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Biomedical imaging Is an important source of information in cancer research.

Characterizations of cancer morphology at onset, progression, and in response to

treatment provide complementary information to that gleaned from genomics and

clinical data. Accurate extraction and classification of both visual and latent image

features Is an increasingly complex challenge due to the increased complexity and

resolution of biomedical image data. In this paper, we present four deep learning-

based image analysis methods from the Computational Precision Medicine (CPM)

satellite event of the 21st International Medical Image Computing and Computer

Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation

method designed to segment nuclei in whole slide tissue images (WSIs) of adult

diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM

challenge datasets. Three methods are classification methods developed to categorize

adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using

radiographic and histologic image data. These methods achieved accuracy values of

0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications

to the number of total cases, with the challenge datasets. The evaluations of the four

methods indicate that (1) carefully constructed deep learning algorithms are able to

produce high accuracy in the analysis of biomedical image data and (2) the combination

of radiographic with histologic image information improves classification performance.
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INTRODUCTION

Cancer is a major life-threatening health problem around the
world. More than 1.7 million new cancer cases and over
600,000 cancer deaths are estimated in 2019 in the United States
alone (Siegel et al., 2019). Brain cancer is one of the deadliest
cancer types with low survival rates among both women and
men (Siegel et al., 2016; Yuan et al., 2016). Cancer research
relies on accurate and reproducible disease characterizations
in order to better understand what triggers cancer and how
cancer progresses so that more effective means of evaluating
cancer interventions can be developed. This requires assembling
observational and experimental data at multiple biological scales
and fusing information from multiple data modalities.

Biomedical imaging is one of the crucial data modalities in
cancer research. Features gleaned from high-resolution, detailed
images play a key role in the development of correlative and
predictive representations of cancer morphology. Combined
with clinical and genomics data, image features can result
in more effective data-driven research and healthcare delivery
for cancer patients. Biomedical imaging, hence, has evolved
into an indispensable tool for researchers and clinicians
to extract, analyze, and interpret the complex landscape
of diagnostic and prognostic information and to assess
treatment strategies. Radiology and the rapidly growing field
of Radiomics provide a means of quantitative study of cancer
properties at the macroscopic scale. Radiomics deals with the
extraction, analysis, and interpretation of large sets of visual
and sub-visual image features for organ-level quantification
and classification of tumors (Lambin et al., 2012; Gillies, 2013;
Aerts et al., 2014; Parmar et al., 2015; Gillies et al., 2016;
Zwanenburg et al., 2016). The histopathologic examination
of tissue, on the other hand, reveals the effects of cancer
onset and progression at the sub-cellular level (Gurcan et al.,
2009; Foran et al., 2011; Kong et al., 2011; Kothari et al.,
2013; Griffin and Treanor, 2017; Yonekura et al., 2018).
Histopathology has been used as a primary source of information
for cancer diagnosis and prognosis. Diagnosis and grading
of brain tumors, for example, is traditionally done by a
neuropathologist examining stained tissue sections fixed on
glass slides under a light microscope. Radiology is a more
prevalent imaging modality in research and clinical settings.
Advancements in digital microscopes made it possible to capture
high-resolution images of whole slide tissue specimens and
tissue microarrays, enabling increased use of virtual slides in
histopathologic analysis.

In this paper, we present the application of state-of-the-
art image analysis methods for segmentation and classification
tasks for radiographic and histologic image data. We describe
a collection of four deep learning-based methods: one method
for the segmentation of nuclei and three methods for the
classification of brain tumor cases. These methods are from
the challenge teams who achieved the top scores at the
Computational Precision Medicine (CPM) satellite event of the
21st International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI2018) and agreed
to contribute to this summary manuscript. The CPM event

was organized by a subset of the co-authors on this paper as
a cluster of image analysis challenges. It is one of the series
of challenges organized since 2014 to provide a platform for
biomedical imaging research teams to evaluate state-of-the-art
algorithms in a controlled environment.

The 2018 CPM event targeted brain diffuse glioma and
consisted of two sub-challenges. The first sub-challenge was
designed to evaluate the performance of algorithms for the
detection and segmentation of nuclear material in tissue images.
We describe a nucleus segmentation method from this sub-
challenge. The method employs an adaptation of the Mask-
RCNN algorithm to solve the problem of cell segmentation in
hematoxylin and eosin (H&E) stained tissue microscopy images.
The authors of this method developed pre- and post-processing
steps to further improve the performance of the algorithm. The
method achieved a Dice similarity coefficient score of 0.868
when evaluated against a set of manually segmented tissue
images. The second sub-challenge asked participants to classify
lower grade glioma (LGG) cases into oligodendroglioma and
astrocytoma subtypes using both radiology and histopathology
images. We present three classification methods from this
sub-challenge. One of the methods refines lower confidence
predictions from a radiology image model by combining
predictions from a tissue image model. The second method
implements two distinct classification models for radiographic
and histologic images and combines them through a dropout-
enabled ensemble learning. The third method uses multiple deep
learning models: one model for classifying tissue images and
two models for segmenting and classifying radiology images.
A weighted average operation is then applied to the classification
results from tissue and radiology images to assign a class
label to each case. The methods achieved accuracy values of
0.90, 0.80, and 0.75, respectively—accuracy was measured as
the number of correctly classified cases divided by the total
number of cases.

