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Abstract. The formation of QGP in heavy ion collisions gives us a great opportunity for

learning about nonperturbative dynamics of QCD. Semiholography provides a new con-

sistent framework to combine perturbative and non-perturbative effects in a coherent way

and can be applied to obtain an effective description for heavy ion collisions. In particu-

lar, it allows us to include nonperturbative effects in existing glasma effective theory and

QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the

collisions in the initial stages in a consistent manner. We argue why the full framework

should be able to confront experiments with only a few phenomenological parameters

and present feasibility tests for the necessary numerical computations. Furthermore, we

discuss that semiholography leads to a new description of collective flow in the form of

a generalised non-Newtonian fluid. We discuss some open questions which we hope to

answer in the near future.

1 Introduction

There are very good reasons to believe that we need to combine both weakly coupled perturbative and

strongly coupled nonperturbative effects to find an effective theory for the formation and evolution of

the quark-gluon plasma in heavy ion collisions.

The initial stages of the collision can be understood using glasma effective theory which takes

advantage of saturation physics [1, 2]. The gluons liberated by the collisions are mostly small-x

(slowly moving along the collision axis) partons of the nuclei which form a weakly coupled over-

occupied (i.e. with occupation numbers of O(1/αs)) system by virtue of which these can be described

by classical Yang-Mills equations. The latter are sourced by colour charges of the large-x (rapidly

moving along the collision axis) gluons. For these gluons, x > x0 with x0 being a cut-off value of

x. The evolution of their colour charge distribution (frozen on the time scale of collisions) with the

cut-off x0 can be followed via perturbative QCD [1]. Typically the distribution is Gaussian with a

transverse width 1/Qs(x0), where Qs is the so-called saturation scale which is much higher than the

confinement scale [3–5].

At a slightly later stage, one cannot use classical Yang-Mills equations even for the small-x glu-

ons because of dilution due to expansion. Therefore one needs to interpolate classical Yang-Mills

equations with kinetic theory. Remarkably, the key aspects of the transition from classical Yang-Mills

equations to a kinetic description has been understood recently [6–8].
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Nevertheless, one cannot ignore strong coupling effects because soft gluons (with large transverse

sizes) are also radiated and are expected to form a strongly coupled thermal bath. These could be re-

sponsible for remarkably fast transition to hydrodynamics with a very small shear-viscosity to entropy

density ratio and other collective effects [9, 10]. Therefore, to understand the phenomenology of the

formation and evolution of the quark gluon plasma, we need to learn how to bring together various

degrees of freedom at diverse energy scales in a coherent manner. This is preferable to doing either

weakly coupled or strongly coupled calculations exclusively, and then interpolating in the coupling.

Semiholography is a framework for combining perturbative and nonperturbative effects in a con-

sistent way to give a complete effective description of the dynamics at a wide range of energy scales.

In the case of the quark-gluon plasma, fortunately many issues involved in the full construction can

be handled with relative conceptual ease as will be described below. In this approach, the soft in-

frared gluons giving nonperturbative effects are assumed to have a dual holographic description in the

form of an appropriate classical theory of gravity. As discussed below, one can argue that the full

construction should involve only a few effective parameters.

2 Semiholography with the glasma

Assuming that degrees of freedom at the confinement scale do not play any major role until hadro-

nisation, we can describe the soft gluonic system as a strongly coupled holographic CFT (conformal

field theory). The latter can be better described as an emergent strongly coupled holographic large N

Yang-Mills theory with an approximate conformal symmetry in the relevant range of energy scales

and which models the nonperturbative sector. A simplistic holographic description in the form of

Einstein’s gravity in anti-de Sitter space minimally coupled to a massless dilaton and a massless axion

(capturing all relevant deformations as discussed below) can be expected to work reasonably well.

