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Self-supporting wormholes with a massive vector field
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In this paper we consider a massive vector field in the background of a space-time obtained by certain Z,
quotient of the Banados-Teitelboim-Zanelli black hole. We analyze the backreaction of the matter field on
the space-time geometry up to first order in metric perturbation. The expectation value of the stress-energy
tensor can be computed exactly by considering its pullback onto the covering space. Upon a suitable choice
of the boundary condition on the vector field around a noncontractible cycle of the quotient manifold it is
possible to obtain the average energy on a null geodesic to be negative there by resulting a traversable

wormhole.
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I. INTRODUCTION

Wormholes are solutions to Einstein equations which
connect two otherwise distinct space-times or two widely
separated regions of the same space-time via a throat. In
classical general relativity wormholes are not traversable,
i.e., no causal curve can pass through the throat of the
wormhole connecting the two distinct regions. The issue of
traversability for static, spherically symmetric wormholes
has been discussed first in [1] where it has been pointed out
the need to have exotic matters for the wormhole to be
traversable. This matter has further been analyzed in [2—4]
substantiating the violation of average null energy con-
dition (ANEC) as the necessary condition for traversability
of wormhole. It has been proved that the ANEC holds for
achronal null geodesics [5-7]. Thus, space-times that
possess only achronal null geodesics do not admit travers-
able wormholes. These results have their origin lies in
the topological censorship theorem [8] and its generaliza-
tion to asymptotically locally anti—de Sitter (AdS) spaces
[9], which states that every causal curve whose end points
lie in the boundary at infinity (Z) can be deformed to a
causal curve which entirely lies in 7 itself.

An important breakthrough in this direction has recently
been achieved by Gao, Jafferis, and Wall [10] where they
have constructed a traversable wormhole from an eternal
Banados-Teitelboim-Zanelli (BTZ) black hole by introduc-
ing a time-dependent coupling between its two asymptotic
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regions. They have computed the one loop stress energy
tensor upon using the point splitting method. By choosing
the sign of the coupling appropriately, the vacuum expect-
ation value of the double null component of the stress
energy tensor can be made negative, enabling the wormhole
traversable. These results have subsequently been gener-
alized in [11] to see the effect of rotation on the size of the
wormhole. An eternal traversable wormhole in nearly AdS,
space-time has been constructed in [12] by introducing a
coupling between the two boundaries.

A traversable wormhole in four dimensions has been
devised in [13] by joining the throats of two charged
extremal black hole geometries in the presence of massless
fermions. This construction did not depend on any nonlocal
external coupling between the two boundaries and resulted
to what are called as the self-supporting wormholes which
arise entirely from local dynamics of the fermion fields
present in the bulk of the space-time. A complementary
analysis has been carried out in [14] to obtain traversable
wormholes from the bulk dynamics by considering a free
scalar field in quotients of AdS; and AdS; x S! by discrete
symmetries. The authors computed the gravitational back
reaction and showed that the space-time admits causal
curves that cannot be deformed to the boundary. Taking
quotient by a discrete symmetry is significant in the sense
that it no longer preserves the globally defined Killing field
which plays a key role in obtaining the average null energy
condition. This result has subsequently been generalized
[15] to include fermions in the bulk to produce traversable
wormbholes.

In the present work we generalize these above results in
the presence of massive vector fields. As has been noticed
in [15], adding spin-half fields provide a rich structure that
is worth studying in its own right. We will notice a similar
phenomenon in the presence of spin-one fields. In what
follows, we consider the pullback of the stress tensor on to
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the covering space. For AdS; it is possible to obtain an
exact analytic expression for the propagator in closed form.
Using this result we compute the expectation value of the
stress tensor and show that under imposing suitable
boundary conditions, this gives rise to traversable worm-
holes. The plan of the paper is as follows. The next section
summarizes the preliminaries on obtaining self-supporting
wormbholes from free scalar fields. In § III we obtain the
exact propagator in AdS;. Subsequently we compute the
expectation value of the stress tensor from this propagator
by using the method of images. The Appendix discusses
some of the technical details.

II. PRELIMINARIES

Consider the AdS; metric in Kruskal-like coordinates:

1

as? = ———
(14+UV)?

