< 0.6 and can hence be used as a simple scaling relation for

R̃c for Boe < 0.6. By proposing (47), we extend (2), the earlier

available relationship for Rc, from its validity of Bo < 0.01 to

Bo < 0.6, while (43) extends the same to Bo < 1.

H. Height of the rim and the cap

The rim PQ in Fig. 1(e) is at a height hr above the horizon-

tal free surface FS. The corresponding dimensionless height

h̃r can be obtained by evaluating (11) at r̃ = R̃r to obtain

z̃
���r̃=R̃r

− Z̃c = h̃r = CK0(R̃r

√
Bo). (48)

Substituting the value of C from (13), we obtain

h̃r =
R̃r µ

√

Bo
(

R̃2
c − R̃2

r

)

. (49)

Substituting (38) and (43) for R̃r and R̃c in (49), we obtain h̃r

in terms of Bo as

h̃r =
µξ∆

√

Bo(Λ − ξ2(∆2 + 4∆2
1
))

, (50)

where

∆ = 2 + Boζ , (51)

∆1 = 1 + Boζ , (52)

Λ = 16 + 8µξ
√

Bo + ξ2
(

4 + Bo(µ2 + 4ζ) + Bo2ζ2
)

, (53)

with ξ given by (44) and ζ given by (45).

A further approximation of (50), which results in a much

simpler relation for h̃r , can be obtained by replacing R̃r and

R̃c in (49) with (3) and (2), respectively, and then using the

approximation28 for

µ
(

R̃r

√
Bo

)

=

(

1 +
1

R̃r

√
Bo

)−1/2

(54)

to obtain

h̃r =

√

2Bo
(

2Bo +
√

3
)

(3 − Bo)
; (55)

for Bo≪ 1, (55) reduces to

h̃r =

√

2Bo

33/2
. (56)

From Fig. 1(e), the dimensionless height of the bubble cap

above the rim is

h̃cap = hcap/R = R̃c −
√

R̃2
c − R̃2

r , (57)

which when written in terms of Bo using (38) and (43) become

h̃cap =

4 + µξ
√

Bo −
√

Λ − ξ2(∆2 + 4∆2
1
)

∆
. (58)

A simpler approximation is obtained by replacing R̃r and R̃c

in (57) with (3) and (2), respectively, to obtain

h̃cap = 2(1 −
√

1 − Bo/3). (59)

Alternatively, since h̃cap = R̃r tan(φr/2), with tan(φr /2)

= sin φr /(1 + cos φr), replacing sin φr = Rr /Rc and cos φr

=

√
R2

c − R2
r /Rc, we obtain h̃cap = R̃2

r /

(

R̃c +

√

R̃2
c − R̃2

r

)

, in

which, by replacing R̃r with (3) and R̃c with (2), we obtain

h̃cap =
2Bo

3(1 +
√

1 − Bo/3)
, (60)

which coincides with (59). When Bo ≪ 1, (60) becomes (4)

which then tends to zero when Bo→ 0, similar to the behavior

of (59).

The dimensionless height of the top of the bubble above

the free surface is then

h̃c = hc/R = h̃r + h̃cap, (61)

with h̃r and h̃cap given by (50) and (58), where hc = hcap + hr .

The sum of (55) with (59) or (60) gives a simpler approxima-

tion for h̃c.

Figure 4 shows the experimental variation of h̃c with Boe,

along with the expression (61), where h̃r and h̃cap are given by

(50) and (58). Some of the multiple measurements at the same

Boe are shown, the range of spread being shown by the error

bars. Considering that the spread of the experimental data is

not small, possibly due to the errors involved in measuring the

small length hc at small Boe, a reasonably good match between

the theory and experiments is observed. The figure also shows

that the complex expression (61), where h̃r is given by (50)

and h̃cap is given by (58), could be well approximated by a

simple power law,

h̃c = 0.78Bo
3/5
e (62)

for 0 < Boe < 1. The simplified expressions given by the sum

of (55) and (59) or by the sum of (55) and (60) coincide on each

other. As shown in Fig. 4, both follow the experimental results

and (61) but are offset upwards by a small amount. This offset

is an outcome of using (2), valid only for Bo < 0.01, to obtain

(55). A better approximation could be obtained by using (47)

instead of (2), at the expense of simplicity of the expression.

