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half-space. The ground motion is caused by buried sources described in terms of unit
impulsive force and micro-moments. Closed-form analytic expressions for both plane
strain and anti-plane strain conditions are established. In the sequel, Green’s functions
for reduced micro polar half-space where the couple stresses are zero and the stress tensor
is nonsymmetric are also presented. Numerical results are presented for anti-plane strain
case. The derived expressions can be used to simulate rotational and displacement
components of ground motion during earthquakes.
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1. Introduction

The dynamic response of an elastic half-space due to buried seismic sources has been a subject of great interest to seis-
mologists and engineers for computing the surface ground motion. Beginning with the pioneering work of Lamb [1] on elas-
tic waves generated by line sources, several articles on ground motion simulation in layered elastic media have appeared in
the technical literature [2-6]. In these studies, analytical expressions for three translational components have been derived
based on classical continuum mechanics theory. These analytical models are widely used for investigating the interior struc-
ture of the earth as well as earthquake source process through modeling of the recorded strong motion data [7,8].

On the other hand, studies on rotational components of ground motion and its effects on engineering structures are still
not clear. The difficulty in measuring rotational components is mainly due to lack of technology in the strong motion devices
to observe such small rotations in wide frequency band and distance range. However, there have been many reports about
rotation of obelisks, grave stones and buildings during past earthquakes [9,10]. Many structural failures and much of the
damage caused by earthquakes have been attributed to rotational ground motions [11]. There have been evidences during
the past earthquakes and theoretical studies also show that contribution from rotational excitations reaches almost 50% of
the total response. Recently, with modern acquisition technology such as fiber-optical or ring laser gyros, it has become
possible to measure rotational motions during earthquakes. Takeo [12] recorded near-field rotational ground motion for
several events during earthquake swarm in Izu peninsula, Japan. Igel et al. [13] and Suryanto et al. [14] obtained rotational
time histories at teleseismic distances for M,, 8.1 Tokachi-Oki (2003) and M,, 6.3 Al Hoceima, Morocco earthquake (2004).
There have been efforts in the past to develop mechanistic models for computing rotational time histories. Bouchon and
Aki [15] simulated rotational ground motions in the near-field due to buried strike-slip and dip-slip faults in the layered
medium. The rotational components induced by seismic waves are obtained from the space derivatives of the displacements.
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The simulated rotations were small compared to the amplitude of the translational components. Takeo [12] simulated
rotational ground motions based on the classical continuum mechanics and compared them with the recorded rotational
velocities of M,, 5.7 magnitude earthquake in Izu peninsula, Japan. These results showed that the recorded rotations are
several times larger than the simulated rotations computed from linear displacements. These differences have been attrib-
uted to the internal structure and discontinuities in the earth’s crust. In order to get reliable estimates of rotations, one will
have to model the microstructure of the medium itself as correctly as possible. In this regard, the linear theory of micropolar
elasticity developed by Eringen [16] will be a suitable tool in simulating all the six components of ground motion. In the
micropolar continuum theory, deformation is described not only by the displacement vector u but also by the rotation vector
¢, which characterizes the micro-rotation of the particle. Kulesh et al. [17-19] and Grekova et al. [20] studied wave
propagation in isotropic full and reduced Cosserat half-space. In this article, closed-form analytical expressions for the
Green’s functions in a two-dimensional micropolar medium are established. A spatial and temporal Fourier transform is used
for solving the governing equations of motion. Analytical expressions are derived for the displacement and rotational
components at the ground surface.

2. Basic equations of linear theory of micropolar elasticity

In continuum theories, a physical body B is considered to be a collection of a set of material particles. The motion of each
material particle is described by a position vector identifying the location of each particle as a function of time. The number
of degrees of freedom associated with each material point in classical continuum theory is three. In microcontinuum
theories, it is assumed that there is a micro-structure around each material point which can deform and rotate indepen-
dently from the surrounding medium [21]. The intrinsic deformation of a material particle is represented by a geometrical
point and some deformable vectors, known as directors attached to the point that denotes the orientations and intrinsic
deformations of the material particle. By increasing the number of directors attached to the material point, higher order
microcontinuum theories can be derived. If the number of deformable directors is three, the material body is known as a
micromorphic continuum. The number of degree of freedom associated with each material point in a micromorphic contin-
uum is twelve. Assuming rigid directors, the degree of freedom at each material point reduces to six and the body is known
as micropolar continuum. In the micropolar continuum theory, deformation is described by the displacement vector u and
the rotation vector ¢, which characterizes the micro-rotation of the particle [22]. The equations of motion for micropolar

elastic solid are
gjij + pXi = pil,
Mjij + &+ JYi = ],

(1)

where oy, m; are the stress and couple-stress tensors respectively. my is the body force per unit mass and Y; is the body
couple per unit mass and p is the density of the medium. | is the parameter describing the rotational inertia of the medium.
& denotes the unit anti-symmetric tensor. The kinematic relations for infinitesimal strain (€;) and curvature twist (¢;)
tensor are expressed as
€j = Uji + ki Py,
@i = jis
The linear constitute laws for an isotropic micropolar elastic solid are
gjj = ;tekkéij + (,Ll + K)ij + Usji,
My = 0Py di + PPy + VPji,
where Jj, is the Kronecker delta, 2 and p are the Lame’s constants respectively. o, §, y and x are the four new constants

describing the microstructure medium. For internal energy to be a positive quantity, the six elastic constants has to satisfy
the condition

(2)

3)

324+2u+xk =20, u=0 x=0, @)
304+p+y=0, y>=>0, y=0.

By eliminating oy, my, @; and €; using Egs. (2), (3) and (1), we obtain a system of six coupled equations of linear
micropolar elasticity expressed in vector form as

2
chV~u—c§Vxqu+J¥Vx¢—ﬁ:O,
(5)
2 .
C§VV-¢fcﬁVxVx¢+%qufw§¢f¢:0,
where ¢, ¢y, c3, ¢4 are the wave velocities
2 _AH2AK 5 PAK o 0HBry o 7 o 2K
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It can be observed that, when x = 0 the governing equations for displacement and microrotation become uncoupled. In
this case, Eq. (5a) reduces to the displacement equations of motion of the classical elasticity. Eq. (5b) represents a hypotheti-
cal body in which only rotations occur.