(—422dUdV + 2 (1 = UV)2dg?).
(2.1)

This gives rise to nonrotating BTZ black hole with horizon
radius r, upon imposing the identification ¢ ~ ¢ + 2z for
the azimuthal angle. The horizons of the black hole are
located at U = 0 and V = 0, respectively. The space-time
boundaries correspond to 1 4+ UV = 0. This solution has
been discussed from the perspective of gauge-gravity
duality in [16]. The issue of traversability in this geometry
has been analyzed first in [10] by considering a relevant
double trace deformation coupling the two boundaries.
This relevant deformation in the boundary conformal field
theory (CFT) amounts to adding a stress tensor in the bulk
resulting a perturbation of the space-time geometry.
Consider the V = 0 horizon which admits the horizon
generator k” such that k¥’0, = d;;. We choose U to be the
affine parameter which parametrizes the null geodesics
tangent to this horizon. The linearized Einstein’s equation
for the metric perturbation on the V = 0 horizon is given by

1 £?
) hUU+aU(UhUu)——2 a%]h(mo :87[GNTUU. (22)
20 ry

The geodesic equation for null rays originating on the past
horizon on the other hand gives rise to

1 U

(5]

The quantity AV(co) measures the time delay of the null
geodesic starting at U = —oo and ending at U = oco. The
wormhole becomes traversable if AV(co) < 0. This quan-
tity provides a measure for the size of the opening of the
wormbhole. Integrating (2.2) over U keeping in mind the
perturbation vanish at the boundary gives rise to

AV(co) = 872Gy / T dUT,y,. (2.4)

—0

Thus the wormhole becomes traversable if the ANEC is
violated. By choosing suitable nonlocal coupling between
the two boundaries it has been shown [10] that it is indeed
possible to violate the ANEC giving rise to traversable
wormbholes.

An alternative method has been developed in [14] to
construction traversable wormholes without invoking any
nonlocal boundary interaction. The authors considered a
suitable Z, quotient of the BTZ black hole space-time M.
The resulting geometry M is a smooth, globally hyperbolic
manifold, known as the RP? geon [17]. The Z, quotient
introduces a new homotopy cycle in the manifold M. One
can choose the scalar field in M to be either periodic or
antiperiodic around this cycle. The states in M are con-
structed from the states of the covering space M by the
method of images. This enables the average expectation
value in a suitable Hartle-Hawking like state of the double
null component of the resulting stress tensor to take
negative values along null geodesics.

Let J be the isometry which maps the point ¥ € M to J¥,
and the pair (X, JX) projects onto the point x in the quotient
M. The quantum fields ¢ (x) in M are constructed from
the quantum fields ¢(X) in M using the method of images:

_ y

¢+ (x) 7 (@(%) £ $(J%)). (2.5)

The pair of points (¥, J¥) are spacelike separated in M, and
hence the fields at these two points commute with each
other. Thus, the fields ¢, (x) satisfies the usual canonical
commutation relations and describe well-defined quantum
fields in M.

We consider free scalar field ¢, (x) in M for which the
action is given by

1 1
S = / d3x\/—g<—§g“”8ﬂ¢i8y¢i — §m2¢i>, (26)
with the corresponding energy-momentum tensor

1
Tﬂyi = aﬂ¢iay¢:t _Egﬂl/ (gaﬂaaqﬁiaﬂd)i + m2¢i) . (27)

The Hartle-Hawking state |HH, M) in the covering space
M induces corresponding states |HH, &) in M. We need to
compute the expectation value of the double null compo-
nent of the stress tensor (HH, £|T,, k*k*(x)|HH, £) in the
Hartle-Hawking states |HH, £). It is most convenient to
compute this by considering the pullback 7%, (%) in M of
the stress-tensor 7, (x):
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(HH, +|T,, . k"k*(x)|HH, +)

= (HH,M|T? _k"k*(x)|HH, M). (2.8)

It is important to note that 7}, () is not the stress-tensor of
a free quantum field ¢(%) in M. Since the Hartle-Hawking
state |HH, M) is invariant under the Killing symmetry,
the expectation value of the stress tensor TW(SC) in this
state vanishes. This is because, the expectation value of
&&T,, (%) is invariant for a Killing vector &. If & becomes
k* on the horizon then this quantity vanishes on the
bifurcation surface, and hence the expectation value of
the double null component of the stress tensor for the
covering space must vanish identically. However, this need
not be the case for the pullback 7%, (%), as this quantity is
not preserved by the Killing symmetry. A straightforward
analysis gives rise to

Th Kk (%) = T, k'k* (%) + k0, (X)k 0, (J%).  (2.9)
Thus, we have
(HH, £|T,, . k*k*(x)|HH, £)
= £(HH, M|k*0,¢(x)k*0,¢(J%)|HH, M). (2.10)

Hence, if the expectation value on the right-hand side is
nonzero, we can always choose appropriate boundary
condition to make it negative. This has been computed
for various smooth, globally hyperbolic, Z, quotients of
BTZ and BTZ x S' space-times [14]. The results have been
used thereafter to show the violation of ANEC.