Multiplying the sum of (55) and (59) by a pre-factor of 0.8, to

account for the approximations in using (2), will also give a

good match of the resulting expression with (61).

The top inset in Fig. 4 shows the experimental variation

of h̃cap, along with the variation predicted by (58) and the

numerical solution.14 An excellent match between the numeri-

cal results14 and (58) is observed up to Boe < 1. The experimen-

tal results also follow the prediction of (58) with reasonable

accuracy, given the spread of data shown by the error bars. The

variation of h̃cap predicted by (4) is shown as a dashed-dotted

line in the top inset. Even though the slope of (4) is higher than

that shown by the numerical results14 and (58), (4) is a close

approximation to (58) and the numerical results.14 It is surpris-

ing that (59) and (60), which coincide and are shown by the

dashed line in the top inset, actually deviate more than (4) from

(58) and the numerical results.14 Considering the fairly close

approximation that (4) makes to (58), the simplicity of equa-

tion (4) makes it a more convenient choice for use in scaling

laws than (58).
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FIG. 4. Variation of the dimensionless height of the top of the bubble above the free surface with the Bond number. Black open triangles, Water; black open

stars, GW48 black open squares, GW55; black open inverted triangles, GW68; black open diamonds, GW72; black open left-pointing triangles, ethanol; black

plus, 2-propanol; blue solid line, (61) with h̃r given by (50) and h̃cap given by (58); black dotted line, 0.78Bo3/5 (62); red dashed line, sum of (55) and (60). The

top inset shows the variation of the dimensionless height of the bubble cap above the rim with the Bond number. In the top inset, blue solid line, (58); green

dotted-dashed line, (4); red dashed line, (60); light blue filled circles, Princen.14 The bottom inset shows the variation of the dimensionless height of the rim

above the free surface with the Bond number. In the bottom inset, thick blue solid line, (50); red dashed line, (55); thin black solid line, the small Bo limit (56);

dotted-dashed green line, Kralchevsky et al.21 (63); blue filled square, Medrow and Chao.15

The variation of the dimensionless height of the rim h̃r

with Boe in experiments is shown in the bottom inset in Fig. 4,

along with (50), and the numerical results.15 The numerical

results15 match (50) quite well up to Boe ∼ 0.6. Consider-

ing the spread of the experimental data, shown by error bars,

the experiments also follow (50) reasonably well. The only

other available relation for hr , obtained by Kralchevsky et al.21

using perturbation expansion for small Bo, is

h̃r

R̃r

= χ0 +
R̃2

r Bo

2

(

(sinψc + χ0 cosψc)(1 + χ0 cot ψc

− cot ψc

2
) − χ0

2
+

sin3 ψc

8

)

, (63)

where ψc = sin−1(R̃r/R̃c) and χ0 = sinψc ln(4/γeR̃r

√
Bo(1 +

cosψc)), with γe = 1.78. However, the variation predicted by

(63) could not be estimated since no closed form expressions

for R̃r and R̃c were given by Kralchevsky et al.21 We hence

use our expressions for R̃r (36) and R̃c (42) in (63) to plot (63)

in the bottom inset in Fig. 4 as the dashed-dotted line. Since

(63) is valid only for small Bo, (63) deviates from (50) at Boe

≈ 0.2; (50) approximates the experimental trends better up to

Boe ∼ 1. The simpler, approximate expression for h̃r (55) is

shown in the bottom inset in Fig. 4 as the dashed line. Even

though (55) is a fairly good approximation to (50), use of (2),

which is valid only up to Bo < 0.01, to obtain (55) seems to

result in a slight over prediction by (55). The small Bo limit

(56), shown as the thin solid line in the bottom inset in Fig. 4,
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when used with a pre-factor of 0.5, instead of the pre-factor

of
√

2/33/2, would match (50) fairly well so as to be used as a

simple scaling law.