3. Plane waves in an infinite micropolar elastic solid

In classical elasticity, two types of waves namely longitudinal and shear waves exist in an infinite medium. In micropolar
theory, the microstructure of the medium reveals new types of waves not encountered in the classical continuum mechanics.
According to Helmholtz decomposition, the field equations (Eq. (5)) in a micropolar elastic medium can be simplified by
separating the displacement and microrotation components into potential and solenoidal parts in the following form

u=vVq+Vx¥, V-¥=0, (7)
p=Vi+Vx®, V.O=0. (8)

By substituting the above equation in Eq. (5) and in absence of body forces and couples we obtain the following system of
equations

iv’q-4=0, )
AVE-wie-E=0, (10)
QWW+¥§Vx¢—®:Q (11)
ﬁWm—%®+¥wa—®:0 (12)

It can be observed that the equations for vector potentials ¥ and @ are coupled. Following Parfitt and Eringen [23], the
plane waves advancing in the positive direction can be expressed as

{q,¢, ¥, ®} = {a,b,A,B} explik(n - r — vt)], (13)

where a, b are complex constants. A, B are complex constant vectors, k is the wave number, v is the phase velocity and n is
the unit normal vector. Substituting q from Eq. (13) in Eq. (9) and using Eq. (7), the displacement vector can be obtained as

u = ikjanexplik;(n - r — v;t)), (14)
where
v%:;“+25+x. (15)

It can be noted from Eq. (14) that the displacement of the particles is in the same direction as that of waves traveling at
velocity »;. Such a motion represents a train of longitudinal waves. These waves are similar to the dilatational waves
encountered in the classical continuum mechanics. Similarly substituting the expression for ¢ from Eq. (13) in Egs. (10)
and (8) yields

¢ = V& =ikbnexpliky(n-r — v,t)], (16)
where the velocity of these waves can be expressed as
B 2T (17)
ol(1-755)
It can be observed from Eq. (16) that the microrotation vector points in the direction of propagation of waves. These new

dispersive waves are known as longitudinal microrotation waves. The speed (7,) of these waves depend on frequency and
are not encountered in the classical theory. Similarly Eqs. (13), (11) and (12) yield
Jwg

mfféfm+b7an:Q (18)

wg 2 2 2

Tnxi\+(co -w;—c;)B=0. (19)
Solving Eq. (19) for B gives

-Iw

B= 2(w? —wi —c2)

nxA. (20)
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The above equation indicates that the three vectors n, A and B are mutually perpendicular to each other. The waves asso-
ciated with W are known as transverse displacement waves and those waves associated with @ are known as transverse

microrotation waves. By eliminating A and B from the above equations and solving for velocities of the coupled waves,
we get

w2 g+ 1 /wh Jwg
V3q= 102+ 45 4:i:\/ <]2+c2—c2> +W (21)

The upper sign (+) corresponds to the velocity »5 of the coupled transverse displacement wave and the lower sign (—)
corresponds to the velocity v, of the coupled transverse microrotational waves. The coupled transverse displacement waves
represent the counterpart of the classical shear waves and reduces to them when x and 7y are zero. The coupled transverse

microrotational waves are new and are not encountered in the classical theory. The above expressions can be find in Eringen
[24].

4. Ground motion at free surface of half-space due to a buried sources

Consider a homogeneous micropolar elastic half-space with free surface y = 0 and assume the wave normal n to lie in the
xy-plane. The particle motion is invariant with respect to z if the wave normal is in xy-plane. Then, the displacements u and
microrotations ¢ are functions of x, y and t. The derivative with respective to z is zero. Subsequently, the six coupled equa-
tions (Eq. (5)) can be written as.

2 [0?u,  %u, | _c Puy,  Duy KZ % e _
! | x2 " oxdy| oxay  oy? 2 ot? '
[ 52 2 2 2
c 9 ”X+M +C Uy 07U _ﬂ%_a L;y: 7
oxoy  Oy>? oxz  Oxoy 2 0x ot
(¢, &*¢,] w?[ou, ou ¢
2 z z Yo Yy x| _ _ z_

“loe T | T2 {8x 8y} "ode = =0 (22)
NP0, 0 L[Pe, o] wRou, Py
c + - - +2 Wb — — 5 =0,
ox2 " 9xdy oxdy  0y? 2 oy ot?
[P0 P | 2|Phy o) wWiow, . P¢,
c cl o R e BV P c B )

oxdy oy Ox oxdy 2 0x ot
e EZ™ L] Wy [08, 04]  Ou. _
2l ox2 ' oy? 2 |ox oy ar?

It can be observed that, two displacement components u,, u, and one microrotation component ¢, are coupled through
Egs. (22)(a-c). Egs. 22(d-f) represents coupled equations for two microrotations ¢y, ¢, and one displacement component u,.
Further, from Eq. (3) it can be shown that the stresses o, Gyy, Oxy, Gyx, Myz, My, M, and m,, depend only on uy, u, and ¢, and
the stresses oz, 0yz 02y, Oz My, Myy, My, and my, are functions of ¢y, ¢, and u,. This makes it possible to resolve the 3D prob-
lem into two parts, where one is plane strain case corresponding to u,, u, and ¢, and the other is anti-plane strain case
corresponding to ¢y, ¢, and u,.

4.1. Plane strain

The Cartesian coordinates x and z are directed along the surface of the half-space and the y-axis is perpendicular to it. The
solution to the buried source can be treated effectively as a half-space problem involving stress discontinuities across the

plane y = yo. For this purpose it is convenient to view the half-space as being composed of an upper and lower region of
the same material defined as.

(I) Region [, |x| <00, 0 <y <Yy,

(Il) Region II, x| < 0o, Yy <y < 0

For a plane strain problem, the displacement and rotation vector is represented as u = (uy,u,,0) and ¢ = (0,0, ¢,). Two
potential functions, g and W, can be defined to describe the displacements in x- and y-directions.
oq oY oq oY
=———, = ¢. 23
8x+8y W=ay T $:=9 (23)

Uy =
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The equations of motion for plane deformation parallel to xy plane in terms of the potentials are

2 2 2
C%<8q+aq> faqzo

oy a2
(Y W\ i Y
2\ ox2 7 oy? 2 o2 ’

C2 82_¢ 82_¢ _W2¢_W_% 62_T+82_l11 _@:0
4\ ox2 T gy? 0 2 \ox2 ' oy? ot?