III. THE MASSIVE VECTOR FIELDS

We will now consider the case of an Abelian vector field
of mass m with the action

1 1
S = /d3x1/—g<—zg“/jg””FWFﬂy —zng’“’AﬂAy)
(3.1)

As in the case of scalar fields, we can use the method of
images to set the vector field A,(x) in M, in terms of the

corresponding fields Aﬂ (%) in the covering space M as

1
7

The (£) sign in the superscript correspond to the choice of
periodic or antiperiodic boundary condition on the vector
field A,(x) around the nontrivial homology cycle y. The
above setting will give rise to a well defined quantum field
in M for spacelike separated points (¥, X'). Here we will set

Af(x) =

(Au(®) £ Ay (F)). (3.2)

% = J#. The pair of points (¥, JX) in M maps onto the point
X € M under the action of Z,.

The stress tensor corresponding to the action (3.1) is
given by

T (x) = g*F (fﬂF/i + m*ALAf

1 1
~ G (1 979 FopFjo +5m g“/”A(fA,?) (3.3)

The last term in the above equation does not contribute to
the double null component of T,,. Hence, we will ignore
this term now on. The pullback of the first two terms into
the covering space M gives rise to

kI T (x) = l(kﬂva J(X) + KTy (%))
=5 {( (%, fc) Fou (K Fy ()
+g“ﬁ(x Xk F oy (X)) k4 F iy, (%))

m(k"A() Ay(®)

+ kA (X)KA, (%))} (3.4)

Here Tﬂy(fc) is the stress tensor corresponding to the gauge
field A, (%) in . The expectation values of T, (x) in the

states |[HH, £+) become

(HH, £|k" kT, (x)|HH., £)
= +{(HH, M|(¢" (&, %)k F o, (X)k* Fy, (X)) |HH, M)
+m*(HH, M|(k*A,(X)kV A, (X)) | HH,M)}. (3.5)

The expectation value (HH,M|k*k*T,,(X)|HH, M) van-
ishes because of symmetry as argued in the previous
section. Again, as in the scalar field case, we can impose
appropriate boundary conditions on the vector field to
make the null energy negative provided the right-hand side
in (3.5) does not vanish.

A. The propagator

From the above analysis we find that, in order to verify
the ANEC, we need to compute the expectation values
(HH. 8|3, (3)A, (¥) | HH.5) and (HH J1|F ,,(X) Fy, (¥
|HH,M) in the covering space M. The manifold M itself
can be obtained upon taking the quotient of AdS; with
the identification ¢ ~ ¢ + 2z. Thus, we can derive these
quantities from the vector two-point function in AdS;.

The vector two-point function in AdS,, in arbitrary
dimensions has been computed in [18]. In the following
we will briefly outline the relevant parts of their results for
our purpose. Denote A, (x) to be the massive vector field in
AdS,,. The two-point function Q,,,(x, x") = (A,(x)A,(x'))
evaluated on the vacuum is a maximally symmetric bitensor
in AdS,.. On general grounds it can be express as
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Qo (v.3') = () g (.X') + Bl (2.3 mp (. ).
(3.6)

Here p(x,x’) is the geodesic distance between the points
x and X', the unit vectors n, and n, are the covariant
derivatives of u with respect to x* and x%, respectively:

Mo d) = Vou(x.).  ng = Veu(x.x). (37)
and g, (x, x') is the parallel propagator along the geodesic
joining x and x’. This quantity is uniquely defined as the
linear map which parallel transports vectors along the
geodesics. The equation of motion for the parallel propa-
gator can be obtained from the equation for parallel
transport of a vector and is given by

dx?

d ,
/ ’ F’:/l
— ¢y, X))+ 7

7 ¢y (x,x)=0. (3.8)

The functions a(u) and f(u) in (3.6) are determined by
requiring that Q,,/(x,x") satisfies the equation of motion
and by examining its singularity structure. They, in turn, are

determined in terms of a function y(u) as

=0 sinh (u/€)y' (i) + cosh (u/€)y ().

