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In this paper we consider a massive vector field in the background of a space-time obtained by certain Z2

quotient of the Banados-Teitelboim-Zanelli black hole. We analyze the backreaction of the matter field on

the space-time geometry up to first order in metric perturbation. The expectation value of the stress-energy

tensor can be computed exactly by considering its pullback onto the covering space. Upon a suitable choice

of the boundary condition on the vector field around a noncontractible cycle of the quotient manifold it is

possible to obtain the average energy on a null geodesic to be negative there by resulting a traversable

wormhole.
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I. INTRODUCTION

Wormholes are solutions to Einstein equations which

connect two otherwise distinct space-times or two widely

separated regions of the same space-time via a throat. In

classical general relativity wormholes are not traversable,

i.e., no causal curve can pass through the throat of the

wormhole connecting the two distinct regions. The issue of

traversability for static, spherically symmetric wormholes

has been discussed first in [1] where it has been pointed out

the need to have exotic matters for the wormhole to be

traversable. This matter has further been analyzed in [2–4]

substantiating the violation of average null energy con-

dition (ANEC) as the necessary condition for traversability

of wormhole. It has been proved that the ANEC holds for

achronal null geodesics [5–7]. Thus, space-times that

possess only achronal null geodesics do not admit travers-

able wormholes. These results have their origin lies in

the topological censorship theorem [8] and its generaliza-

tion to asymptotically locally anti–de Sitter (AdS) spaces

[9], which states that every causal curve whose end points

lie in the boundary at infinity (I) can be deformed to a

causal curve which entirely lies in I itself.

An important breakthrough in this direction has recently

been achieved by Gao, Jafferis, and Wall [10] where they

have constructed a traversable wormhole from an eternal

Banados-Teitelboim-Zanelli (BTZ) black hole by introduc-

ing a time-dependent coupling between its two asymptotic

regions. They have computed the one loop stress energy

tensor upon using the point splitting method. By choosing

the sign of the coupling appropriately, the vacuum expect-

ation value of the double null component of the stress

energy tensor can be made negative, enabling the wormhole

traversable. These results have subsequently been gener-

alized in [11] to see the effect of rotation on the size of the

wormhole. An eternal traversable wormhole in nearly AdS2
space-time has been constructed in [12] by introducing a

coupling between the two boundaries.

A traversable wormhole in four dimensions has been

devised in [13] by joining the throats of two charged

extremal black hole geometries in the presence of massless

fermions. This construction did not depend on any nonlocal

external coupling between the two boundaries and resulted

to what are called as the self-supporting wormholes which

arise entirely from local dynamics of the fermion fields

present in the bulk of the space-time. A complementary

analysis has been carried out in [14] to obtain traversable

wormholes from the bulk dynamics by considering a free

scalar field in quotients of AdS3 and AdS3 × S1 by discrete
symmetries. The authors computed the gravitational back

reaction and showed that the space-time admits causal

curves that cannot be deformed to the boundary. Taking

quotient by a discrete symmetry is significant in the sense

that it no longer preserves the globally defined Killing field

which plays a key role in obtaining the average null energy

condition. This result has subsequently been generalized

[15] to include fermions in the bulk to produce traversable

wormholes.

In the present work we generalize these above results in

the presence of massive vector fields. As has been noticed

in [15], adding spin-half fields provide a rich structure that

is worth studying in its own right. We will notice a similar

phenomenon in the presence of spin-one fields. In what

follows, we consider the pullback of the stress tensor on to
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the covering space. For AdS3 it is possible to obtain an

exact analytic expression for the propagator in closed form.

Using this result we compute the expectation value of the

stress tensor and show that under imposing suitable

boundary conditions, this gives rise to traversable worm-

holes. The plan of the paper is as follows. The next section

summarizes the preliminaries on obtaining self-supporting

wormholes from free scalar fields. In § III we obtain the

exact propagator in AdS3. Subsequently we compute the

expectation value of the stress tensor from this propagator

by using the method of images. The Appendix discusses

some of the technical details.

II. PRELIMINARIES

Consider the AdS3 metric in Kruskal-like coordinates:

dS2 ¼ 1

ð1þUVÞ2 ð−4l
2dUdV þ r2þð1 −UVÞ2dφ2Þ:

ð2:1Þ

This gives rise to nonrotating BTZ black hole with horizon

radius rþ upon imposing the identification φ ∼ φþ 2π for

the azimuthal angle. The horizons of the black hole are

located at U ¼ 0 and V ¼ 0, respectively. The space-time

boundaries correspond to 1þ UV ¼ 0. This solution has

been discussed from the perspective of gauge-gravity

duality in [16]. The issue of traversability in this geometry

has been analyzed first in [10] by considering a relevant

double trace deformation coupling the two boundaries.

This relevant deformation in the boundary conformal field

theory (CFT) amounts to adding a stress tensor in the bulk

resulting a perturbation of the space-time geometry.