The constitutive equations (Eq. (3)) in terms of potentials can be written as

o*q PY
p— 2 E—— [
O = AV q+(2u+;c)<8x2 +8x8y>’
Oy = IV2q+ U+ K) ¥q_ o
w = AVATERTIN Gy2 ~ oy |
9*q PY PY
Oxy = (2#+K)8x8y+‘u87yzi (,quK)WquB,
9*q PY PY
ny—(2M+K)M* W+(M+K)T}’2+K¢y
¢ ¢ ¢ ¢
mxz:ﬁav myz:ﬁay mzxzya7 mzyZV@-

(24)

(25)

The buried sources inside the medium can be effectively treated as stress discontinuities across the plane y = y,. The three
loading cases considered in this study are shown in Fig. 1(a)-(c). The magnitude of these three loads acting on the line y = y,

are exp[—i(kx + wt)] per unit length. These can be expressed as

Oy (XY =Yg, 1) = Oy X,y =y, t) = exp[—i(kx + t)],
ny(xv.y :yarv t) - ny(xay = Y67 t) = eXp[—i(kX + wt)]v

m)’Z(X7y :.Yg7 t) - myz(xvy :yavt) = eXp[fi(kX + (’Ut)]

The displacements and micro-rotations are required to be continuous across the plane y = y,. These are given as

UX(X,y :yar!t) = ux(xvy :yavt)7
uy(va :yar’t) = uy(x7y :y67t)7

d(x,y =y§,t) = d(x,y =¥5,1),

N 4

r
v

&
N

Y Oyy VY Oyx v

(a) (b)

Fig. 1. (a)-(c) Three loading conditions for plane strain problem.

%A&MM Yo \ > YOMZ@Z%W

exp[-i(kx+wt)] exp[-i(kx+wt)] expl-i(kx+wt))

M.,

(c)

(26)
(27)

(28)

(29)
(30)

31)
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The boundary conditions in a half-space are given by the vanishing of stresses at the free surface which is
0,y (X,0,t) = 0yx(X,0,t) = my,(x,0,t) = 0. (32)
The solutions of Eq. (24) can be written as
q(x.y,t) = q(y) exp[—i(kx + ot)],
Y(x,y,t) = P(y) exp[—i(kx + mt)], (33)
$(x.y.t) = $(y) exp[~i(kx + wi)).

Here k is the real wave number along the x direction and w stands for frequency. Substituting the above equation in Eq.
(24), the governing equations can be rewritten as

dy*  \¢t
¥ (w?
d—y2+<g_k>‘{1+'l d) 0, (34)

27 2 2 B 2 2
¢ (“’ ady 1<2>¢——2—d YKy _o
2C4 dy 2C
In region I, the solution to the equation can be expressed as
q(y) = Ale’iVOCV*J’O) + Blei”o(}’*}’o)7
\p(y) - Dl]e—ivl ¥-yo) 1 Dlze—ivz(y—yo) + Dlaeivl(y—yo) + Dzeivz(,"*."o)7 (35)
o) =¥ (Dlle""“ 0¥ 4 pleivs <y—yo>> 9, (Dlze—ivzw—yo> + Dileivzcv—yo))
In region Il and below the seismic source
(y) = Ale-trot-vo).
(y) — Dl]le*il/l(}’*}’[]) + Dlzle*i’)z(y*J’O)- (36)
a,(y) = (Dllle*”/l (,V*YO)> + (Dlzle*ivz(l/*yw),

E=L L=

where
2 2 w?
02 (e 3-2)
Jwi A
2c w?
792:—(k + 22 —)
Jwg 2 g

Vo, V1 and v, are the vertical wave numbers defined through,

wz =v/a; — kK, =14\/a —I<2,

2 2

_(E+q)e?  (wy - 43w N (€3 —c2) ot +w5(w5/(c5 + %) —4c3(c3 —ch))w2 +wg<w51_4cg)

22 22 4.4 4.4 404
2c5¢4 8cscs 4cscq 8ci¢c; 64c5cy

37)

The total numbers of unknown coefficients are 9. These constants have to be found from the above nine boundary con-
ditions. The stress free boundary condition on the surface of the half-space (Eq. (32)) results in

I 1

B S o v o o [(Zkvojwf,(z,u + K)T3e Yoz gl (2T T3e Vo1 +22)) Dy — (T4 T4 — T's + F2F3)e’2i”2y°)DL] :
5 23— 1114

(38)
DI1 _ efzivlyng3 + ll;j (e—iyo(vwvz)Di1 _ (:.iyo(zzz,ml)Iz)7 (39)
Al — e divonopl 4 E Z ( eMv2 WDl _ (el ) (40)
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From the continuity of displacements and rotations along the plane y = y, (Eqs. (29)-(31)), the constants A", D! and D} can
be expressed as

T10B' — 2k (v1 + 1) (ng + uZD;)

Al AL 7 41
I (41)
D” DI 2y <CO2 — C%(kz + U%)) (kBl — UzDL) + (2/1 + 1/2)1"12D13 42
= (v1 — )Ty ’ (42)
i 20 <w2 —c(k + v%)) (kBl - leé) —(v1 + vy)Ty3D} 4
2T (rn —v2)I'ny ’ 43)

where

= w2 (,uk2 - (u+ K)> - Zx(wz — Ak + v%)),
(yk2 — A (u+ K)) - 2K(a)2 — (e + v%)),
I3 = (c%(k2 +02) - wz) ().(k2 +U3) + 22U+ K)),
| A (cﬁ(k2 + 03) — wz) (Z(k2 + 03+ VR 2u+ K))7
= PSIWgvovs 12(2} — 13) 2 + K)?,

I's =0, (c%(k2 + 03) — coz).,
=0 (c%(k2 +02) - wz),
Ty = kvoc3 (0] — 13) (20 + k),
Iy = (c%(k2 +13) — coz) (}v(k2 + )+ 22U+ K)),

r]o—KCZ U]-‘rl/z — Vo (,UZ—CZ k —U1T/2)>

r]17KC2 7/1+1/2 -‘rl/()((,l)z—Czk —U11/2)>
Ty = K22 (v1 — 1) vo(co —ca(k +v1v2)>,

I3 = K2C§(7)1 — 7/2) + Uo(wz — C%(kz + 7/2)).