I. The dimensionless cavity depth Z̃c

Now that we have expressions for R̃r and R̃c in terms of

the Bond number in (38) and (43), we can substitute these in

(33) to obtain Z̃c in terms of Bo as

Z̃c = ζ − µξ

Λ

(

ζ +
2

Bo

)

, (64)

where ζ , ξ, andΛ are given by (45), (44), and (53), respectively.

As shown in Fig. 5, the variation of Z̃c with Bo predicted by

(64) matches the experimental variation well for 0 < Boe < 2.

Clearly, there is no single power law for Z̃c valid for

0 < Boe < 1; any power law approximation of (64) will

only be valid for a very short range of Boe. When Boe ≪ 1,

(64) tends to the correct limit of 2, similar to the spherical

and the oblate spheroidal approximations1 shown in Fig. 5.

These approximations however start to deviate from the exper-

imental variation for Boe > 0.01, again coming close to the

experimental trends at Boe ∼ 1; on the contrary, (64) fol-

lows the experimental trends well through out the range of

0 < Boe < 2.

We can also find a simpler expression than (64), which

is however a larger approximation than (64), by using (3) and

(55) in (32), to obtain

Z̃c = 1 +

√

1 − 4

3
Bo −

√

2Bo
(

2Bo +
√

3
)

(3 − Bo)
. (65)

Figure 5 shows that (65), which has real values only up

to Bo < 3/4, is a fairly good approximation for Z̃c up to

Boe < 0.5. Using the Bo ≪ 1 limit of h̃r (56), instead of the

last term in (65), we obtain

Z̃c = 1 +

√

1 − 4

3
Bo −

√

2Bo

33/2
, (66)

FIG. 5. Variation of the dimensionless cavity depth with the Bond number.

Black open triangles, Water; black open stars, GW48; black open squares,

GW55; black open inverted triangles GW68; black open diamonds, GW72;

black open left-pointing triangles, ethanol; black plus, 2-propanol; blue filled

squares, Medrow and Chao;15 thick blue solid line, (64); thin black solid line,

(65); pink dotted line, (67); green dotted-dashed line, spherical approximation

(5); red dashed line, oblate spheroidal approximation;1 black dashed plus,

Howell.22

which almost coincides with (65). A better approximation than

these two simple expressions could be obtained by using (47)

in (49) and using the resultant expression for h̃r in (32), which

will however result in a more complex expression than (65)

and (66).

The expression for Z̃c from Kralchevsky et al.,21 in terms

of our notation, is

Z̃c = 1 +

√

1 − R̃2
r − h̃r ± Bo z1, (67)

where

z1(φc) =
1

3
sin2 φc +

2

3
ln sin

φc

2
− 1

2
(1 + cos φc) (68)

with φc = sin−1 R̃r . The first three terms in (67) are exactly the

same as in (32), since they are an outcome of the geometry,

even though the expression for h̃r (63)21 to be used in (67) is

different from (49). The fourth term accounts for the defor-

mation of the bubble cavity, which is neglected in the present

analysis. However, expression (67) could not be estimated ana-

lytically since closed form expressions for R̃r and R̃c were not

given by Kralchevsky et al.21 Using the present expressions

for R̃r and R̃c, given by (36) and (42), we can evaluate Z̃c from

(67), a plot of which is shown in Fig. 5. As expected, includ-

ing deformation of the bubble cavity results in a lower value of

Zc than the present estimates. The present experimental results

shown in Fig. 5, with which (64) matches better, however show

that the deformation of the bubble cavity is not significant for

Bo < 1. Expression for Z̃c given by Howell,22

Z̃c ∼ R̃3
cBoe

24

(

−3 log(BoeR̃2
c ) − 2.08 − 24

BoeR̃2
c

)

, (69)

evaluated using our expression for R̃c (43) is shown in Fig. 5.