Consider the V ¼ 0 horizon which admits the horizon

generator kρ such that kρ∂ρ ¼ ∂U. We choose U to be the

affine parameter which parametrizes the null geodesics

tangent to this horizon. The linearized Einstein’s equation

for the metric perturbation on the V ¼ 0 horizon is given by

1

2l2

�

hUUþ∂UðUhUUÞ−
l
2

r2þ
∂2
Uhφφ

�

¼8πGNTUU: ð2:2Þ

The geodesic equation for null rays originating on the past

horizon on the other hand gives rise to

ΔVðUÞ ¼ 1

2l2

Z

U

−∞

dU hUU: ð2:3Þ

The quantity ΔVð∞Þ measures the time delay of the null

geodesic starting at U ¼ −∞ and ending at U ¼ ∞. The

wormhole becomes traversable if ΔVð∞Þ < 0. This quan-

tity provides a measure for the size of the opening of the

wormhole. Integrating (2.2) over U keeping in mind the

perturbation vanish at the boundary gives rise to

ΔVð∞Þ ¼ 8πGN

Z

∞

−∞

dU TUU: ð2:4Þ

Thus the wormhole becomes traversable if the ANEC is

violated. By choosing suitable nonlocal coupling between

the two boundaries it has been shown [10] that it is indeed

possible to violate the ANEC giving rise to traversable

wormholes.

An alternative method has been developed in [14] to

construction traversable wormholes without invoking any

nonlocal boundary interaction. The authors considered a

suitable Z2 quotient of the BTZ black hole space-time M̃.

The resulting geometryM is a smooth, globally hyperbolic

manifold, known as the RP
2 geon [17]. The Z2 quotient

introduces a new homotopy cycle in the manifold M. One

can choose the scalar field in M to be either periodic or

antiperiodic around this cycle. The states in M are con-

structed from the states of the covering space M̃ by the

method of images. This enables the average expectation

value in a suitable Hartle-Hawking like state of the double

null component of the resulting stress tensor to take

negative values along null geodesics.

Let J be the isometry which maps the point x̃ ∈ M̃ to Jx̃,
and the pair ðx̃; Jx̃Þ projects onto the point x in the quotient
M. The quantum fields ϕ�ðxÞ in M are constructed from

the quantum fields ϕ̃ðx̃Þ in M̃ using the method of images:

ϕ�ðxÞ ¼
1
ffiffiffi

2
p ðϕ̃ðx̃Þ � ϕ̃ðJx̃ÞÞ: ð2:5Þ

The pair of points ðx̃; Jx̃Þ are spacelike separated in M̃, and

hence the fields at these two points commute with each

other. Thus, the fields ϕ�ðxÞ satisfies the usual canonical

commutation relations and describe well-defined quantum

fields in M.

We consider free scalar field ϕ�ðxÞ in M for which the

action is given by

S ¼
Z

d3x
ffiffiffiffiffiffi

−g
p �

−
1

2
gμν∂μϕ�∂νϕ� −

1

2
m2ϕ2

�

�

; ð2:6Þ

with the corresponding energy-momentum tensor

Tμν�¼∂μϕ�∂νϕ�−
1

2
gμνðgαβ∂αϕ�∂βϕ�þm2ϕ2

�Þ: ð2:7Þ

The Hartle-Hawking state jHH; M̃i in the covering space

M̃ induces corresponding states jHH;�i inM. We need to

compute the expectation value of the double null compo-

nent of the stress tensor hHH;�jTμνk
μkνðxÞjHH;�i in the

Hartle-Hawking states jHH;�i. It is most convenient to

compute this by considering the pullback TP
μνðx̃Þ in M̃ of

the stress-tensor TμνðxÞ:
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hHH;�jTμν�k
μkνðxÞjHH;�i

¼ hHH; M̃jTP
μν�k

μkνðx̃ÞjHH; M̃i: ð2:8Þ

It is important to note that TP
μνðx̃Þ is not the stress-tensor of

a free quantum field ϕ̃ðx̃Þ in M̃. Since the Hartle-Hawking

state jHH; M̃i is invariant under the Killing symmetry,

the expectation value of the stress tensor T̃μνðx̃Þ in this

state vanishes. This is because, the expectation value of

ξμξνT̃μνðx̃Þ is invariant for a Killing vector ξμ. If ξμ becomes

kμ on the horizon then this quantity vanishes on the

bifurcation surface, and hence the expectation value of

the double null component of the stress tensor for the

covering space must vanish identically. However, this need

not be the case for the pullback TP
μνðx̃Þ, as this quantity is

not preserved by the Killing symmetry. A straightforward

analysis gives rise to

TP
μν�k

μkνðx̃Þ ¼ T̃μνk
μkνðx̃Þ � kμ∂μϕ̃ðx̃Þkν∂νϕ̃ðJx̃Þ: ð2:9Þ

Thus, we have

hHH;�jTμν�k
μkνðxÞjHH;�i

¼ �hHH; M̃jkμ∂μϕ̃ðx̃Þkν∂νϕ̃ðJx̃ÞjHH; M̃i: ð2:10Þ

Hence, if the expectation value on the right-hand side is

nonzero, we can always choose appropriate boundary

condition to make it negative. This has been computed

for various smooth, globally hyperbolic, Z2 quotients of

BTZ and BTZ × S1 space-times [14]. The results have been

used thereafter to show the violation of ANEC.

III. THE MASSIVE VECTOR FIELDS

We will now consider the case of an Abelian vector field

of mass m with the action

S ¼
Z

d3x
ffiffiffiffiffiffi

−g
p �

−
1

4
gαβgμνFαμFβν −

1

2
m2gμνAμAν

�

:

ð3:1Þ

As in the case of scalar fields, we can use the method of

images to set the vector field AμðxÞ in M, in terms of the

corresponding fields Ãμðx̃Þ in the covering space M̃ as

A�
μ ðxÞ ¼

1
ffiffiffi

2
p ðÃμðx̃Þ � Ãμ0ðx̃0ÞÞ: ð3:2Þ

The (�) sign in the superscript correspond to the choice of

periodic or antiperiodic boundary condition on the vector

field AμðxÞ around the nontrivial homology cycle γ. The

above setting will give rise to a well defined quantum field

inM for spacelike separated points ðx̃; x̃0Þ. Here we will set

x̃0 ¼ Jx̃. The pair of points ðx̃; Jx̃Þ in M̃ maps onto the point

x ∈ M under the action of Z2.