Six coefficients (AI, D}, D), A", D! and D'2‘> are expressed in terms of other three coefficients (B‘,Dg, and DL) in above

equations (Egs. (38)-(43)). These three coefficients have to be estimated by using stress discontinuity boundary condition
along the plane y =y (Egs. (26)-(28)).

4.1.1. Results for specific source distributions
Loading case I:

Oy (X, Y =Y5,t) — Oy (X,y =¥,,t) =0,
O,y =Y5,0) — Gy(X,y = ¥y, t) = exp[—i(kx + wt)],
My (X,y =yg,t) —my(x,y =y5,t) =0,

2
| —kc3

Tt @
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L (B + ) - )
T 202+ k)03 - 03)

(45)

L (B + R - )
7202+ 1) (V] — 13)

Loading case II:
6}’)’(va = J’S, t) - &YY(x7y = J’Ey t) = exp[—i(kx + wt)]v
6yx(x7y :y0+7 t) - 6yx(xay :yav t) = 07
My (XY =Yg, t) — My (X,y =y;,8) =0

B'= 1
2004 2u+K)(K + v3)’

. k(CA(K + v2) — w?)
Ds = 2cv(A+2u+K)(v3 — v3)’ (48)

L k@GK + ) - )

- . 49
263054+ 2U+ 1) (V2 — 13) (49)
Loading case III:
Oy (XY =Y5,t) — Oy (x,y =y5,t) =0,
Oy (XY =¥5.t) — 0 (X,y = ¥4, t) =0,
My, (X,y = Y5, t) — My (X,y = o, t) = exp [—i(kx + wt)],
B' =0, (50)
| ijwg
S L/ — 51
> Acdv p(v3 - 13) G
ijw?
R L1 — (52)

4ci v, B2 — 13)

The obtained solutions are valid for the loading cases shown in Fig. 1 where the loads act periodically all over the plane
¥ =Yo and harmonically in time. The corresponding solutions for the three unidirectional unit impulses can be obtained by
using the Fourier integral representation of the Dirac delta function.

4.2. Anti-plane strain

For a anti-plane strain problem, the displacement and rotation vector is represented as u = (0,0,u;) and ¢ = (¢,, ¢,,0). Two

potential functions, ¢ and ® can be defined to describe the rotations about x- and y-directions.

¢ od ¢ oD

e idid = _ 2= L, = U,. 53
ox 8y’ oy = gy ox Tl (33)

The equations of motion for plane deformation parallel to xy plane in terms of the potentials are

2., 2 2
(8 +%>_W55_6_q0,

¢y =

ox2  0y?
o*u, &u w2 (oD &\ du
2 74 z JWo _ z_
“ <6x2 * 8y2> 2 (E)xz Tayr) o 0 (54)

82<D >0 w w0 A
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The constitutive equations (Eq. (3)) in terms of potentials can be written as

ou, ¢ 00
O')a:(ﬂ‘*"c)a'ﬂc ay o)

o= 90 (5 22)
oy ox ay)’
g :ﬂ%—K<§—a—¢’>
= ox ay ox)’
05 :M%“(‘K(%‘F@)
4 dy ox  oy)’

2 vj
mxxavzf-&-(ﬁ-&-y)(%—k%),

e P
_ 2 g5

e PD PP
X0y ay? Tk
re D PO
My = ([H_y)axay_ﬁW—H}TyZ’

My = (f+7)
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(55)

The buried sources inside the medium can be effectively treated as stress discontinuities across the plane y = y,. The three
loading cases considered in this study are shown in Fig. 2(a)-(c). The magnitude of these three loads acting on the line y = y,

are exp[—i(kx + wt)] per unit area. These can be expressed as

myy(xvy = y(J)rv t) - m,VY(xay = y67 t) = exp[_i(kx + (,Ut)],
My (X, Yy = Y4, t) — mMyu(X,y =Yg, t) = exp[—i(kx + wt)],

0y:(X, Y =Y§,t) — 0y (X, ¥y =Yg, t) = exp[—i(kx + wt)].

The displacements and micro-rotations are required to be continuous across the plane y = y,. These are given as

d’x(xay =Y5,t) = (/)x(xvy :yavt)v
(f)y(X:y :yarvt) = ¢y(x7y :J’E:t);

uZ(X>y :yOJr?t) = uZ(X7y :yavt)z

boundary conditions in a half-space are given by the vanishing of stresses at the free surface which is

myy(x,0,t) = My (x,0,t) = 0y,(x,0,t) = 0.

Yol L EEYY ¥IIIEEEE vy Yo —»—»—»—»\—»—»-»»

expl-i(kx+wt)] exp[-i(kx+wt)]

Y My, Y My,

(a) (b)

Z.v
X,
B B P e e B o P s P P
exp[-i(kx+wt)]
Oy
(c)

Fig. 2. (a)-(c) Three loading conditions for anti-plane strain problem.

(56)
(57)

(58)

(59)
(60)

(61)

(62)
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The solutions of Eq. (54) can be written as

Xy, t) = (Y) exp[—i(kx + wt)],
D(x,y,t) = D(y) exp[i(kx + wt)], (63)
u,(x,y,t) = t,(y) exp[—i(kx + wt))].

Here k is the real wave number along the x direction and w stands for frequency. Substituting the above equation in
Eq. (54), the governing equations can be rewritten as

2% 2 2 B
&, <27%71<2)§:0,

dyy \g g
i, (0 ).  wRdD  Kw -

hadi _ o= 64
dy2+<cg k)uz JZCdeH S =0 (64)
o (w0 Wi w2
d—yz"r<c—2—c—2—k> +2_C‘21u =0.