Expression (69) follows the trend till Boe < 0.1, while (64) is

a good approximation to the experimental Z̃c up to Boe ∼ 2.

IV. DISCUSSION AND CONCLUSIONS

The primary results of the paper are the new analytical

expressions obtained for the shape parameters of a floating

bubble, which match our experimental data well for the range

0< Boe < 1, where Boe is the Bond number based on the equiv-

alent spherical radius Re. These shape parameters, namely, the

rim radius Rr , cap radius Rc, cap heights hcap and hc, rim

height hr , and depth of the bubble cavity Zc, appear in scaling

relations of dynamic phenomena associated with floating bub-

bles. Even though numerical solutions for the complete shape

of these bubbles are available, no expressions for the various

parameters describing their shape, as functions of Boe, are

available for 0 < Boe < 1, the usually encountered range of

Boe; the present study fills this gap.

We find that the rim radius, known to scale as Rr ∼ R2/lc

(3),6 where lc =
√

σ/ρg is the capillary length and R is the

bubble cavity radius, does so only up to Boe < 0.1, with Rr

becoming approximately linearly dependent on R for Boe ∼
1. Our new proposed expression for the dimensionless rim

radius,

R̃2
r =

4

3
− 2

(

1

Bo
+

1

Bo2

)

+

√

− 4

3Bo2
+

8

Bo3
+

4

Bo4
,



112105-12 Puthenveettil et al. Phys. Fluids 30, 112105 (2018)

(38) in the form of a series in Bo valid for Bo < 1, where

Bo is the Bond number based on R, captures this initial R2

dependence and the later linear trend with increasing Boe. The

radius of the spherical thin film cap Rc = 2R, as was proposed

earlier,19 we show, is valid only for Boe < 0.01. We now extend

this result to show that for 0.5 < Boe < 1, Rc ∼
√

Relc (46),

with

Rc =
4R

(

2 + Bo(1 +
√

1 − 4Bo/3)
) ,

(47) in the intermediate range of 0 < Boe < 0.5; the complete

solution for Rc proposed in (43) for 0 < Boe < 1 captures all

these three trends.

The Bo≪ 1 asymptote for the height of the thin film cap

above the rim, hcap ∼ R3/l2
c (4),14 is now formally obtained

and is shown to be surprisingly close up to Boe < 0.5 to the

complete solution (58), which is valid for 0 < Boe < 1. The

two alternative expressions for hcap, (59) and

hcap =
2BoR

3(1 +
√

1 − Bo/3)

(60) obtained for the intermediate range of Bo, which are sim-

pler than (58), however seem to offer no advantage compared

to the simple scaling law (4). We now obtain the scaling of the

height of the rim above the free surface as hr ∼ R2/lc (56) as a

Bo≪ 1 asymptote of the scaling for the intermediate range of

Bo

hr =

√
√

2BoR2

(

2Bo +
√

3
)

(3 − Bo)

(55), which itself is an approximation of the complete solution

that we obtain as (50). Unlike understood earlier,1,17 hcap and

hr do not scale in the same way, neither do they have the same

magnitudes. Once the relations for hcap and hr are known,

either complete or approximate, we obtain the expression for

the height of the thin film cap above the free surface hc as the

sum of hcap and hr , which scales as hc ∼ (R7/l4
c )1/3 (62).

The depth of the bottom of the bubble cavity Zc, which

decides the velocity of the jet coming out of the collapse of a

floating bubble, was earlier estimated assuming the bubble to

be spherical (5) or to be an oblate spheroid,1 which however

did not follow the experimental measurements closely. Our

measurements show that there is no power law approxima-

tion possible for Zc, except for the trivial case of Zc ∼ 2R for

Boe < 0.01, with Zc decreasing to 0.7R at Boe ≈ 1. We now

propose a relation (64) that matches this non-trivial experi-

mental variation of Zc quite closely in the range 0 < Boe < 1.