The stress tensor corresponding to the action (3.1) is

given by

T�
μνðxÞ ¼ gαβF�

αμF
�
βν þm2A�

μ A
�
ν

− gμν

�

1

4
gαβgρσF�

αρF
�
βσ þ

1

2
m2gαβA�

α A
�
β

�

: ð3:3Þ

The last term in the above equation does not contribute to

the double null component of Tμν. Hence, we will ignore

this term now on. The pullback of the first two terms into

the covering space M̃ gives rise to

kμkνT�
μνðxÞ ¼

1

2
ðkμkνT̃μνðx̃Þ þ kμ

0
kν

0
T̃μ0ν0ðx̃0ÞÞ

� 1

2
fðgαβ0ðx̃; x̃0ÞkμF̃αμðx̃Þkν

0
F̃β0ν0ðx̃0Þ

þ gα
0βðx̃0; xÞkμ0F̃α0μ0ðx̃0ÞkνF̃βνðx̃ÞÞ

þm2ðkμÃμðx̃Þkν
0
Ãν0ðx̃0Þ

þ kμ
0
Ãμ0ðx̃0ÞkνÃνðx̃ÞÞg: ð3:4Þ

Here T̃μνðx̃Þ is the stress tensor corresponding to the gauge

field Ãμðx̃Þ in M̃. The expectation values of TμνðxÞ in the

states jHH;�i become

hHH;�jkμkνT�
μνðxÞjHH;�i

¼ �fhHH; M̃jðgαβ0ðx̃; x̃0ÞkμF̃αμðx̃Þkν
0
F̃β0ν0ðx̃0ÞÞjHH; M̃i

þm2hHH; M̃jðkμÃμðx̃Þkν
0
Ãν0ðx̃0ÞÞjHH; M̃ig: ð3:5Þ

The expectation value hHH; M̃jkμkνT̃μνðx̃ÞjHH; M̃i van-

ishes because of symmetry as argued in the previous

section. Again, as in the scalar field case, we can impose

appropriate boundary conditions on the vector field to

make the null energy negative provided the right-hand side

in (3.5) does not vanish.

A. The propagator

From the above analysis we find that, in order to verify

the ANEC, we need to compute the expectation values

hHH;M̃jÃμðx̃ÞÃν0ðx̃0ÞjHH;M̃i and hHH;M̃jF̃αμðx̃ÞFβ0ν0ðx̃0Þ
jHH;M̃i in the covering space M̃. The manifold M̃ itself

can be obtained upon taking the quotient of AdS3 with

the identification φ ∼ φþ 2π. Thus, we can derive these

quantities from the vector two-point function in AdS3.

The vector two-point function in AdSn in arbitrary

dimensions has been computed in [18]. In the following

we will briefly outline the relevant parts of their results for

our purpose. Denote AμðxÞ to be the massive vector field in

AdSn. The two-point function Qμν0ðx; x0Þ ¼ hAμðxÞAν0ðx0Þi
evaluated on the vacuum is a maximally symmetric bitensor

in AdSn. On general grounds it can be express as
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Qαβ0ðx; x0Þ ¼ αðμÞgαβ0ðx; x0Þ þ βðμÞnαðx; x0Þnβ0ðx; x0Þ:
ð3:6Þ

Here μðx; x0Þ is the geodesic distance between the points

x and x0, the unit vectors nα and nα0 are the covariant

derivatives of μ with respect to xα and xα
0
, respectively:

nαðx; x0Þ ¼ ∇αμðx; x0Þ; nα0 ¼ ∇α0μðx; x0Þ; ð3:7Þ

and gαβ0ðx; x0Þ is the parallel propagator along the geodesic

joining x and x0. This quantity is uniquely defined as the

linear map which parallel transports vectors along the

geodesics. The equation of motion for the parallel propa-

gator can be obtained from the equation for parallel

transport of a vector and is given by

d

dλ
gμν0ðx; x0Þ þ Γ

μ
νρ

dxν

dλ
gρν0ðx; x0Þ ¼ 0: ð3:8Þ

The functions αðμÞ and βðμÞ in (3.6) are determined by

requiring that Qμν0ðx; x0Þ satisfies the equation of motion

and by examining its singularity structure. They, in turn, are

determined in terms of a function γðμÞ as

αðμÞ ¼ βðμÞ þ γðμÞ

¼ l

ðn − 1Þ sinh ðμ=lÞγ
0ðμÞ þ cosh ðμ=lÞγðμÞ: ð3:9Þ

The function γðμÞ is expressed in terms of hypergeometric

functions

γðzÞ ¼ rz−aþFðaþ; aþ − cþ 1;aþ − a
−
þ 1; z−1Þ; ð3:10Þ

with z ¼ cosh2 ðμ=2lÞ. The parameters a� and c are

given by

2a� ¼ ðnþ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 3Þ2 þ 4m2
l
2

q

; and

2c ¼ nþ 2: ð3:11Þ

The normalization factor r is given by

r ¼ ð1 − nÞΓðaþÞΓðaþ − cþ 1Þ
2nþ1πn=2m2

l
n
Γðaþ − a

−
þ 1Þ : ð3:12Þ

For AdS3 the expression for γðzÞ takes the form

γðzÞ ¼ −
2ðmlþ 1Þ

m2
l
3πð4zÞmlþ2

Fðmlþ 2; mlþ 1=2;