In region I, the solution to the equation can be expressed as
&) = Ale~17o0-y0) 4 Bleftoy—yo)
(j)(y) - D]]e*iyl(y*}’[]) + D[ e i20-vo) | DI eiv10-Yo) +DI elr20Yo) (65)
L) = ¢ (DI e in107¥0) | Pl it Yo ) e ( Dle-i720-¥0) 4 Dl eiv200- yu))

In region II, the solution to the equation can be expressed as
E(y) = Aleinorvo),
®(y) = Die "10¥0) 4 Dlle-ivav-—vo), (66)
Ui, (y) = ¢, DYe 1% 4 ¢, Dje 2o

where

2¢2 wi  w?
=— K+ v +——_
Wo G G

)

vo, V1 and v, are the vertical wave numbers defined through,

2
Wy / /
Vg = ————k2 v = al—kz, Uy = az—kz,

a2
(67)

2 2
o, - G ro? (Wi 4w ch —&)’ o WG +D) -43EG-]) ,  wiwi - 4d))

2c3c? 8cic? 4c5ch 8cich 64cics
The total numbers of unknown coefficients are 9. These constants have to be found from the above nine boundary

conditions. The stresses are zero along the free surface (y=0). From the Eq. (62) the constants AI,Dll, and D}, can be
expressed as

D, = ﬁ [AGA1 <2kvo(ﬂ +p)e Votorz) Bl _ 2 (B2 — pk?)eVolvi+e: D‘) - (MAs + AzAz)e*z"”zy”DL] (68)
1434 — [324}23
D' — e 2ol +ﬁ [e—iyo(v1+u2)Dl _ eiyo(VrVi)Dl] (69)
1 3 Al 4 20
evo(v vo) ! _ p—ivo(vo+v1) Pl elo( vo) D! _ p-ivo(vo+v2) P!
AI:_efﬁv]y()Bl [A7< o1~ oD] e WYolvo 1D3)+As< o(V2— oD2 e Yolvo 2D4)]. (70)

As

The continuity of displacements and rotations along the plane y = yo (Eqs. (59)-(61)) results in

1
A" =A1+A—m [AQB‘ —2kc3(vy + yz)(ulug + yzD;)], (71)
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D' =D + vy + v3)A DY + 20 <w2 —w2 (K + vﬁ)) (kB' — szL)], (72)

1
(1 — v2)Ar0 {(

D! =D} + 1 + v2)AaD} — 20 <co2 w2 -k + v%)) (kB‘ - ylng)], (73)

1
(v1 — v2)A10 {(
where

A =w [2(u + K)((OC + B4 y)v3 + ak (coz —wW2 - (K + v%)) + K0+ B+ PIWR(K + yg)}

2

AZ:UZ[Z(M+K)<(a+ﬁ+V V2 + ok (z—wo—c4 +v§))+K(a+ﬁ+y)w§(k2+y§)},
+

vovi K (B +7)?,

/\ 2

+ vk [3+V)

)

As = ((oc + B+ + ockz) (ﬁvl ykz)
((oc+[3+y V3 + ok’ (/31/2 vk )

)

2

As = ((@++9)28 + k) (823 = 9K ) = vowak (B +7)%,
Ae = ((a+/}+y v 4 ok )

A7 =kvi(B+7),

As =kvo(B+7),

Ao = KPC2(v1 + 12) — vo(@? — W2 — (I — 11 1)),
Ao = I (11 + v2) + g (wz —w2 -k - v, v2)>,
A = sz‘zl(T)l — 7/2) — 1/()((,02 — Wg — Cﬁ(kz + 1/2)),
Az =K (v — 1) + 1o (co2 —w2 - (K + v vz)).

Six coefficients (AI,DI1,D'2,A”,D'1I and Dlzl) are expressed in terms of other three coefficients (B',D'B, and DL) in above

equations (Egs. (68)-(73)). These three coefficients have to be estimated by using the stress discontinuity condition along
the plane y =y, (Egs. (56)-(58)).

4.2.1. Results for specific source distributions
Loading case I:

My (X,y =g, t) — My (X,y = ¥g,t) =0,
myx(xay :yg’ t) - myx(xﬁy :ya7t) = 07

Gyz(xvy :y0+7t) - Gyl(x’y :y6~ t) = eXp [_l(kx+ CUt)]

B'=0, (74)
.9
I Wy
D3 T ACu (u+K) (2 - 1)’ (75)
Dy = g (76)

A v+ 1) (7 — 1)
Loading case II:

m}’}’(X7y :)/Srvt) - m}’y(X7y :y6~t) = 07

myX(X7y :yarv t) - myx(x7y :ya7t) = eXp [_l(kx + wt)}v



M. Gade, S.T.G. Raghukanth / Applied Mathematical Modelling 39 (2015) 7244-7265 7255
Oy(X,y =Yg, 1) — Oy(x,y = yg,1) =0,

2
kc;

B=_ 4
2Bvo(W3 — @?)’

(77)

1 (0 —wh - 2k + 12))
= a0 o) 7

| (@? —wh — (K + 2))
D= op - Wi w?) 79

Loading case III:
myy(X,J/ = y37 t) - my)’(x7.y = y67 t) = exp[ii(kx + wt)]v
myx(xay = J’g, t) - myX(Xay :ya~ t) = 07

Gyz(xsy :.V(J)rv t) - GyZ(th :ya’ t) = 0’
1

B = — (80)
200+ B+ )k + v3)
o k(a)2 —w2 -k + v%)) )
202 - )+ B+ (K + 0d)]
2 a2 212 2
Dl — k(w?* —wg — c3 (k" + v7)) (82)

20,32 (12 — )0+ B+ ) (K + 03)

The obtained solutions are valid for the loading cases shown in Fig. 2 where the loads act periodically all over the plane
¥ =Yo and harmonically in time. The corresponding solutions for the three unidirectional unit impulses can be obtained by
using the Fourier integral representation of the Dirac delta function.

5. Reduced micropolar elastic half-space

The above derived expressions can be used to simulate Green’s functions in a micropolar medium. The main limitation
with the micropolar theory is that six material constants are required to simulate ground motion. These constants are not
directly available for rock and soil medium. To circumvent these difficulties, Schwartz et al. [25] proposed reduced micropo-
lar theory to model granular materials. In this theory, the material point in a continuum is defined by three displacements u
and three rotations ¢ which are kinematically independent. In reduced micropolar theory the particles are free to rotate
(micro rotation) but the continuum does not offer resistance to micro-rotation, unlike micropolar theory. The stress tensor
is asymmetric and couple stress tensor is zero. By this assumption three micropolar constants («,,7) are eliminated.
Previously Grekova et al. [20] studied surface wave propagation in reduced Cosserat medium. The equations of the motions
in terms of u and ¢ can be expressed as