The function y(u) is expressed in terms of hypergeometric
functions

(3.9)

v(z)=rz%F(ay,a, —c+ l;a, —a_+1;z7"), (3.10)

with z = cosh? (u/2¢). The parameters a, and c are
given by

2a; = (n+1)+/(n=3) +4m2,  and

2c=n+2. (3.11)
The normalization factor r is given by

- (1-n)(a)l(a, —c+1)
2 g 22T (ay —a_ + 1)

(3.12)

For AdS; the expression for y(z) takes the form
2(m¢ + 1)
m2f3ﬂ(4z)mf+2

2mé + 1;z7h).

y(z) = F(m¢ +2,m¢é +1/2;

(3.13)
This hypergeometric series can be summed to obtain an

exact analytic expression in closed form for the function
y(z). We find

1 (2z—1+42ml\/z(z—1))

r(z) :_16”m2f3 Z3/2(Z_ 1)3/2(\/Z+~/Z— 1)2mg-

(3.14)

As expected, this quantity has the usual singularities at
z=20, 1 and branch cut along the real axis for z < 1.
Substituting z = cosh? (u/2¢), we find y(z) as a function
of y has the simple expression:

1 e—m;l(x,x’)

" 2mm? A3 sinh (u/£)

y(u)= (cosh (u/2) +me sinh (u/€)).

(3.15)

Substituting the above for y(u) in (3.9), we find that the
two-point function for the massive vector field A,(x) in
AdS; has the form

(As(x)Ay (x)) = a(u)gsy (x.x) + pu)ns(x, X )ny (x,x')
(3.16)

where the functions a(u) and B(p) are given by

—mpu(x,x")
alu) = Zm;iizﬂcosech(y/f)(mzfz + mé coth (u/?)
+ cosech?(u/?)),
—mpu(x,x")
Blh) =5 cosech(u/ ) coth (/)
x (m¢ + 2cosech(u/¢)) + (m€ + cosech(u/€))?).
(3.17)

Using the techniques involving bitensors developed in
[18] the two-point function involving the field strengths can
be calculated from the above in a straightforward manner.
Some of the intermediate steps are outlined in Appendix A.
We find

<Fr75(x)F/1’6' (x/)> = mzﬂ(ﬂ)(gﬁa’nnnp' = Gpe' 5Ny

+ Gnp' 5N’ — g&p’nnna/)

+ mzy(/’l) (gnn’gép’ - gﬁo”gnp’)' (3 1 8)
Here as an aside we note that

, 1+ 2cosh (u/?)

1 2 =+ 7 d
kv Pl 4n3sinh® (u/€) an

) cosh (u/?)

1 2 - 3.19
i 7) 2723sinh’ (u/¢) (3.19)

Thus, although the right-hand side in (3.16) diverges in the
limit m — 0, the two point function involving the field
strengths as given above is well defined. We will now turn
our attention to the quantity of interest for our purpose.
From (3.18) we find
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(g7 Fos(x)F o (x)) = m*B(u) (s = gsy) = 2m%y (1) g -

(3.20)
Combining the above with (3.16) we find
(g7 F s (X)F yor (x') +mPAs(x) Ay (x')))
:2m2ﬁ(,u)n5n6/ _mzy(/")g&r’- (321)

B. The average null energy

We will now compute the average null energy. We
consider the nonrotating BTZ black hole geometry. The
metric is given by

1

as? = ———
(14+UV)?

(=42%dUdV + 12 (1 — UV)*d¢?).
(3.22)

The coordinate ¢ is periodic with the identification
@ ~ @ + 2x. The RP? geon [17] is obtained upon taking
the quotient of this geometry with the Z, isometry J which
acts on the co-ordinates as J: (U,V,p) » (V,U, ¢ + x).
The resulting space-time is a time-orientable manifold
with constant time hypersurfaces of topology RP?\
{point at infinity}. It gives rise to a black hole with a
single exterior and is locally identical to the BTZ geometry.

|

cosh (u/¢) =

UV +VU') + (1 = UV)(1 = U'V') cosh (r, (¢ = ¢')/£))

The two-point function in the Hartle-Hawking state of
the BTZ black hole is obtained from the corresponding
two-point function in AdS; vacuum by using the method of
images with periodic boundary condition. Thus, to get the
two-point function we replace ¢’ by ¢’ + 2zn and sum over
all integer values of n:

(A, (0)Az () = D (alp(x. %)) gpo (%, x7)

+ Bulx, X)) m, (6,0, )ng (x, x,)).
(3.23)

where xj, = (U', V', ¢},) with ¢}, = ¢/ + 2zn. From now
on, we evaluate the expectation values in the Hartle-
Hawking state. For the RP? geon ¢ = ¢ + 7 and hence
¢, = @+ (2n + 1)x. Likewise, we have [with F(x,x')=
(2ﬁ(ﬂ)n5n(r’ - },(/’l)g&r’)]:

(g7 Fps(0)F o () +mPAs(x)Ag (x))) = > _m*F(x.x}).

nez

(3.24)

To compute the above, note that the geodesic distance
u(x, x') between points x and x’ in AdS; is given by

(1+UV)(1+U'V)

. (3.25)

It is straightforward to compute the unit vectors n,(x, x’) and n,,(x, x’) from the above expression. This has been carried out

in Appendix B. On the V = 0 surface, they have the form

2¢ roo.
n, = Sinh (4/7) (U, —U3 — Ucosh (knr, /?), —i;smh (kﬂr+/f)> .
=d U — Ucosh (kar, /¢), U, -~ sinh (kzr, /) (3.26)
;] = — —_— r - r . .
"W = Sinh (u/£) Tle) 0 T
We now need to compute the parallel propagator g(x, Jx) 22 0 0
on the V = 0 surface. We can choose U to be the affine g(x. x|y = 0 222 0 (3.28)
parameter along the geodesic. Now, analyzing the equation =0 0 0 2
+

of motion for the parallel propagator (3.8) it can be shown
that the components g,/ (x, x’) are independent of U on the
V = 0 surface (see Appendix C for the derivation). Since
the tangent vectors n,(x,x’) and ny(x,x’) are oppositely
directed, we must have

Gop (x. )P (x, %) 4 n,(x.x') = 0. (3.27)
By requiring g,/ to satisfy the relation, this can be used to
find

For easy reading, we introduce the notation 7(U) to
denote the null energy:

T(U) = <k§k6,<gnp,Fn5(x)F/)’o-’ (xl) + mzAﬁ(x)Aa’ (X/>)> -Y‘//::JO)"
(3.29)

Note that, &” is the horizon generator on V = 0. Thus, we
must have ¥ = (1,0,0). Now, substituting (3.21), (3.26),
and (3.28) in the above equation, we find
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NO06F +
LT
] _ U—
-15 -10 ~0.5 0.5 10 1.5

FIG. 1. Variation of T(U) as a function U for m = 0, 1, and 2
respectively. We have set £ =1 and choose r, = 1/2z. The
maximum value of 7(U) decreases with increasing m.

B Bluo) U
T(U) = 8m2fzm,

where we denote  to be the geodesic distance u(x, Jx) on
V = 0. Introducing the variable u = 2U? + cosh (zr, /¢)
we can express the above as

(3.30)

T(U)= (u—cosh(zr,/?))
" (14 2u+mt(u+2)Vu* —1+m?>c*(u*> - 1))
7t (u? — 1) (u+ \/uz——l)mf

(3.31)

Clearly, the function 7(U) is symmetric about U = 0. It
can also be easily verified that it vanishes at U = 0 as well
as in the limit U — $oo, and is positive definite for all
other values of U. A sketch of T(U) for different values of
the parameters is depicted in Fig. 1.

We now turn our attention to the average null energy
for the RP? geon. Here we need to sum the contribution

08|
'n

061

N4t

02}

- 1) n -

L : H 2 ; 3 —=% L & P . "
4 6 8 10 12

FIG. 2. Variation of ¢, with respectto n for r, = 1/12z,1/10z,
and 1/87, respectively. We have set m = 0 and # = 1. The values
of ¢, for a fixed n decrease with increasing r .

from all the images as described in (3.24), with (¢ — ¢},) =
(2n + 1)z. Since T(U) is positive definite, we need to
choose antiperiodic boundary condition for the vector field
A,(x) in the quotient space in order to violate the ANEC.
The average null energy is now given by

(T) ==Y tu,

nez

(3.32)

where 7, is defined as (with ¢, = cosh ((2n + 1)zr,/?)):

tn:2/mdu (u—cy)

(1 4+2u+mé(u+2)Vu? =1+ m?>*(u> - 1))
wt (=12 (u+ V2 = 1) '

X

(3.33)

The integration can be exactly evaluated for certain
specific values of the parameters to express it in terms
of elliptic functions. The result is not in particular
illuminating. We will instead evaluate it numerically.
Without loss of generality we will set the AdS radius ¢ to
one. The values ¢, for different choices of m and r, are
depicted in Figs. 2 and 3.