The semiholographic model combining the glasma and the soft sector (with appropriate initial

conditions given by glasma effective theory) can then be written in the form [11, 12]:

S = S YM[Aa
µ] +WCFT

[

g̃µν[A
a
µ], δg̃YM[Aa

µ], θ̃[A
a
µ]
]

. (1)

Above, WCFT is the generating functional of connected correlation functions of the strongly coupled

holographic CFT modelling the infrared sector with sources that are functionals of the perturbative

glasma fields, and

S YM[Aa
µ] = −

1

4Nc

∫

d4x tr
(

FαβF
αβ

)

. (2)

Furthermore, the holographic CFT (strictly speaking we assume approximate conformal invariance

only) by virtue of our assumption of being an emergent Yang-Mills theory can undergo only three

marginal deformations involving the change in the effective metric, its Yang-Mills coupling and its

theta parameter. The background metric becomes effectively g̃µν, the Yang-Mills coupling changes

from infinity by δg̃YM and the theta parameter changes from zero to θ̃YM due to the influence of

perturbative fields. By virtue of holographic duality,

WCFT
[

g̃µν[A
a
µ], δg̃YM[Aa

µ], θ̃YM[Aa
µ]
]

= S on−shell
grav [g̃µν = g

(b)
µν , δg̃YM = φ

(b), θ̃ = χ(b)], (3)

i.e. WCFT can be identified with the on-shell gravitational action of the dual classical gravity theory.

Furthermore, g̃µν is identified with the boundary metric g
(b)
µν giving the leading asymptotic behaviour of

the bulk metric, δg̃YM is identified with the boundary value φ(b) of the bulk dilatonΦ and θ̃ is identified
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with the boundary value χ(b) of the bulk axion X. We can thus write the full semiholographic action

in the form:

S = S YM[Aa
µ] + S on−shell

grav

[

g(b)
µν [Aa

µ], φ
(b)[Aa

µ], χ
(b)[Aa

µ]
]

. (4)

Finally, we specify that:

g(b)
µν = ηµν +

γ

Q4
s

tcl
µν, with tcl

µν =
1

Nc

tr

(

FµαF
α
ν −

1

4
ηµνFαβF

αβ

)

, (5)

φ(b) =
β

Q4
s

hcl, with hcl =
1

4Nc

tr
(

FαβF
αβ

)

, (6)

χ(b) =
α

Q4
s

acl, with acl =
1

4Nc

tr
(

FαβF̃
αβ

)

. (7)

Above tcl
µν is thus the perturbative energy-momentum tensor, hcl is the perturbative Lagrangian density

and acl is the perturbative Pontryagin density. The suffix ′cl′ indicates that these are functionals of

the classical YM fields of the glasma. Since Qs is the energy scale of the hard part set by the initial

conditions, it should provide the scales of hard-soft interactions naturally.

It can be readily shown that in consistency with the variational principle the modified classical

glasma action (4) can also be written in the form:

S = S YM[Aa
µ] +

1

2

∫

d4xT µνg(b)
µν +

∫

d4xHφ(b) +

∫

d4xAχ(b), (8)

where

T µν = 2
δS on−shell
grav

δg
(b)
µν

, H =
δS on−shell
grav

δφ(b)
, A =

δS on−shell
grav

δχ(b)
, (9)

with the right hand sides of the above equations evaluated at the values given by (5, 6, 7).

The full dynamics needs to be solved self-consistently in an iterative fashion. The action in the

form (8) clearly shows that the glasma equations are modified by holographic operators that appear

as self-consistent mean fields. Furthermore, it also evident from (8) that the perturbative sector is

deformed by the nonperturbative sector only in a marginal way (via dimension 4 operators only), al-

though one of the deformations is tensorial and the couplings are functionals of the self-consistent

expectation values of the operators of the non-perturbative sector. As noted before, the nonperturba-

tive sector described by the dual classical gravity theory is also deformed marginally by the perturba-

tive sector in a reciprocative manner. Therefore, eventually when we include quantum effects in the

glasma and those in the dual gravity description, both of them will be solvable at each step of iter-

ation (without the need for introducing extra parameters for renormalisation) by virtue of marginal

deformations of each sector. This explains why we should have an approximately good description

of the QGP at large Nc using only three additional hard-soft couplings α, β and γ. Of course, all

these couplings at a given scale Λ should be a function of ΛQCD/Λ such that they vanish in the UV

(in the Λ → ∞ limit) in which the physics should be mostly perturbative. The latter functions should

be derived from the Lagrangian of QCD from first principles. We leave this task for the future. At

present we just work with α, β and γ at the scale Qs that is set by the initial conditions while treating

them as phenomenological parameters.