2
chV~u—c§Vxqu+J%Vx¢—ﬁ:O,

w? ) (83)
TOVXU7W%¢*¢:0,
where
f=——"—"—, ¢5= , we =
2 A+2U+K 2 MAK 5, 2K 34

p 2oy o
5.1. Ground motion at free surface of half-space due to a buried source

5.1.1. Plane strain
For a plane strain problem, the displacement and rotation vector is represented as u = (uy,u,,0) and ¢ =(0,0,¢,). Two
potential functions, g and W, can be defined to describe the displacements in x- and y-directions.

g 0¥ og ow

Ux—ax oy’ Uy—a*yfav ¢, = . (85)
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The equations of motion for plane deformation parallel to xy plane in terms of the potentials are

2 2 2
d(t"qﬁq) _Pa_y

oz 2] o
(86)
2\ ox2 T oy? 2 a2~
The constitutive equations (Eq. (3)) in terms of potentials can be written as
o*q  O0*Y
_ 2 Y4
O =Vq+ 21U+ K) <8x2 +8x8y ,
&’q Y
oyy:NZq+<2u+x>( :
oy Oxdy (87)
’q Y P
Oy = (2U+ K)6x8y+'u8—yz_ (u+ K)W_ Ko,
’q Y P
Oy = (21 + K)axay_ B+ (u+ K)a—y2+ K.

The buried sources inside the medium can be effectively treated as stress discontinuities across the plane y = yo. The mag-
nitude of these three loads acting on the line y = yo are exp[—i(kx + wt)] per unit area. These can be expressed as

Oyy(X,y =Yg, t) = Oy (X,y =¥y, t) = exp[—i(kx + wt)], (88)

Op(X,Y = Y5, t) — Op(X,y = Yy . t) = exp[~i(kx + wt)]. (89)
The displacements and micro-rotations are required to be continuous across the plane y = y,. These are given as

UX(X,y:y0+7t):Ux(x,y:ya,t)7 (90)

Uy(X,y =Yg,t) = ty(%,y =y, 1). 91)
The boundary conditions in a half-space are given by the vanishing of stresses at the free surface which is

0y (x,0,t) = 0x(x,0,£) =0 (92)

The solutions of Eq. (86) can be written as

q(x1y7 t) = Q(y) exp[ii(kx + U)t)]/

W(x,y,t) = P(y) exp[—i(kx + wt)], (93)

P(x,y,t) = p(y) exp[—i(kx + wt)].

Here k is the real wave number along the x direction and w stands for frequency. Substituting the above equation in Eq.
(86), the governing equations can be rewritten as

2 2

49, (“’—— k2>q ~0,

dy

2\q 2 5 2

ar, <ﬂz—kz>l}'+]ﬂ¢ =0

dy G c

From Eq. (83b) ¢ can be expressed in terms of potential ¥ as
.

{—kz‘i’ +d—ﬂ

- W%
¢—2 dy

(@? —w3)
Substitute equation (95) in Eq. (94b) for ¢ and the solution to the Eq. (94) can be expressed as
In region I

q(y) = Ale 1%00-¥o) 4 Bleitolv-yo),

W(y) = Die 00 4 pheintrn),
In region Il

q(y) = Ae-trolvo),

P(y) = D]]]e’ivl 0=yo), 7
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where vg, and v, are the vertical wave numbers defined through,

7 e 4w2 — w2)(w2 - kzcg) + W
vr= A2W2 — w?) —Jwh ‘

vo = (98)

c? ’
Grekova et al. [20] studied wave propagation in isotropic reduced Cosserat half-space. vy = 0 and »; = 0 correspond to
the dispersion relations for the compression and shear-rotational waves in the reduced Cosserat medium. The compression
wave is similar to classical continuum. The shear wave is coupled with rotation wave and the phase velocity of the shear
wave is function of frequency.
The total number of unknown coefficients is 6. These constants have to be found from the above six boundary conditions.
The displacements are continuous along the plane (y = y,). From the Egs. (90) and Eq. (90).

D} =T3B' + D} + I'1D}, (99)

A" =T,B' +A' - T',D}. (100)
The stresses are zero along the free surface (y = 0). From the Eq. (92).

A' = (PP)B' + (SP)D}, (101)

D = (PS)B' + (SS)D5, (102)

where PP, PS, SP and SS are reflection coefficients. It can be shown that as x — 0, these reflection coefficients are as same as
linear elastic reflection coefficients reported in Aki and Richards [26].where

(T'sTy — T'g)e~2o

PP =
I'sT'y+ 1T ’
sp— 2]"4r‘se*iJ’u(”1+v0)
T Tsly+Tg
2@ se~Yo(vi+20)
PS=——""1— ———
sy + 16
S5 (TsTy — Tg)e 2o
- sy + 15
1_,1 _ k2 — Vo1
K+ vov;
I, — 2’(7/1
2 ](2 + Vo1 '
I = 2’(7/0
} K+ vy
r U+ K)kv,
4=

M+ 02) + 22u+ k)
T's = 2kvo (2 + K)(@* — W}),

[ = 2u(k* — 2) (W2 — 0?) + K212 + W (IZ — 3)).

Results for specific source distributions
Loading case I:

G.W(xv.y :yavt) - ny(":y :yat) = 07
Oy(X,y =y0+-, ) —ou(X,y=Y,,t) = exp[—i(kx + wt)],

(@? —wp)
(K + v2) 2u(w? — w2) + K2w? —w2)]’

D, — (103)
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2 a2
R k(w? —wg) . (104)
vo(k* + v2) 2u(@? — w3) + K(2w? — wd)]
Loading case II:
Oy X,y =y5.t) — 0y (X, ¥y =Y, ,t) = exp[—i(kx + wt)],
ny(xvy :yarvt) - ny(x7y :y67t) = 07
Dl — k| (105)
201(2+2u+ K)(k° + 23)
. 1 (106)

T2 2t (KR 1 R)

The obtained solutions are valid for the loading cases shown in Fig. 1(a) and (b) where the loads act periodically all over
the plane y =y, and harmonically in time. The corresponding solutions for the two unidirectional unit impulses can be
obtained by using the Fourier integral representation of the Dirac delta function.