From the numerical analysis we can see that the value of
t, drops rapidly for large n and the series (3.32) indeed
converges quickly. In the following we will prove the
convergence analytically. Note that we can express f, as

2 [ Ju—-c
t,=— duf(u)~5——>=, (3.34)
zt J., u-—1
with
A
025t |
\ i
020}
015}
o0}
005} 4
e =N i
4 6 8 10 12
FIG. 3. Variation of ¢, with respectto nform = 1/2,1,and 3/2

respectively. We have set r, = 1/8z and # = 1. The values of 7,
for a fixed n decrease with increasing m.
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(14 2u +mt(u+2)Vu? =1+ m**(u? = 1))

flu) = 2 = 12 (u+ Vi — 1)

(3.35)

Now, observe that, for any given r, > 0O, there exists
an integer N such that the function f(u) as defined above
takes value in the range 0 < f(u) < 1 for u > cy, for all
m¢ > 0. As a consequence of the above, if we introduce

- 2 [ u—c
t, =— du .

ﬂf Cll

, (3.36)

we find 7, > 1, for all n > N. The integration in (3.36) can
be evaluated exactly to find

(3.37)

. :%(\/cn+1—\/cn—l>.

Substituting ¢, = cosh ((2n + 1)zr, /) in the above we
find that

hm [n—+1 — e_”rJr/f
n—oo ?n

(3.38)
Thus, the series Y % , 7, converges forany r, /£ > 0. Asa
consequence, the series » % , 7, as well as the one given in
(3.32) converges, giving rise to a finite value for AV(co).

From the numerical analysis we find that, for a fixed
value of r, the opening of the wormhole is maximum when
the mass of the vector field saturates the Breitenlohner-
Freedman bound. The size decreases as we increase m and
the wormhole closes in the limit m — oo. Similarly, for
fixed m the opening decreases as we increase the value of
r... The size of opening remains finite for finite values of m
and r,. This is in contrast to the case of scalar fields [14],
where the average null energy diverges and one needs to
adopt a regularization process to get a finite size of the
opening of the wormhole.

IV. CONCLUSION

In this paper we have discussed the issue of traversability
of wormholes in a quotient of the BTZ space-time by
certain Z, symmetry in the presence of massive vector
fields. We have obtained the expression for the two-point
function of the vector fields in AdS;. Using this we have
computed the average null energy and found that it
becomes negative for appropriate choice of boundary
conditions on the vector fields. The backreaction on the
geometry then makes the wormholes traversable. It would
be interesting to extend our analysis for quotients of BTZ as
well as BTZ x S' geometries by more general discrete
symmetries as well as study the effect of rotation on the

traversability. It is also worth generalizing this to study the
traversability of wormholes in the presence of higher spin
fields. Similar analysis can be carried out for higher
dimensional black holes as well. More generally, recent
studies have shown that the Euclidean wormholes play a
significant role in giving a new perspective on the infor-
mation loss paradox. It would be interesting to see whether
the issue of traversability in Lorentzian wormholes such as
the ones studied in the present work shed any light on this
problem.
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APPENDIX A: THE TWO-POINT FUNCTION

In this Appendix we will derive the two-point function
involving the field strengths corresponding to the gauge
field A,(x) in AdS;. Consider the Green’s function

(x, X )y (x, x).