Furthermore, we find a simple non-power law scaling,

Zc = R*
,
1 +

√

1 − 4

3
Bo −

√

2Bo

33/2
+
-

(66), which is accurate up to Boe < 0.5.

Figures 2–5 show a consistent, but non-trivial, change in

the shape of the bubble with an increase in Boe. Up to about

Boe = 0.1, an increase in the radius of the bubble results in

an increase in the rim radius proportional to R2, with the cap

radius and the cavity depth being proportional to the increase

in R, while the cap and rim heights continue to increase as R2

and R3 in the whole range of Boe < 1. So the bubble expansion

is the predominant process up to Boe = 0.1. With an increase

in Bo beyond 0.1, the predominant change in the bubble shape

becomes that of a less than proportional increase in Rc and Zc,

while the earlier rapid increase in the rim radius with R slows

down to a slower value; at the same time, the cap height con-

tinues to increase with the earlier trend. These behaviors mean

that the upward displacement of the bubble starts to dominate

for Boe > 0.1.

The expressions presented in this paper were obtained

by solving the force balance of the meniscus and the entire

bubble, pressure balance at the centre line, and geometrical

constraints, assuming that the bubble cavity below the free

surface remains spherical. Flattening of the bottom bubble

cavity is hence neglected in the present analysis; this effect

however seems to become important only at Boe larger than

one. Including an equation for the shape of the bottom bub-

ble cavity, as against the spherical geometry assumed in the

present analysis, results in unsolvable expressions. However,

for larger Boe, these effects will have to be included to obtain

accurate expressions for the shape parameters.
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APPENDIX A: CONVERSION OF NORMALIZATION
WITH R TO NORMALIZATION WITH Re

FOR THE PRESENT THEORY

The total bubble volume for the present assumed shape of

the bubble

Vb = Vcap + V , (A1)

where

Vb =
4

3
πR3

e , (A2)

Vcap =
π

3
h2

cap(3Rc − hcap), (A3)

and

V =
π

3
(Zc + hr)2(3R − Zc − hr) (A4)

is the volume of the spherical cap below PQ, as defined in

(21). Substituting (A2), (A3), and (A4) in (A1), we obtain the

expression for R̃e = Re/R as

R̃3
e =

1

4

(

3R̃ch̃2
cap − h̃3

cap + (Z̃c + h̃r)2(3 − Z̃c − h̃r

)

. (A5)

The variation of R̃e with Bo, calculated using expressions (43),

(58), (50), and (64) in (A5), is shown in Fig. 6; R̃e ≈ 1 for

Bo < 1 for the present assumed theoretical configuration of

the bubble. Since R̃r = Rr/R and R+
r = Rr/Re,

R+
r = R̃r/R̃e, (A6)

and similarly

Boe = BoR̃2
e , (A7)

where Boe = ρgR2
e/σ. However since R̃e ≈ 1 from Fig. 6

for Bo < 1, we use R̃r = R+
r and similarly for all other



112105-13 Puthenveettil et al. Phys. Fluids 30, 112105 (2018)

FIG. 6. Variation of the dimensionless equivalent spherical radii with the

Bond number based on the bubble cavity radius for the present theory.

length variables for the present theoretical results; similarly,

Boe = Bo for the present theoretical results.

APPENDIX B: SOLUTION OF (41) FOR R̃c

Equation (41) can be simplified into the form of a fourth

order polynomial

a4R̃4
c + a3R̃3

c + a2R̃2
c + a1R̃c + a0 = 0, (B1)

where

a4 = A2
1, a3 = −2A1A2,

a2 = A2
2 − R̃2

r A2
1 −

R̃2
r µ

2

Bo
,

a1 = 2A1A2R̃2
r and a0 = −R̃2

r A2
2. (B2)

Here,

A1 = 1 +

√

1 − R̃2
r +

2

Bo
and A2 =

4

Bo
, (B3)

with R̃r being given by (36).