2mlþ 1; z−1Þ: ð3:13Þ

This hypergeometric series can be summed to obtain an

exact analytic expression in closed form for the function

γðzÞ. We find

γðzÞ¼−
1

16πm2
l
3

ð2z−1þ2ml
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zðz−1Þ
p

Þ
z3=2ðz−1Þ3=2ð ffiffiffi

z
p þ

ffiffiffiffiffiffiffiffiffi

z−1
p

Þ2ml
: ð3:14Þ

As expected, this quantity has the usual singularities at

z ¼ 0, 1 and branch cut along the real axis for z < 1.

Substituting z ¼ cosh2 ðμ=2lÞ, we find γðzÞ as a function

of μ has the simple expression:

γðμÞ¼−
1

2πm2
l
3

e−mμðx;x0Þ

sinh3ðμ=lÞðcoshðμ=lÞþmlsinhðμ=lÞÞ:

ð3:15Þ

Substituting the above for γðμÞ in (3.9), we find that the

two-point function for the massive vector field AμðxÞ in

AdS3 has the form

hAδðxÞAσ0ðx0Þi ¼ αðμÞgδσ0ðx; x0Þ þ βðμÞnδðx; x0Þnσ0ðx; x0Þ
ð3:16Þ

where the functions αðμÞ and βðμÞ are given by

αðμÞ ¼ e−mμðx;x0Þ

4πm2l3
cosechðμ=lÞðm2

l
2 þml coth ðμ=lÞ

þ cosech2ðμ=lÞÞ;

βðμÞ ¼ e−mμðx;x0Þ

4πm2l3
cosechðμ=lÞðcoth ðμ=lÞ

× ðmlþ 2cosechðμ=lÞÞ þ ðmlþ cosechðμ=lÞÞ2Þ:
ð3:17Þ

Using the techniques involving bitensors developed in

[18] the two-point function involving the field strengths can

be calculated from the above in a straightforward manner.

Some of the intermediate steps are outlined in Appendix A.

We find

hFηδðxÞFρ0σ0ðx0Þi ¼ m2βðμÞðgδσ0nηnρ0 − gησ0nδnρ0

þ gηρ0nδnσ0 − gδρ0nηnσ0Þ
þm2γðμÞðgησ0gδρ0 − gδσ0gηρ0Þ: ð3:18Þ

Here as an aside we note that

lim
m→0

m2βðμÞ ¼ 1þ 2 cosh ðμ=lÞ
4πl3sinh3ðμ=lÞ ; and

lim
m→0

m2γðμÞ ¼ −
cosh ðμ=lÞ

2πl3sinh3ðμ=lÞ : ð3:19Þ

Thus, although the right-hand side in (3.16) diverges in the

limit m → 0, the two point function involving the field

strengths as given above is well defined. We will now turn

our attention to the quantity of interest for our purpose.

From (3.18) we find
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hgηρ0FηδðxÞFρ0σ0ðx0Þi¼m2βðμÞðnδnσ0 −gδσ0Þ−2m2γðμÞgδσ0 :
ð3:20Þ

Combining the above with (3.16) we find

hðgηρ0FηδðxÞFρ0σ0ðx0Þþm2AδðxÞAσ0ðx0ÞÞi
¼2m2βðμÞnδnσ0 −m2γðμÞgδσ0 : ð3:21Þ

B. The average null energy

We will now compute the average null energy. We

consider the nonrotating BTZ black hole geometry. The

metric is given by

dS2 ¼ 1

ð1þUVÞ2 ð−4l
2dUdV þ r2þð1 −UVÞ2dφ2Þ:

ð3:22Þ

The coordinate φ is periodic with the identification

φ ∼ φþ 2π. The RP
2 geon [17] is obtained upon taking

the quotient of this geometry with the Z2 isometry J which

acts on the co-ordinates as J∶ ðU;V;φÞ → ðV;U;φþ πÞ.
The resulting space-time is a time-orientable manifold

with constant time hypersurfaces of topology RP
2n

fpoint at infinityg. It gives rise to a black hole with a

single exterior and is locally identical to the BTZ geometry.

The two-point function in the Hartle-Hawking state of

the BTZ black hole is obtained from the corresponding

two-point function in AdS3 vacuum by using the method of

images with periodic boundary condition. Thus, to get the

two-point function we replace φ0 by φ0 þ 2πn and sum over

all integer values of n:

hAρðxÞAσ0ðx0Þi ¼
X

n∈Z

ðαðμðx; x0nÞÞgρσ0ðx; x0nÞ

þ βðμðx; x0nÞÞnρðx; x0nÞnσ0ðx; x0nÞÞ;
ð3:23Þ

where x0n ¼ ðU0; V 0;φ0
nÞ with φ0

n ¼ φ0 þ 2πn. From now

on, we evaluate the expectation values in the Hartle-

Hawking state. For the RP
2 geon φ0 ¼ φþ π and hence

φ0
n ¼ φþ ð2nþ 1Þπ. Likewise, we have [with Fðx; x0Þ≡

ð2βðμÞnδnσ0 − γðμÞgδσ0Þ]:

hðgηρ0FηδðxÞFρ0σ0ðx0Þþm2AδðxÞAσ0ðx0ÞÞi ¼
X

n∈Z

m2Fðx;x0nÞ:

ð3:24Þ

To compute the above, note that the geodesic distance

μðx; x0Þ between points x and x0 in AdS3 is given by

cosh ðμ=lÞ ¼ ð2ðUV 0 þ VU0Þ þ ð1 − UVÞð1 − U0V 0Þ cosh ðrþðφ − φ0Þ=lÞÞ
ð1þUVÞð1þU0V 0Þ : ð3:25Þ

It is straightforward to compute the unit vectors nμðx; x0Þ and nμ0ðx; x0Þ from the above expression. This has been carried out

in Appendix B. On the V ¼ 0 surface, they have the form

nμ ¼
2l

sinh ðμ=lÞ

�

U;−U3
− U cosh ðkπrþ=lÞ;−

rþ
2l

sinh ðkπrþ=lÞ
�

;

nμ0 ¼
2l

sinh ðμ=lÞ

�

−U3
−U cosh ðkπrþ=lÞ; U;

rþ
2l

sinh ðkπrþ=lÞ
�

: ð3:26Þ

We now need to compute the parallel propagator gðx; JxÞ
on the V ¼ 0 surface. We can choose U to be the affine

parameter along the geodesic. Now, analyzing the equation

of motion for the parallel propagator (3.8) it can be shown

that the components gμν0ðx; x0Þ are independent of U on the

V ¼ 0 surface (see Appendix C for the derivation). Since

the tangent vectors nαðx; x0Þ and nα0ðx; x0Þ are oppositely

directed, we must have

gαβ0ðx; x0Þnβ
0ðx; x0Þ þ nαðx; x0Þ ¼ 0: ð3:27Þ

By requiring gμν0 to satisfy the relation, this can be used to

find

gðx; x0Þjx0¼Jx
V¼0

¼

0

B

@

2l2 0 0

0 2l2 0

0 0 r2þ

1

C

A
: ð3:28Þ

For easy reading, we introduce the notation TðUÞ to

denote the null energy:

TðUÞ ¼ hkδkσ0ðgηρ0FηδðxÞFρ0σ0ðx0Þ þm2AδðxÞAσ0ðx0ÞÞijx0¼Jx
V¼0

:

ð3:29Þ
Note that, kρ is the horizon generator on V ¼ 0. Thus, we

must have kρ ¼ ð1; 0; 0Þ. Now, substituting (3.21), (3.26),

and (3.28) in the above equation, we find
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TðUÞ ¼ 8m2
l
2

βðμ0ÞU2

sinh2ðμ0=lÞ
; ð3:30Þ

where we denote μ0 to be the geodesic distance μðx; JxÞ on
V ¼ 0. Introducing the variable u ¼ 2U2 þ cosh ðπrþ=lÞ
we can express the above as

TðUÞ ¼ ðu− cosh ðπrþ=lÞÞ

×
ð1þ 2uþmlðuþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1
p

þm2
l
2ðu2 − 1ÞÞ

πlðu2 − 1Þ5=2ðuþ
ffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1
p

Þml
:

ð3:31Þ

Clearly, the function TðUÞ is symmetric about U ¼ 0. It

can also be easily verified that it vanishes at U ¼ 0 as well

as in the limit U → �∞, and is positive definite for all

other values of U. A sketch of TðUÞ for different values of
the parameters is depicted in Fig. 1.

We now turn our attention to the average null energy

for the RP
2 geon. Here we need to sum the contribution

from all the images as described in (3.24), with ðφ − φ0
nÞ ¼

ð2nþ 1Þπ. Since TðUÞ is positive definite, we need to

choose antiperiodic boundary condition for the vector field

AρðxÞ in the quotient space in order to violate the ANEC.

The average null energy is now given by

hTi ¼ −

X

n∈Z

tn; ð3:32Þ

where tn is defined as (with cn ≡ cosh ðð2nþ 1Þπrþ=lÞ):

tn ¼ 2

Z

∞

cn

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu − cnÞ
p

×
ð1þ 2uþmlðuþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1
p

þm2
l
2ðu2 − 1ÞÞ

πlðu2 − 1Þ5=2ðuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1
p

Þml
:

ð3:33Þ

The integration can be exactly evaluated for certain

specific values of the parameters to express it in terms

of elliptic functions. The result is not in particular

illuminating. We will instead evaluate it numerically.

Without loss of generality we will set the AdS radius l to

one. The values tn for different choices of m and rþ are

depicted in Figs. 2 and 3.

From the numerical analysis we can see that the value of

tn drops rapidly for large n and the series (3.32) indeed

converges quickly. In the following we will prove the

convergence analytically. Note that we can express tn as

tn ¼
2

πl

Z

∞

cn

dufðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u − cn
p

u2 − 1
; ð3:34Þ

with

FIG. 2. Variation of tn with respect to n for rþ ¼ 1=12π; 1=10π,
and 1=8π, respectively. We have setm ¼ 0 and l ¼ 1. The values

of tn for a fixed n decrease with increasing rþ.

FIG. 3. Variation of tn with respect to n form ¼ 1=2; 1, and 3=2
respectively. We have set rþ ¼ 1=8π and l ¼ 1. The values of tn
for a fixed n decrease with increasing m.