3 Solving the full dynamics iteratively

Before we describe the iterative procedure of solving the dynamics, let us first derive the equation

of motion for the glasma fields from the action (4) or equivalently (8). In either case we can use the
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chain rule, as for instance:

δS on−shell
grav

δAa
µ(x)

=

∫

d4y















δS on−shell
grav

δg
(b)
µν (y)

δg
(b)
µν (y)

δAa
µ

+ · · ·














. (10)

If we derive from the form (8), we must treat the holographic operators T µν, etc to be independent of

the glasma fields Aa
µ. In either way, we can arrive at the modified glasma equations (suppressing color

indices):1

DµF
µν =

β

Q4
s

Dµ
(

HFµν
)

+
α

Q4
s

(

∂µA
)

Fµν +
γ

Q4
s

Dµ

(

T µαF ν
α − T

να
F
µ
α −

1

2
T αβηαβFµν

)

, (11)

with Dµ being the gauge-covariant derivative.

At each step of the iteration, T µα, etc. can be extracted from the classical gravity equations as

follows. Firstly, we note that:

T µν =
√

−g(b)T µν, with T µν = 2
√

−g(b)

δS on−shell
grav

δg
(b)
µν

, etc. (12)

Then T µν can be evaluated using the standard holographic dictionary. We need to solve the

5−dimensional classical gravity equations with appropriate initial conditions and boundary metric

and sources specified by (5, 6, 7). We obtain a unique solution. Let r be the radial direction such that

r = 0 is the boundary. Then we can extract T µν from the asymptotic expansion of the 5−dimensional

metric GMN in the Fefferman-Graham coordinates which reads

Grr =
l2

r2
, Grµ = 0, (13)

Gµν =
l2

r2

(

g(b)
µν + · · · + r4

(

4πG5

l3
Tµν + Xµν

)

+ · · ·
)

,

where Xµν is an explicitly known local functional of g
(b)
µν [13]. Finally, we should use

T µν = g(b)µαTαβg(b)βν, (14)

and then (12) to obtain T µν. Similarly, we obtainH andA from the asymptotic expansions of Φ and

X in the gravitational solution with specified boundary sources (5, 6, 7).

The iterative process of solution is as follows [11].

1. We first solve the glasma equations (11) with α = β = γ = 0.

2. From this solution, we extract the sources (5, 6, 7) for the gravitational problem solving which

we obtain T µν,H andA.

3. We solve the glasma equations (11) again after inserting the above T µν,H andA in them.

1We have assumed that the full system lives in flat Minkowski space ηµν. If this is not the case, slightly different covariant

tensorial objects appear which are e.g. Ĥ = 1√−gH with gµν being the fixed background metric for all the degrees of freedom.

It can be readily seen that Ĥ etc. transform in a covariant way under diffeomorphisms. When the background metric is ηµν, Ĥ
coincides withH .
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4. We go back to step 2 to solve the gravitational equations again with sources now specified by

the new solution to the glasma equations.

5. We then continue to repeat steps 3 and 2 successively until both the gravitational solution and

the glasma fields converge to their final forms.

At each step of the iteration, we hold initial conditions fixed. For the glasma, the initial conditions can

be shown to be unaltered, i.e. given by the usual perturbative large-x partonic color sources. For the

gravitational part, the initial conditions should be that of pure AdS with vanishing dilaton and axion

fields, indicating that the soft sector does not play any role in the initial stages.2 The gravitational

sector can be solved using the method of characteristics [14].

A crucial consistency check of the full framework is that one can prove that there exists a local

energy-momentum tensor T µν for the combined system that can be explicitly constructed and which

is conserved in the background (flat Minkowski) metric (i.e. satisfying ∂µT
µν = 0) in which all the

degrees of freedom live [12]. This energy-momentum tensor can be obtained from the action (4) or

(8) by using the variational principle again. Its conservation serves as a check of convergence of the

iterative process of obtaining the full dynamical solution. Explicitly,3

T µν = tµν + T µν

− γ

Q4
s Nc

T αβ
(

tr
(

F
µ
α F

ν

β

)

− 1

4
ηαβtr

(

FµρFνρ

)

+
1

4
δ
µ

(α
δνβ)tr

(

FαβF
αβ

)

)

− β

Q4
s Nc

H tr
(

FµρFνρ

)

− α
Q4

s

A a. (15)

4 Toy example

In this section we will restrict our model to a simple scenario to perform a numerical test for con-

vergence of the iterative method of solving the full semiholographic dynamics [12]. We will only

allow for a finite value of the coupling γ and demand that the UV and the IR degrees of freedom are

both spatially homogeneous and isotropic. For simplicity we choose the gauge group of the classical

Yang–Mills theory to be S U(2). In temporal gauge Aa
t = 0 with the ansatz Aa

i
= f (t)δa

i
, where i

denotes the spatial directions and a denotes the SU(2) indices, we find tµν = p(t) diag(3, 1, 1, 1) with

p(t) =
1

2

[

f ′(t)2 + f (t)4
]

, (16)

being the YM pressure.