(A1)

(A4 ()Ay () = alu) gy (x.X) + B(u)n,

The expressions for a(x) and B(u) have been derived in
(3.17). For maximally symmetric spaces, the parallel
propagator g, (x,x') along the geodesic joining x’ to x'
is unique. It has the following properties:

G (x.X') = g, (x) for x' = x, (A2)
G (X, X') = gy, (X', x), (A3)
G (X) = G (6, X) g (2, %) 7 (). (A4)

We need to evaluate (F,s(x)F,,(x')). Let us first
compute (V,A;(x)V, Ay (x")). In order to do so, we need
to know the action of the covariant derivative on bitensors.
This has been worked out in general for arbitrary dimen-
sions in [18]. In the following we will list the formulae
relevant for our purpose:

Vg (x,x') = A(u) (G0 (x) = 1, (x, ' )ng(x, '),
Vg (x,x') = C(u) gy (¥, 8) + 1, (x, X )1 (x, X)),
Voo (%, %) = =(A() + C(1))(gpo (x)my (x, X')

+ Gouy (%, X )15 (x, X)), (AS)

and analogous expressions for the derivatives with respect
to V. The functions A(x) and C(u) are defined as

126016-7



ANKIT ANAND and PRASANTA K. TRIPATHY PHYS. REV. D 102, 126016 (2020)

Alp) = %coth (u/€), and C(u)= —%cosech(,u/f). (A6)

In addition, note that the covariant derivative acts on an arbitrary function f(u) as V,f(u) = f'(u)V,u = f'(u)n,(x,x'),
where the prime denotes the derivative with respect to the argument.
Using these relations we find

<vr]A5(x>v/)'Aa’ (xl)> = fl (ﬂ)gﬁa’nnn/}’ =+ f2 (M)gép’nnna’ + f3 (Iu)gnp’néna’ + f4(ﬂ)gr/6’n5np’ + fS (/’t)gnénp’na’

=+ f6 (ﬂ)gp’a’nnné + f7 (M)géa’gnp’ + f8 (/’t)gnégp’a’ + f9 (/")gna’gép’ =+ flO(/")nnnénp’naU (A7)

in terms of the functions f;(x), which have the following expressions:
fi=d"+adC, f2=C(F -pA-C))-d(A+C),
f3=C(F=p(A-C))—(A+ C)(pC - a(A +C)),

fa= C(PC—a(A +C) +d%(ﬁc —a(A+C)).

fs = di;(ﬂA —a(A +C) — A(BA - a(A + C)).

Je=A(B -p(A-C)) = (A+ C)(d +pC —alA +C)),
fr=2dC, fs =A(PA—a(A +C)), fo=C(BC —a(A+ (),

d
fro= (2C—A)(ﬂ/—ﬁ(A—C))+d—ﬂ(ﬂ’—ﬂ(A—C))- (A8)
The two-point function involving the field strengths is now given by

<F175(x)F/)’rf (x/)> = (fl - f2 + f3 - f4)(g(36’nr]n/)’ = Gyo' NsTy + Gyp' NsNe — gﬁ/)’nnnﬁ’) + 2(f9 - f7)(gn(ﬂgﬁp’ - gﬁry’gn//)'
(A9)

Substituting the values of f;(u), A(u), and C(u) in the above we obtain (3.18).

APPENDIX B: THE GEODESIC DISTANCE

Here we will derive the expression for the geodesic distance in AdS; as well as compute the unit vectors n,(x, x’) and

n, (x,x"). To find the geodesic distance, we consider the embedding of AdS; in (2,2) Minkowski space with coordinates Y.

The geodesic distance u(x,x’) is then given by
1
cosh (u(x. &)/ €) = = 51 Y (X)Y" (x'). (B1)

We use the Kruskal-like coordinates x* = (U, V, @) such that

U+V 1-Uv
PW=r2"" yl=¢ h(r 0/f).
1+ov T gy oshe/?)
Uu-v - UV
Y2=¢ . Y =¢ inh (r, /7). B2
1+ oV gy S (ree/?) (B2)

In terms of these coordinates, the geodesic distance u(x, x’) between points x and x’ is
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UV + VU + (1= UV)(1 = U'V)cosh (r, (¢ = ¢')/£))