FIG. 1. Variation of TðUÞ as a function U for m ¼ 0, 1, and 2

respectively. We have set l ¼ 1 and choose rþ ¼ 1=2π. The
maximum value of TðUÞ decreases with increasing m.
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fðuÞ ¼ ð1þ 2uþmlðuþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1
p

þm2
l
2ðu2 − 1ÞÞ

ðu2 − 1Þ3=2ðuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1
p

Þml
:

ð3:35Þ

Now, observe that, for any given rþ > 0, there exists

an integer N such that the function fðuÞ as defined above

takes value in the range 0 < fðuÞ < 1 for u > cN, for all
ml > 0. As a consequence of the above, if we introduce

t̃n ¼
2

πl

Z

∞

cn

du

ffiffiffiffiffiffiffiffiffiffiffiffiffi

u − cn
p

u2 − 1
; ð3:36Þ

we find t̃n > tn for all n > N. The integration in (3.36) can

be evaluated exactly to find

t̃n ¼
1

l

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

cn þ 1
p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffi

cn − 1
p

�

: ð3:37Þ

Substituting cn ¼ cosh ðð2nþ 1Þπrþ=lÞ in the above we

find that

lim
n→∞

t̃nþ1

t̃n
¼ e−πrþ=l: ð3:38Þ

Thus, the series
P

∞

n¼N t̃n converges for any rþ=l > 0. As a

consequence, the series
P

∞

n¼N tn as well as the one given in

(3.32) converges, giving rise to a finite value for ΔVð∞Þ.
From the numerical analysis we find that, for a fixed

value of rþ the opening of the wormhole is maximum when

the mass of the vector field saturates the Breitenlohner-

Freedman bound. The size decreases as we increase m and

the wormhole closes in the limit m→ ∞. Similarly, for

fixed m the opening decreases as we increase the value of

rþ. The size of opening remains finite for finite values ofm
and rþ. This is in contrast to the case of scalar fields [14],

where the average null energy diverges and one needs to

adopt a regularization process to get a finite size of the

opening of the wormhole.

IV. CONCLUSION

In this paper we have discussed the issue of traversability

of wormholes in a quotient of the BTZ space-time by

certain Z2 symmetry in the presence of massive vector

fields. We have obtained the expression for the two-point

function of the vector fields in AdS3. Using this we have

computed the average null energy and found that it

becomes negative for appropriate choice of boundary

conditions on the vector fields. The backreaction on the

geometry then makes the wormholes traversable. It would

be interesting to extend our analysis for quotients of BTZ as

well as BTZ × S1 geometries by more general discrete

symmetries as well as study the effect of rotation on the

traversability. It is also worth generalizing this to study the

traversability of wormholes in the presence of higher spin

fields. Similar analysis can be carried out for higher

dimensional black holes as well. More generally, recent

studies have shown that the Euclidean wormholes play a

significant role in giving a new perspective on the infor-

mation loss paradox. It would be interesting to see whether

the issue of traversability in Lorentzian wormholes such as

the ones studied in the present work shed any light on this

problem.
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APPENDIX A: THE TWO-POINT FUNCTION

In this Appendix we will derive the two-point function

involving the field strengths corresponding to the gauge

field AρðxÞ in AdS3. Consider the Green’s function

hAρðxÞAσ0ðx0Þi ¼ αðμÞgρσ0ðx; x0Þ þ βðμÞnρðx; x0Þnσ0ðx; x0Þ:
ðA1Þ

The expressions for αðμÞ and βðμÞ have been derived in

(3.17). For maximally symmetric spaces, the parallel

propagator gμν0ðx; x0Þ along the geodesic joining x0 to x0

is unique. It has the following properties:

gμν0ðx; x0Þ ¼ gμνðxÞ for x0 ¼ x; ðA2Þ

gμν0ðx; x0Þ ¼ gν0μðx0; xÞ; ðA3Þ

gμνðxÞ ¼ gμρ0ðx; x0Þgνσ0ðx; x0Þgρ
0σ0ðx0Þ: ðA4Þ

We need to evaluate hFηδðxÞFρ0σ0ðx0Þi. Let us first

compute h∇ηAδðxÞ∇ρ0Aσ0ðx0Þi. In order to do so, we need

to know the action of the covariant derivative on bitensors.

This has been worked out in general for arbitrary dimen-

sions in [18]. In the following we will list the formulae

relevant for our purpose:

∇ρnσðx; x0Þ ¼ AðμÞðgρσðxÞ − nρðx; x0Þnσðx; x0ÞÞ;
∇ρnσ0ðx; x0Þ ¼ CðμÞðgρσ0ðx; x0Þ þ nρðx; x0Þnσ0ðx; x0ÞÞ;
∇ρgση0ðx; x0Þ ¼ −ðAðμÞ þ CðμÞÞðgρσðxÞnη0ðx; x0Þ

þ gρη0ðx; x0Þησðx; x0ÞÞ; ðA5Þ

and analogous expressions for the derivatives with respect

to ∇ρ0 . The functions AðμÞ and CðμÞ are defined as
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AðμÞ ¼ 1

l
coth ðμ=lÞ; and CðμÞ ¼ −

1

l
cosechðμ=lÞ: ðA6Þ

In addition, note that the covariant derivative acts on an arbitrary function fðμÞ as ∇ρfðμÞ ¼ f0ðμÞ∇ρμ ¼ f0ðμÞnρðx; x0Þ,
where the prime denotes the derivative with respect to the argument.