As we have set α = β = 0 for simplicity, the only deformation of the IR-CFT involves the effective

metric as designed by the glasma fields following (5). The imposed symmetries of homogeneity and

isotropy leads to a conformally flat g(b)

µν. The dual holographic geometry should be a solution of pure

Einstein’s gravity as setting α = β = 0 implies that the bulk dilaton and axion fields vanish too.

Since the boundary metric is conformally flat, homogeneity and isotropy imply that the bulk solution

should be a time-dependent diffeomorphism of the anti-de Sitter Schwarzschild black brane by virtue

of Birkhoff’s theorem. The latter is simply the dual of a thermal state of the IR-CFT. Furthermore,

as bulk diffeomorphisms lift to a combination of diffeomeorphisms and conformal transformations at

2In reality, we need to introduce a small technical complication. We need to put the initial condition for the gravitational

part slightly before that of the perturbative glasma sector.
3Once again, if the background metric is not ηµν, we must replace T µν by T̂ µν, etc. When the background metric is ηµν,

they coincide.
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the boundary, T can be obtained from a time dependent coordinate plus conformal transformation

that takes the thermal energy-momentum tensor of the IR-CFT in flat space (which takes the form

T µν = a1c diag(3, 1, 1, 1), where the constant c sets the temperature dual to the black hole mass) to

the energy-momentum tensor in the background metric designed by the homogeneous and isotropic

glasma fields. It turns out that the necessary conformal transformation is given by the Weyl factor

Ω(t) =

√

1 + γp(t)/Q4
s , (17)

while the necessary coordinate transformation of covariant objects is described by the matrix

Λ
µ
ν = diag

(√

1 − 3γp(t)/Q4
s)/

√

1 + γp(t)/Q4
s , 1, 1, 1

)

. (18)

The full result then consists of a contribution T (cov)µν transforming covariantly and an anomalous

contribution T (an)µν given by [15, 16]. Thus

T µν = T (cov)µν + T (an)µν, with (19)

T (cov)µν = a1cΩ−6 diag
[

3(Λt
t)
−1, 1, 1, 1

]

and (20)

T (an)µν = − a4

(4π)2

[

g(b) µν

(

R2

2
− RαβR

αβ

)

+ 2RµλRνλ −
4

3
RRµν

]

. (21)

The Riemann curvature tensor above refers to that of the metric g(b)

µν. Note that for strongly coupled

large Nc holographic CFTs one finds a1 = N2
c /8π

2 and a4 = N2
c /4.

The high degree of symmetry in our set-up implies that the gravitational solution is a diffeo-

morphism of a pre-existing black hole solution. Since no entropy production is involved, the energy

transfer between the hard and soft sectors should be reversible and this should be reflected in the os-

cillatory nature of the respective energy densities. Although our toy example provides a good testing

ground of numerical convergence of the iterative procedure of solving the full dynamics proposed in

[11] and discussed above, it cannot be used to demonstrate thermalisation which is expected to arise

for more general initial conditions. The logical next step towards a more interesting case regarding the

issue of thermalisation is either to incorporate anisotropy or to allow for matter degrees of freedom,

by having β , 0. Both of these additional complications include this particularly simple setting as a

limiting case, thus it is also worthwhile to study it in great detail for future reference.

Even in our simple scenario the equations of motion for the gauge field Aa
i
= f (t)δa

i
is highly

non-trivial and is given by:

f ′′(t) + 2
1 − 1

2

γ

Q4
s
(Ê + P̂)

1 + 1
2

γ

Q4
s
(Ê + P̂)

f (t)3 +
1

2

γ

Q4
s

(Ê + P̂)′

1 + 1
2

γ

Q4
s
(Ê + P̂)

f ′(t) = 0, (22)

where Ê :=
√−g(b)T tt and P̂ :=

√−g(b)T xx =
√−g(b)T yy = √−g(b)T zz. Note that the Ricci tensor

and curvature scalar contributing to the anomalous part IR energy momentum tensor (21), involve

second order derivatives of the scaling factor Ω(t), and thus involve third order derivatives of the

gauge field. Because of the last term on the left hand side of (22), the equation of motion for the

gauge field is a fourth order ordinary differential equation (ODE), whereas in the limit of vanishing

coupling γ it is of second order. As discussed before, in the first step of iteration we set γ = 0 and

solve (22) with initial conditions f ′(0) = 0 which results in the fulfilment of the Gauss Law constraint

and f (0) = (2p0)1/4 chosen to set a desired value p0 of the initial pressure in the hard (YM) sector.