Equation (B1) may be written as

(R̃c − κ)(R̃c + κ)(R̃2
c + δR̃c + γ) = 0, (B4)

where κ and -κ are solutions which are less than 1 or nega-

tive and hence are not physically realistic solutions of (B1)

since the dimensionless thin film cap radius R̃c cannot assume

these values. The solution of (B1) is hence given by the two

remaining roots of (B4), which are the roots of the quadratic

equation

R̃2
c + δR̃c + γ = 0. (B5)

The coefficients δ and γ of equation (B5) can now be found

as follows. Expanding (B4) and writing it in the form of (B1)

and by comparing the terms with (B1), we obtain

a3

a4

= δ,
a2

a4

= γ − κ2,
a1

a4

= −κ2δ, and
a0

a4

= −γκ2. (B6)

It is also obvious from (B6a) and (B6c) that

− a1

a3

= κ2, (B7)

which again is equal to R̃2
r from (B2b) and (B2d), so that

κ = ±R̃r . (B8)

Using (B6a) and substituting for a3 and a4 from (B2b) and

(B2a), we obtain by using (B3a) and (B3b)

δ =
−8

2 + Bo

(

1 +

√

1 − R̃2
r

) . (B9)

Substituting a2 and a4 from (B2c) and (B2a) in (B6b), using

A1 and A2 from (B3a) and (B3b), and using (B9), we obtain

γ =
16 − R̃2

r µ
2Bo

(

2 + Bo

(

1 +

√

1 − R̃2
r

))2
. (B10)

Similarly, substituting a0 and a4 from (B2e) and (B2a) in (B6d)

and using (B8), we obtain

γ =
16

(

2 + Bo

(

1 +

√

1 − R̃2
r

))2
. (B11)

Both (B10) and (B11) are possible expressions for γ. As

shown in Fig. 3, the bigger root of (B5), obtained with γ given

by (B10), is a close approximation of the biggest numerical

root of (B1), as well as the experimental data. Since the solution

of (B5) using (B10) matches well with the numerical solu-

tion of (B1), and the experimental measurements, we choose

(B10) as the expression for γ. Now, by solving (B5) using (B9)

and (B10), we obtain the expression for the dimensionless cap

radius as (42).
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“On the shape of giant soap bubbles,” Proc. Natl. Acad. Sci. U. S. A. 114,

2515 (2017).
21P. A. Kralchevsky, I. B. Ivanov, and A. D. Nikolov, “Film and line tension

effects on the attachment of particles to an interface: II. Shapes of the bubble

(drop) and the external meniscus,” J. Colloid Interface Sci. 112, 108–121

(1986).

22P. D. Howell, “The draining of a two-dimensional bubble,” J. Eng. Math.

35, 251–272 (1999).
23CRC Handbook of Chemistry and Physics, 80th ed., edited by D. R. Lide

(CRC Press, 2001).
24H. N. Oguz and A. Prosperetti, “Dynamics of bubble growth and detachment

from a needle,” J. Fluid Mech. 257, 111–145 (1993).
25P. Doshi, I. Cohen, W. W. Zhang, M. Siegel, P. Howell, O. A. Basaran, and

S. R. Nagel, “Persistence of memory in drop breakup: The breakdown of

universality,” Science 302, 1185 (2003).
26D. Sharaf, A. Premlata, M. K. Tripathi, B. Karri, and K. C. Sahu, “Shapes

and paths of an air bubble rising in quiescent liquids,” Phys. Fluids 29,

122104 (2017).
27T. Gillespie and E. K. Rideal, “The coalescence of drops at an oil-water

interface,” Trans. Faraday Soc. 52, 173–183 (1956).
28E. A. Boucher and T. G. J. Jones, “Capillary phenomena. Part 11. Approx-

imate treatment of the shape and properties of fluid interfaces of infinite

extent meeting solids in a gravitational field,” J. Chem. Soc., Faraday

Trans. 1 76, 1419–1432 (1980).