cosh (u/¢) = 1+ UV)(1+ UV (B3)
It is now straightforward to compute the components of the unit tangents n,(x, x’) and n, (x, x"). We find
) 26 (V =V2U' = (1= U'V')Vcosh(r (¢ —¢')/¢))
nyglx,x )=
v sinh (u/?) (1+UV)2(1+ UV ’
(x.) 20 (U -U>V' —(1=UV)Ucosh(r (p—¢')/t))
ny(x,x') == .
v sinh (u/?) (1+UV)2(1+ UV
: ro  ((A=UV)( = U'V)sinh (r (¢ - ¢')/7))
= . B4
ny (5 X) = SR al ) 1+ Uv)(1+ UV (B4)
Likewise, components of the unit tangent n, (x,x’) = V u(x,x") at x’ are
(x.x) = 20 (V—=UV?—-(1-UV)V'cosh(r (p—¢)/?))
Ny (X, X ’
v sinh (/) (1+UV)(1+U'V')?
p (') = 20 (U-VU?-=(1-UV)U cosh(ry(p—¢')/?))
v sinh (u/?) (1+UV)(1+U'V')? ’
: re  ((1-UV)(A - UV)sinh (r, (¢ —¢')/7))
(x,x) = —— . BS
Ny (X )C) sn]h('u/z,”) (1+UV)(1+U/V/) ( )
Setting x’ = Jx, we find
2£(U - V3 = V(1 =UV)cosh (kar,/?))
’J - . b
ny (%, J%) sinh (4/£)(1 + UV)?
26(V-U3—U(1 - h
(3, Jx) = Z(V-U . U(1 —UV)cos 3(k7rr+/f))’
sinh (u/2)(1 + UV)-
r.(1=UV)?sinh (kzr, /?)
7J - - . 5 B6
(. Jx) sinh (u/Z)(1 + UV)? (B6)
and
20(V—U? -=U(1 = UV)cosh (krr,/¢))
(X, Jx) = : .
o (¥, J) sinh (4/€)(1 + UV)?
—V3= -
(3, Jx) = 20(U-V . V(1 — UV)cosh (kﬂr+/f))’
sinh (u/€)(1 + UV)?
1 — UV)?sinh (k 4
ny(x, Jx) = r( ) sinh (kzr. /?) (B7)

sinh (u/£)(1 + UV)?

APPENDIX C: THE PARALLEL PROPAGATOR

In this Appendix we will analyze the behavior of the parallel propagator on the V = 0 surface. The parallel propagator
g (x,’) is a linear map which parallel transports vectors V' (x') at the point x’ to V”(x) at the point x:

9w (Lx,)vy/ (X’) = Vﬂ(x)' (Cl)

The equation of motion for the parallel propagator can be obtained from the equation for parallel transport of a vector and is
given by
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d
dﬂgv(xx) Iy, dﬂg"y(xx) 0. (C2)

It depends on the path x#(4) and has the following formal solution in terms of the path-ordered exponential [19]:

/ 4 M dxg
¢, (x,x') =Pexp | — I, —dl). (C3)
o di

In the following we will analyze (C2) for AdS; in detail. The nonvanishing components of the affine connection are
listed as

v 2V v U1 -UV)
oy == > o0 = T 20 L rnn
1+ UV C(1+UV)
o 2 y . riv(-uv)
W i+ ov? w2+ Uv)
2V 2U
Tw=-1"pve Tw="1pne ()

The equation of motion (C2) for the parallel propagator now becomes

d , o AU, AU(I-UV)dg
— gy - — Vv 24 9"y =0,
di 1+ 0V di 20 +uov) di’?
d ., 2 au U(l—UV)d_(pg¢
27V T1irovan ! VT Aarov) il
4w 2V dU,  rU0-UV)dp L, =0
297 Trovant T f2( rov) i’ ’
d W av, AVI-UV)de
a gy, =Y =0,
a9V T Trovant 52(1+UV) alv
d, 2w av, V(l—UV)d_(pgq)
27V T Trova? VT Aarovy it
i v 2U dl v r+V(1—UV)d(p 0, =0,
29 " 1rovar? YT 0 +UV) d/lg

d 2 do e do

— - - U-—L V _

i 1—U2v2< advtUg )

d 2 d(p do

g, - = U U \%4 —

a2y 1—U2v2( a? v amgVJr )

d 2 do do

Ly —— (v, ULy Cs

a7 1—U2V2< ad et et ) (5)

The above equations need to be analyzed along the geodesic:

d?x? p dx"dx°

w2t g =0 (Co)

For the present case this becomes
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;U 2V <dU>2 AU -UV) (d_(p>2 o

a2 1+0v\di) (1 +uv) \di
&vo2u (d_v>2_riv(1—UV) (d_go)Z_O
a2 1+UV \di 21+ UV) \di ’
dz(p_ 4  dUV)dey 0
d? 1-UV? di di
(C7)

We will now choose U to be the affine parameter.
Setting V =0 in the geodesic equation, we can easily
see that j—;’} = 0. Using this in (C5), we find that the term
I, = ¢/ (x, x') vanishes identically and hence ¢, (x, x)
is independent of U on the V = 0 surface.
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