We then use this solution for f (t) to determine Ê and P̂ which have been so far set to a static thermal
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value. We continue the iteration until we find convergence. A rigorous test of convergence is provided

by the conservation of energy-momentum tensor (15) of the combined system in flat space (which in

our simple scenario amounts to conservation of the total energy) to a desirable degree of numerical

accuracy.

More concretely, the initial energy density ε(0) for the YM sector and Ê(0) for the soft sector take

the values

ε(0) = 3p0 and (23)

Ê(0) =
3N2

c c

8π2

1
√

1 − 3
γ

Q4
s
p0

√

1 +
γ

Q4
s
p0

, (24)

respectively in terms of the initial pressure p0 in the YM sector and the mass parameter c (of the

pre-existing black hole). The total energy is found to be

E = ε(t) + Ê(t)

(

1 − γ
Q4

s

ε(t)

)

+
3

2

γ

Q4
s

(

Ê(t) + P̂(t)
)

f ′(t)2 = 3p0 +
3N2

c c

8π2

√

√

√

1 − 3
γ

Q4
s
p0

1 +
γ

Q4
s
p0

. (25)

Note, that in order to obtain a regular g(b)

µν and thereby rendering the IR energy momentum tensor real,

we have to impose a restriction on the parameter γ

− Q4
s

p(t)
< γ <

Q4
s

3p(t)
. (26)

Furthermore in order to obtain regular solutions the coefficient of the second term in (22) must not

change sign, which imposes an additional restriction on c: for γ satisfying (26) the said coefficient is

positive at t = 0 only if

N2
c c

2π2Q4
s

<
2

|γ|

√

1 − 3
γ

Q4
s

p0

(

1 +
γ

Q4
s

p0

)3/2

. (27)

However in the case γ < 0, the Yang–Mills pressure is initially in a local minimum. When the

pressure reaches a local maximum, the total energy set by the choice of p0, c and γ cannot not be

matched if N2
cγc/(2π

2Q4
s) becomes too negative. One evaluates the left hand side of (25) at f (tmax) =

f ′′(tmax) = 0, f ′(tmax) =
√

2pmax and solves for N2
cγc/(2π

2Q4
s) the extremum of which has to be

found numerically for each value of γp0/Q
4
s in the range (−1, 0). This completes the discussion of the

allowed region in {p0, c} parameter space of initial conditions in this toy example, which is marked by

the shaded regions in Fig. 1. There we also depict contours of constant values of γE/Q4
s . Note that

lines lie completely within the allowed region provided that −1 < γE/Q4
s < 1.

For the discussion of the full numerical solution of Eq. (22) with γ = 0.2 we consider three

different sets of (p0/Q
4
s ,N

2
c c/2π2Q4

s) at fixed total energy γE/Q4
s = 0.9. They are marked by three

different shapes in Fig 1 with (a) p0 = 1.49 Q4
s , (b) p0 = 0.75 Q4

s and (c) p0 = 0.1 Q4
s . Case (a)

corresponds to a large UV to IR energy ratio, in case (b) the ratio is of order unity and in case (c)

most of the energy resides in the IR. In Fig. 2 we plot the time evolution of the Yang–Mills energy

ε/Q4
s for the three cases in the first panel. The Yang–Mills energy exhibits oscillatory behaviour with

increasing relative amplitude as well as increasing wavelength as the UV-IR energy ratio decreases.

The absolute value of the amplitude is the largest when initially the energy is equally distributed

among the IR and UV sectors. In this simple setup we cannot see dissipation of energy from the UV

sector to the IR sector. However, as already mentioned we expect this to be the case when a finite
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-2

-1

0

1

2

γ p0
Qs

4

N
c

2
γc

2
π2 Q

s

4

Figure 1. The allowed

(shaded) regions for the

combination of parameters

γp0/Q
4
s and N2

cγc/(2π
2Q4

s) in

the homogeneous and

isotropic toy example with

α = β = 0 such that regular

solutions exist. The thin lines

represent curves of constant

γE/Q4
s . The point, square and

diamond all lie on the

γE/Q4
s = 0.9 curve and mark

the choices (a) p0 = 1.49 Q4
s ,

(b) p0 = 0.75 Q4
s and (c)

p0 = 0.1 Q4
s with γ = 0.2

respectively.

value for β is allowed and the three cases studied here might approximate three subsequent stages in

the evolution of the system there.