5.1.2. Anti-plane strain
For a anti-plane strain problem, the displacement and rotation vector is represented as u = (0,0,u,) and ¢ = (¢,, ¢,,0). The
equations of motion for plane deformation parallel to xy plane

Pu, u,\ w2 (¢, 0 ou
2 z z JWo (“%Fy x) _ z _
Cz(axz * 8y2> A (6}( 6y> Fraia (107)
The constitutive equations (Eq. (3a)) in terms of displacements can be written as
au
Oy = (M+K)8—;—K¢x- (108)

The buried sources inside the medium can be effectively treated as stress discontinuities across the plane y = yo. The mag-
nitude of the load acting on the line y = y, is exp[—i(kx + wt)] per unit area. This can be expressed as

0y:(X,Y =Yg, t) — 0yz(X,y = Yo, t) = exp[—i(kx + wt)]. (109)
The displacement is required to be continuous across the plane y = y,. These are given as

Uz(X,y =y§,t) = U(X,y =y, t). (110)
The boundary conditions in a half-space are given by the vanishing of stresses at the free surface which is

0,,(x,0,t) =0. (111)

The solution of Eq. (107) can be written as
P(X,y,t) = (}X(y) exp[—i(kx + (Ht)],
$,(%,Y.£) = by(y) exp[-i(kx + t)], (112)
(%Y, £) = Us(y) exp[—i(kx + ot)].

Here k is the real wave number along the x direction and « stands for frequency. Substituting the above equation in Eq.
(107), the governing equation can be rewritten as

du, w2 .- 0¢ 2 5
2Z 20 ik, — == 2 _k°c2)u, = 0. 11
c5 dy2+ 5 < ikepy, oy +(w” —kc3)u, =0 (113)
From Eq. (83b) ¢, and ¢, can be expressed in terms of potential &I, as
Go=o Mo O
2w —w?) ay’
o g (114)
- dkwy i
YU2wWi - ?) "
Substitute equation (114) in Eq. (113), after rearranging (113)
2~
dt: g, 0, (115)

dy?



M. Gade, S.T.G. Raghukanth / Applied Mathematical Modelling 39 (2015) 7244-7265 7259

where

e 4(w? — K c2)(W2 — ?) + Jwh
0= 42(wW2 —?) —Jwh

In region I, the solution to the eq. can be expressed as

i1,(y) = Ale %00¥0) 1 Bleitoy-—yo) (116)
In region II, the solution to the equation can be expressed as

iL,(y) = Ale 000, (117)

The total number of unknown coefficients is 3. These constants have to be found from the above three boundary condi-
tions. Displacement is continuous along the plane (y = yo). From Eq. (110).

Al— AL B (118)
The stress is zero along the free surface (y = 0). From Eq. (111), the constant A’ can be expressed as
A' = B'e~%vovo, (119)

Using the stress discontinuity boundary condition along the plane y =y, reported in Eq. (109), the constant B' can be
obtained as
i

B=—"_
21/0/\]7

(120)

where

KW
Ar = (4 K) = 5o,
2(W3 — w?)

As x — 0, it can be shown that these constants (B' and A') are equivalent to linear elastic constants [26]. The obtained
solutions are valid for the loading cases shown in Fig. 2c where the loads act periodically all over the plane y =y, and
harmonically in time. The corresponding solutions for the unidirectional unit impulse can be obtained by using the
Fourier integral representation of the Dirac delta function.

6. Numerical results

Ground motions have been simulated numerically to illustrate the application of derived analytical expressions. Time
histories are estimated for anti-plane strain problem. Seven material constants (4, u, 7, «, B, j and k) are required to define
linear elastic micropolar material. Reduced micropolar theory requires two additional material constants x and j in addition
to Lame’s constants (4, 1). In the present study, the material properties (4, u, 7, and k) are taken from the work of Eringen
[24]. The following values of material parameters are used for numerical simulation, /= 7.59 GPa, yt = 1.89 GPa, y = 2.63 kN,
i =0.015 GPa, p = 2180 kg/mm? and j = 0.196 mm?. The other two material constants « and § are approximately taken as 7.
The response of micropolar elastic half space is estimated for three different loading cases shown in Fig. 2a. The response for
unit impulsive sources as shown in Fig. 3 are obtained by taking Fourier transform.

Z.-v ”Z, v /’Z,,v
-7 X, . X, - X,
Yo & Yo |-bp Yo ¥
vY Myy VY My vY Oz
(a) (b) ©

Fig. 3. (a)-(c) Three unit impulsive force/micro-moments applied at (0, Y,) corresponds to anti-plane strain problem.
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Fig. 4. Frequency-wavenumber spectra’s of u,, ¢, and ¢,.
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Gh(x,y,t) / / u,(k,y, w) exp[—i(kx + wt)|dkdc,

1
“2n
1

— 121
2 / / oy (k,y, ) exp[—i(kx + wt)|dkdw, (121)

G (x,y,t)
Gﬁy (x,y,t) = 37 Km /75O ¢y (k,y, ) exp[—i(kx + wt)]|dkdw,

where G7, G’d’,xand Gf;)y are the Green’s functions of displacement u,, rotation component ¢, and rotation component ¢, due to

unit impulsive source applied in the p-direction. u;, ¢,and ¢, are the response of the medium for loadings as shown in the
Fig. 2. The infinite integrals in Eq. (121) can be numerically evaluated by discrete wave number method developed by
Bouchon [27]. In this method, the infinite integrals are replaced by summations by introducing spatial periodicity in the
loading. Selecting the appropriate cut-off frequency and wavenumber values is very important in discrete wave number
method. These cut-off values should be selected such that no important information on displacement/rotation is left outside
the integration limits. The cut-off values are selected from frequency (w)-wavenumber (k) spectra’s of u, ¢, and ¢,. The
corresponding w — k spectra’s are plotted in Fig. 4. The cut-off frequency w =2rad/s and the cut-off wavenumber
k = 0.004 rad/m. The final solution is obtained by Fourier transform in the complex frequency domain. A review of the
discrete wave number method is available in Bouchon [27]. The ground motions are calculated at four locations on the free
surface for a unit impulsive force/micro moment applied at a depth of 10 km (Y, = 10 km). The three constants B', D} and D},
for unit impulsive force (F,,) are estimated by using Eqgs. (74)-(76), for all frequency (w) and wavenumber (k) ranges. Other
three constants A', D'1 and DI2 are calculated from Eqgs. (68)-(70). The two potentials ¢, ® and displacement u, are estimated
using Eqs. (65) and (63). The rotational components are obtained from potentials by using Eq. (53). These are substituted in
Eq. (121) to obtain the displacement and rotation time histories for a unit impulsive force. The simulated time histories are
shown in Fig. 5. In a similar fashion Green’s functions are calculated for both unit impulsive micro-moment applied in
x-direction (Myy) and y-direction (My,) from Eq. (121) using the constants reported in Egs. (77)-(79) and Egs. (80)-(82).
The simulated time histories at four locations on the surface of the half-space are reported in Figs. 6 and 7. From Figs. 5-
7, it can be observed that the arrival time of the first wave increases with increase in the distance from the source. The peak
values of the simulated displacements are higher than the amplitude of the micro-rotations for all the three loading cases.
The unit impulsive micro-moment applied about x-axis (M,) has produced higher displacements and rotations compared to
other two impulsive loads.