Using these relations we find

h∇ηAδðxÞ∇ρ0Aσ0ðx0Þi ¼ f1ðμÞgδσ0nηnρ0 þ f2ðμÞgδρ0nηnσ0 þ f3ðμÞgηρ0nδnσ0 þ f4ðμÞgησ0nδnρ0 þ f5ðμÞgηδnρ0nσ0
þ f6ðμÞgρ0σ0nηnδ þ f7ðμÞgδσ0gηρ0 þ f8ðμÞgηδgρ0σ0 þ f9ðμÞgησ0gδρ0 þ f10ðμÞnηnδnρ0nσ0 ; ðA7Þ

in terms of the functions fiðμÞ, which have the following expressions:

f1 ¼ α00 þ α0C; f2 ¼ Cðβ0 − βðA − CÞÞ − α0ðAþ CÞ;
f3 ¼ Cðβ0 − βðA − CÞÞ − ðAþ CÞðβC − αðAþ CÞÞ;

f4 ¼ CðβC − αðAþ CÞÞ þ d

dμ
ðβC − αðAþ CÞÞ;

f5 ¼
d

dμ
ðβA − αðAþ CÞÞ − AðβA − αðAþ CÞÞ;

f6 ¼ Aðβ0 − βðA − CÞÞ − ðAþ CÞðα0 þ βC − αðAþ CÞÞ;
f7 ¼ α0C; f8 ¼ AðβA − αðAþ CÞÞ; f9 ¼ CðβC − αðAþ CÞÞ;

f10 ¼ ð2C − AÞðβ0 − βðA − CÞÞ þ d

dμ
ðβ0 − βðA − CÞÞ: ðA8Þ

The two-point function involving the field strengths is now given by

hFηδðxÞFρ0σ0ðx0Þi ¼ ðf1 − f2 þ f3 − f4Þðgδσ0nηnρ0 − gησ0nδnρ0 þ gηρ0nδnσ0 − gδρ0nηnσ0Þ þ 2ðf9 − f7Þðgησ0gδρ0 − gδσ0gηρ0Þ:
ðA9Þ

Substituting the values of fiðμÞ, AðμÞ, and CðμÞ in the above we obtain (3.18).

APPENDIX B: THE GEODESIC DISTANCE

Here we will derive the expression for the geodesic distance in AdS3 as well as compute the unit vectors nμðx; x0Þ and
nμ0ðx; x0Þ. To find the geodesic distance, we consider the embedding of AdS3 in (2,2) Minkowski space with coordinates Ya.

The geodesic distance μðx; x0Þ is then given by

cosh ðμðx; x0Þ=lÞ ¼ −
1

l
2
ηabY

aðxÞYbðx0Þ: ðB1Þ

We use the Kruskal-like coordinates xμ ¼ ðU;V;φÞ such that

Y0 ¼ l
U þ V

1þ UV
; Y1 ¼ l

1 −UV

1þ UV
cosh ðrþφ=lÞ;

Y2 ¼ l
U − V

1þ UV
; Y3 ¼ l

1 −UV

1þ UV
sinh ðrþφ=lÞ: ðB2Þ

In terms of these coordinates, the geodesic distance μðx; x0Þ between points x and x0 is
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cosh ðμ=lÞ ¼ ð2ðUV 0 þ VU0Þ þ ð1 −UVÞð1 − U0V 0Þ cosh ðrþðφ − φ0Þ=lÞÞ
ð1þUVÞð1þU0V0Þ : ðB3Þ

It is now straightforward to compute the components of the unit tangents nρðx; x0Þ and nρ0ðx; x0Þ. We find

nUðx; x0Þ ¼
2l

sinh ðμ=lÞ
ðV 0

− V2U0
− ð1 −U0V 0ÞV cosh ðrþðφ − φ0Þ=lÞÞ
ð1þ UVÞ2ð1þU0V 0Þ ;

nVðx; x0Þ ¼
2l

sinh ðμ=lÞ
ðU0

− U2V 0
− ð1 − U0V 0ÞU cosh ðrþðφ − φ0Þ=lÞÞ
ð1þUVÞ2ð1þ U0V 0Þ ;

nφðx; x0Þ ¼
rþ

sinh ðμ=lÞ
ðð1 −UVÞð1 − U0V 0Þ sinh ðrþðφ − φ0Þ=lÞÞ

ð1þUVÞð1þU0V 0Þ : ðB4Þ

Likewise, components of the unit tangent nρ0ðx; x0Þ ¼ ∇ρ0μðx; x0Þ at x0 are

nU0ðx; x0Þ ¼ 2l

sinh ðμ=lÞ
ðV −UV 02

− ð1 −UVÞV 0 cosh ðrþðφ − φ0Þ=lÞÞ
ð1þ UVÞð1þ U0V 0Þ2 ;

nV 0ðx; x0Þ ¼ 2l

sinh ðμ=lÞ
ðU − VU02

− ð1 −UVÞU0 cosh ðrþðφ − φ0Þ=lÞÞ
ð1þUVÞð1þU0V 0Þ2 ;

nφ0ðx; x0Þ ¼ −
rþ

sinh ðμ=lÞ
ðð1 −UVÞð1 − U0V 0Þ sinh ðrþðφ − φ0Þ=lÞÞ

ð1þUVÞð1þU0V 0Þ : ðB5Þ

Setting x0 ¼ Jx, we find

nUðx; JxÞ ¼
2lðU − V3

− Vð1 − UVÞ cosh ðkπrþ=lÞÞ
sinh ðμ=lÞð1þ UVÞ3 ;

nVðx; JxÞ ¼
2lðV −U3

− Uð1 −UVÞ cosh ðkπrþ=lÞÞ
sinh ðμ=lÞð1þUVÞ3 ;