In the second panel of Fig. 2 we show the interaction measure of the IR and UV sectors defined

by E − 3P for the same three cases. Note that this is positive only provided that γ > 0.

The convergence of the iterative algorithm was shown to be very fast and reasonably stable. After

four iterations there was no visible change left and after ten iterations both Eqs. (22) and (25) were

satisfied to order 10−11. Only after several tens of iterations the accumulation of numerical errors

became significant.

a

b

c

γ=0.2

0 5 10 15
0

1

2

3

4

5

t Qs

ε/Q
s
4

a

b

c

γ=0.2

0 5 10 15
0

1

2

3

4

t Qs

(E
-
3
P
)/
Q
s
4

Figure 2. Left panel: the Yang–Mills energy ε/Q4
s for the three cases (a) p0 = 1.49 Q4

s , (b) p0 = 0.75 Q4
s and

(c) p0 = 0.1 Q4
s with fixed total energy γE/Q4

s = 0.9. Right panel: the interaction measure of the IR and the UV

sector E − 3P for the same three sets of initial values.

5 Subleading quantum (kinetic) corrections

At the subleading order, we need to add perturbative quantum corrections to the glasma. In the large

Nc limit, we do not need to account for quantum gravity corrections to the holographic nonperturbative
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sector. Assuming that we are dealing with very strong coupled dynamics for the IR, we can also ignore

stringy higher derivative corrections to Einstein’s gravity which will be otherwise necessary to account

for departures from infinite ’t Hooft coupling.

This semiholographic action with quantum corrections can be readily derived from first principles

starting from the classical action (4) or (8). It is to be noted that the word classical refers to the glasma

itself – the holographic operators although coming from a strongly coupled quantum sector appear

here only as self-consistent mean fields.

To this aim, we write the classical action (8) again as S (0) and just for sake of convenience we put

α = β = 0 (of course we can readily have non-zero values for these), i.e.

S (0)[Aa
µ] = S YM[Aa

µ] +
1

2

∫

d4xT µνg(b)
µν

= S YM[Aa
µ] + S on−shell

grav

[

g(b)
µν = ηµν +

γ

Q4
s

tcl
µν[A

a
α]

]

, (28)

with

tcl
µν[A

a
α] =

1

Nc

tr

(

FµαF
α
ν −

1

4
ηµνFαβF

αβ

)

. (29)

The quantum part (which can be derived using standard functional methods) is:

S (1)[Dab
µν, A

c
α] =

i

2
Tr ln D−1 +

i

2
Tr

(

D(0)−1[Aa
µ]D

)

+S on−shell
grav

[

g(b)
µν = ηµν +

γ

Q4
s

(

tcl
µν[A

c
α] + t

q
µν[D

ab
ρσ]

) ]

−S on−shell
grav

[

g(b)
µν = ηµν +

γ

Q4
s

tcl
µν[A

c
α]

]

,

=
i

2
Tr ln D−1 +

i

2
Tr

(

D(0)−1[Aa
µ]D

)

+
γ

2Q4
s

∫

d4xT µνtq
µν[D

ab
ρσ], (30)

where Tr denotes trace over colour, tensorial and Schwinger-Keldysh indices, and also integrations

over the spacetime points, D(0)−1[Aa
µ] is the inverse of the gluonic propagator in the classical S YM[Aa

µ]

in presence of a background classical field configuration Aa
µ and

t
q
µν =

1

4
lim
x→y

{[

∂x
γ∂
yγ
(

δαµδ
β
ν + δ

α
ν δ
β
µ

)

+
(

∂x
µ∂
y
ν + ∂

x
ν∂
y
µ

)

ηαβ

−∂x
µ∂
yαδ
β
ν − ∂xα∂

y
µδ
β
ν − ∂xα∂

y
νδ
β
µ − ∂x

ν∂
yβδαµ

−ηµν
[

ηαβ∂x
γ∂
yγ − ∂xβ∂yα

]}

tr
(

Dαβ(x, y) + Dαβ(y, x)
)

(31)

is the one-loop tadpole contribution to the energy-momentum tensor arising from the quantum fluctu-

ations.