Fig. 8 shows the simulated displacement and rotation time histories for reduced micropolar elastic half-space. The two
constants A" and B' are estimated by using Eqs. (119) and (120) for unit impulsive force for all frequency () and wavenum-
ber (k) ranges. The displacements and rotations are estimated from Eqs. (114) and (116). These are substituted in Eq. (112)
and the Green’s functions are simulated using Eq. (121). The obtained peak displacements and micro-rotations in a reduced
micropolar half-space are lower than compared to micropolar half-space (Fig. 5). This can be attributed to the presence of
additional microrotational waves in micropolar elastic half-space.

y u_(m) : ¢ (rad) X ¢ (rad)
x10" 2 x10™ x x10™ Y
1 X, =Tkm 5 ’ 2
o i o
-1 1 5 | 2
) 107" 50 100 (2(10-15 50 100 (3(10-15 50 100

o N
<
|
—
(]
=
3

o -

o

1 -5
%10-11 50 100 %10.15 50 100 40)(10.15 50 100
2 X0—25 km Z‘L 2
OWW\‘————— 0 0
2 -2
) 2
0 1 50 100 0 .16 50 100 0 .5 50 100

Loa
x
I
o
1<)
.
3

4 o

N O N

0 50 100 0 50 100 0 50 100
Time (s) Time (s) Time (s)

Fig. 5. Response of micropolar elastic half space for unit impulse force (F,).
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Fig. 6. Response of micropolar elastic half space for unit impulse micro-moment (Myy).
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x10™" z w0 % 10"
1 X0 =1km 1 5 [
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0 . 50 100 0 . 50 100
% 10™ 20 i x 107 x 10
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-2 T -5 | 1 |
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Fig. 7. Response of micropolar elastic half space for unit impulse micro-moment (M, ).

It will be interesting here to compare the simulated displacements with linear elastic half-space solution available in Aki
and Richards [26]. Accordingly the displacement (u,) time history is simulated for an unit impulse force (F,;) applied at a
depth of 10 km (Y, = 10 km) for Reduced micropolar half space with x = 0 (linear elastic half-space), Reduced micropolar half
space and Micropolar half space. The material constants are kept same for all the four cases. The ground displacements are
estimated at four locations on the surface of the half-space. Fig. 9 shows the comparison of displacement time histories for all
the three mediums. The simulated displacement time history of reduced micropolar for x = 0 is also valid for a linear elastic
medium. The peak amplitude values for linear elastic and reduced micropolar elastic half space are close to each other. The
micro effects on the simulated displacement time histories are more pronounced in the full micropolar medium compared to
reduced micropolar medium. The peak displacement in a full micropolar elastic medium is also higher than compared to the
reduced and linear elastic half-space.
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In addition to Lame’s constants only two additional material constants rotational inertia (j) and kappa (k) are
required to define reduced micropolar medium. In this present study j=0.196e—6 m? is used to simulate response of
the reduced micropolar medium. For earth medium j value may be very high because of the presence of big stones, hard
rocks and heterogeneity. Ground motions are simulated for four different values of j whose order varies from 107° to
10 m? to understand the effect of j on ground motions. The simulated ground motions are presented in Fig. 10. It
can be observed form Fig. 10, that the effect of j on translation motion (u,) is negligible. The rotational motions increase
with increase in the rotational inertia of the medium. The effect of rotational inertia is observed only in rotational
motions. The rotational inertia (j) and kappa (x) values for reduced micropolar and additional three material constants
(o, p and v) for full micropolar earth medium can be estimated once sufficient recorded rotational ground motions data
becomes available.
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Fig. 10. Effect of rotational inertia (j) on ground motions.

7. Summary and conclusions

In this article fundamental solutions for both micropolar and reduced micropolar half space have been presented. The
problem is divided into plane strain and anti-plane strain by assuming that the waves are traveling in XY plane only.
Greens functions for buried concentrated force and micro-moment have been derived. Fourier integral representation is used
to derive the fundamental solutions. In addition to longitudinal and shear waves, micro-rotational waves are been observed
in micropolar theory. A total of six material constants are required to fully define an elastic micropolar medium. For reduced
micropolar half-space the number of constants required to define the medium is three. Given these material constants one
can simulate translation and micro-rotation time histories for a given unit impulse force and micro-moment. The derived
analytical expressions can be used to simulate displacement field at the ground surface due to an earthquake with known
rupture characteristics. The earthquake sources are generally modeled as a moment tensors. The advantage with micropolar
theory is that one can apply directly the impulsive micro-moments in the half space. This theory can be used to simulate
both rotational and translation ground motions for earthquakes. Discrete wave number method can be used to numerically
evaluate the infinite integrals (Eq. (121)) for estimating displacement and rotation time histories. The closed form analytical
expressions of frequency wave number spectra obtained in this study can be directly used to understand the temporal and
spatial variability of seismic ground motion. The corresponding correlation characteristics of ground motions can be
estimated from the frequency wave number spectrum. Numerical results have been presented for anti-plane strain case.
The displacement and rotational time histories due to a unit impulsive force and micro-moment are simulated for both
reduced and full micropolar medium (Figs. 5-8).

In the present study, expressions for surface displacement field have been derived using wave propagation in a single
layered elastic half-space. These expressions can be further used to obtain Green'’s functions for layered half-space using
propagator based formalism [6].

The major limitation with the micropolar theory is that additional material constants and rotational inertia of the
medium are required to simulate ground motion. No studies have been done till date to estimate these constants for rock
and soil medium. However with recent developments in strong motion instrumentation, it has become possible to measure
rotational motions during the earthquake. With the help of strong motion data, one can estimate the micropolar material
properties of the rock medium.
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