nφðx; JxÞ ¼ −
rþð1 − UVÞ2 sinh ðkπrþ=lÞ

sinh ðμ=lÞð1þ UVÞ2 ; ðB6Þ

and

nU0ðx; JxÞ ¼ 2lðV −U3
−Uð1 −UVÞ cosh ðkπrþ=lÞÞ

sinh ðμ=lÞð1þUVÞ3 ;

nV 0ðx; JxÞ ¼ 2lðU − V3
− Vð1 − UVÞ cosh ðkπrþ=lÞÞ

sinh ðμ=lÞð1þ UVÞ3 ;

nφ0ðx; JxÞ ¼ rþð1 − UVÞ2 sinh ðkπrþ=lÞ
sinh ðμ=lÞð1þ UVÞ2 : ðB7Þ

APPENDIX C: THE PARALLEL PROPAGATOR

In this Appendix we will analyze the behavior of the parallel propagator on the V ¼ 0 surface. The parallel propagator

gμν0ðx; x0Þ is a linear map which parallel transports vectors Vρ0ðx0Þ at the point x0 to VρðxÞ at the point x:

gμν0ðx; x0ÞVν0ðx0Þ ¼ VμðxÞ: ðC1Þ

The equation of motion for the parallel propagator can be obtained from the equation for parallel transport of a vector and is

given by
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d

dλ
gμν0ðx; x0Þ þ Γ

μ
νρ

dxν

dλ
gρν0ðx; x0Þ ¼ 0: ðC2Þ

It depends on the path xμðλÞ and has the following formal solution in terms of the path-ordered exponential [19]:

gμν0ðx; x0Þ ¼ P exp

�

−

Z

λ

λ0
Γ
μ
σν

dxσ

dλ
dλ

�

: ðC3Þ

In the following we will analyze (C2) for AdS3 in detail. The nonvanishing components of the affine connection are

listed as

Γ
U
UU ¼ −

2V

1þUV
; Γ

U
φφ ¼ −

r2þUð1 − UVÞ
l2ð1þ UVÞ ;

Γ
V
VV ¼ −

2U

1þUV
; Γ

V
φφ ¼ −

r2þVð1 −UVÞ
l
2ð1þUVÞ ;

Γ
φ
φU ¼ −

2V

1 −U2V2
; Γ

φ
φV ¼ −

2U

1 −U2V2
: ðC4Þ

The equation of motion (C2) for the parallel propagator now becomes

d

dλ
gUU0 −

2V

1þ UV

dU

dλ
gUU0 −

r2þUð1 −UVÞ
l
2ð1þ UVÞ

dφ

dλ
gφU0 ¼ 0;

d

dλ
gUV 0 −

2V

1þ UV

dU

dλ
gUV 0 −

r2þUð1 −UVÞ
l
2ð1þUVÞ

dφ

dλ
gφV 0 ¼ 0;

d

dλ
gUφ0 −

2V

1þUV

dU

dλ
gUφ0 −

r2þUð1 − UVÞ
l
2ð1þ UVÞ

dφ

dλ
gφφ0 ¼ 0;

d

dλ
gVU0 −

2U

1þUV

dV

dλ
gVU0 −

r2þVð1 −UVÞ
l2ð1þ UVÞ

dφ

dλ
gφU0 ¼ 0;

d

dλ
gVV 0 −

2U

1þUV

dV

dλ
gVV 0 −

r2þVð1 −UVÞ
l
2ð1þ UVÞ

dφ

dλ
gφV 0 ¼ 0;

d

dλ
gVφ0 −

2U

1þ UV

dV

dλ
gVφ0 −

r2þVð1 − UVÞ
l
2ð1þ UVÞ

dφ

dλ
gφφ0 ¼ 0;

d

dλ
gφU0 −

2

1 − U2V2

�

V
dφ

dλ
gUU0 þU

dφ

dλ
gVU0 þ dðUVÞ

dλ
gφU0

�

¼ 0;

d

dλ
gφV 0 −

2

1 −U2V2

�

V
dφ

dλ
gUV 0 þU

dφ

dλ
gVV 0 þ dðUVÞ

dλ
gφV 0

�

¼ 0;

d

dλ
gφφ0 −

2

1 −U2V2

�

V
dφ

dλ
gUφ0 þ U

dφ

dλ
gVφ0 þ dðUVÞ

dλ
gφφ0

�

¼ 0: ðC5Þ

The above equations need to be analyzed along the geodesic:

d2xρ

dλ2
þ Γ

ρ
ησ

dxη

dλ

dxσ

dλ
¼ 0: ðC6Þ

For the present case this becomes
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d2U

dλ2
−

2V

1þUV

�

dU

dλ

�

2

−
r2þUð1 − UVÞ
l
2ð1þ UVÞ

�

dφ

dλ

�

2

¼ 0;

d2V

dλ2
−

2U

1þUV

�

dV

dλ

�

2

−
r2þVð1 − UVÞ
l
2ð1þ UVÞ

�

dφ

dλ

�

2

¼ 0;

d2φ

dλ2
−

4

1 −U2V2

dðUVÞ
dλ

dφ

dλ
¼ 0:

ðC7Þ

We will now choose U to be the affine parameter.

Setting V ¼ 0 in the geodesic equation, we can easily

see that dφ
dU

¼ 0. Using this in (C5), we find that the term

Γ
μ
νρ

dxν

dλ
gρν0ðx; x0Þ vanishes identically and hence gρσ0ðx; x0Þ

is independent of U on the V ¼ 0 surface.
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