The classical glasma fields Aa
µ, the quantum fluctuations Dab

µν and the classical gravity solution

giving nonperturbative dynamics should be solved together self-consistently in the perturbative ’t

Hooft coupling. The sources on the gravitational side include quantum fluctuations of the glasma

fields.
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6 Towards a new description for collective flow

It is useful to consider a simple limit for solving the quantum fluctuations. Let us assume that we

are considering the final stage of QGP evolution where the classical fields Aa
µ have dissipated away

so that we can ignore them. So, we can also set tcl
µν = 0, as a result of which at the leading order the

boundary metric of the gravity solution is flat Minkowski space. Nevertheless, at the leading order

the soft holographic T µν is not zero, but given by that of an expanding black hole. For the moment,

we ignore the expansion so that we consider that at late time we obtain a static thermal state. At the

leading order, we can write

T (0)

µν = T (0)
µν = T fluid

µν , (32)

where T fluid
µν is the hydrodynamic energy-momentum tensor of a holographic fluid with appropriate

transport coefficients.

We can then readily see from (30) that

D−1 = D(0)−1 − iΣ, with Σ =
δS on−shell
grav

δD
. (33)

Explicitly in the Schwinger-Keldysh space,

D(0)
µν (p, p′) = Pµν













1
p2+iǫsgn(p0)

− 2πiδ(p2)θ(−p0) −2πiθ(−p0)δ(p2)

−2πiθ(p0)δ(p2) − 1
p2−iǫsgn(p0)

− 2πiδ(p2)θ(−p0)













δ4(p − p′), (34)

with

Pµν = ηµν −
pµpν

p2
. (35)

Also,

Σµν(p, p′) = − γ
2Q4

s

[

ηµνT (0)αβ(−p − p′) pαp′β − T
(0)

µβ
(−p − p′) pνp

′β

−T (0)
αν (−p − p′) pαp′µ + T (0)

µν (−p − p′) p · p′
]

×
(

1 0

0 −1

)

. (36)

Note the change in D by the self-energy term Σ leads to a change in the boundary metric,

g(b)
µν = ηµν + g

(1)
µν , with g(1)

µν =
γ

Q4
s

t
q
µν[D], (37)

where t
q
µν[D] is given by (31). Therefore, in order to preserve conservation of energy and momentum,

i.e ∇(b)µT µν = 0 with ∇(b) being the covariant derivative constructed from g
(b)
µν , a small correction T (1)

µν

should arise which should obey the conservation equations:

∂µT (1)µν = −Γ(1)µ
µαT (0)αν − Γ(1)ν

µαT (0)µα, (38)

where

Γ
(1)µ
νρ =

1

2
ηµα

(

∂νg
(1)
αρ + ∂ρg

(1)
αν − ∂αg(1)

νρ

)

. (39)

Because the fluid-gravity correspondence follows from holography for any weakly curved boundary

metric, we can consistently assume that T (1)
µν also has a fluid form which however has forcing terms
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when viewed from the point of view of flat Minkowski background. We can show that we can absorb

T (1)
µν into T (0)

µν which is a fluid in flat space by modifying the speed of sound and transport coefficients

as functions of the velocity. So we get a specific generalisation of non-Newtonian fluid. We christen

this as sesqui-hydrodynamics. It is to be noted that solving both sectors at the subleading order

involves no iteration as we can take advantage of a systematic expansion. We will present further

details and explicit results in the near future.

7 Outlook

We end with a list of questions that we should answer in the future.

1. How do the classical YM fields of the glasma thermalise with the dynamically formed black

hole? Since the full system is stochastic (as a result of stochastic initial conditions), is the

thermalisation process Markovian (as in Fokker-Planck system) or non-Markovian (with strong

dependence on initial conditions)?

2. What kind of observables characterise the non-Markovian nature of thermalisation and how can

we exploit them to learn more about nonperturbative dynamics of QCD?

3. Is the thermalisation process top-down, or bottom-up or riddled with quantum complexity? In

the latter case what should be the experimental signatures?

4. How do we characterise the generalised non-Newtonian hydrodynamic collective flow of the

combined hard-soft system at late time?

At present we are only at the beginning of our explorations. Currently we are investigating all the

above mentioned aspects.
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