In addition to presenting these algorithms, we intend to make
the datasets used in the MICCAI CPM 2018 challenge publicly
available to provide a valuable resource for development and
refinement of future segmentation and classification algorithms.

MATERIALS AND METHODS

In this section, we first present a brief overview of existing
work on biomedical image analysis (section “RelatedWork”). We
describe the CPM challenge and datasets in Section “Datasets and
Performance Evaluation.” We present the nucleus segmentation
method in Section “Instance Segmentation of Nuclei in Brain
Tissue Images” and the three classification methods in Section
“Methods for Classification of Brain Cancer Cases.”

Related Work
Computer-aided analysis and interpretation of image data
is crucial to maximizing benefits from biomedical imaging.
Common image analysis operations include segmentation of
regions and objects (e.g., nodules and cells) and classification
of image regions and images into categories. Image features
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and quantitative measures obtained from segmentation and
classification can be used in downstream analyses that integrate
information from clinical and molecular data and develop
predictive and correlative models. Studies have shown the value
of image analysis and image features in research, and an
increasing number of research projects have developed image
analysis methods to efficiently, accurately, and reliably convert
raw image data into rich information and new knowledge
(Gurcan et al., 2009; Foran et al., 2011; Kong et al., 2011; Kothari
et al., 2012, 2013; Lambin et al., 2012; Gillies, 2013; Cheng
et al., 2016; Coroller et al., 2016; Gao et al., 2016; Ishikawa
et al., 2016; Madabhushi and Lee, 2016; Manivannan et al.,
2016; Xing and Yang, 2016; Al-Milaji et al., 2017; Bakas et al.,
2017c; Lehrer et al., 2017; Chang et al., 2018a, 2019; Fabelo
et al., 2018; Hu et al., 2018; Khosravi et al., 2018; Lee et al.,
2018; Mobadersany et al., 2018; Peikari et al., 2018; Saltz et al.,
2018; Yonekura et al., 2018; Zhou et al., 2018). Recent work
on biomedical image analysis focused on the development and
application of machine learning methods, in particular, deep
learning models.

The work done by Qian et al. detected and differentiated
GBM from solitary brain metastases (van Griethuysen et al.,
2017) using a support vector machine (SVM)model. The analysis
algorithm computes a variety of radiomic features, using the
PyRadiomics package (van Griethuysen et al., 2016; Lu et al.,
2019), from contrast-enhanced Radiology image datasets. The
experiments show that a combination of the least absolute
shrinkage and selection operator (LASSO) and SVM achieves the
best prognostic prediction performance and the highest stability.
Lu et al. (Krizhevsky et al., 2012) proposed and evaluated an
approach, which uses the AlexNet deep learning network (Abrol
et al., 2018) as a feature extractor and applies transfer learning to
train a model for brain disease detection in magnetic resonance
imaging (MRI) data. The last three layers of AlexNet are replaced
by a fully connected layer, a softmax layer, and a classification
layer to implement the feature extractor function. Chang et al.
(2018a) proposed and implemented a CNN model to predict
isocitrate dehydrogenase (IDH) mutations in glioma patients
using preoperative MRI data. Their experimental evaluation
shows that incorporating the age at which a patient was diagnosed
with cancer improves algorithm accuracy to 89%. Abrol et al.
(Binder et al., 2018) applied feature selection and SVM-based
classification methods on MRI data obtained from a group
of GBM patients. Their experimental results show that three-
dimensional radiomic features computed from radiology images
could be used to differentiate pseudo-progression from true
cancer progression in GBM patients. Binder et al. (Shukla et al.,
2017) identified radiographic signatures of extracellular domain
missense mutants (i.e., A289V) of the epidermal growth factor
receptor (EGFR) suggestive of an invasive and proliferative
phenotype, and associated with shorter patient survival. Their
approach leverages the integrated analysis of advanced multi-
parametric MRI (Bakas et al., 2016) and biophysical tumor
growth modeling (Akbari et al., 2018). Their findings were
corroborated by experiments in vitro and in vivo in animal
models, contributing to the discovery of a potential molecular
target and presenting an opportunity for potential therapeutic

development (Shukla et al., 2017). Another study (Bakas et al.,
2017a) found an imaging signature in radiology images of the
most prevalent mutation of EGFR, namely, EGFRvIII, revealing a
complex yet distinct macroscopic GBM radiographic phenotype.
This signature showed a classification accuracy of ∼90% for
determining EGFRvIII GBM tumors. The study used an SVM
model for multivariate integrative analysis of multiple image
features to identify the signature. The features include the tumor’s
spatial distribution pattern leveraging a biophysical growth
model (Akbari et al., 2018) and a distinct within-patient self-
normalized heterogeneity index (Wang et al., 2019).

Mobadersany et al. (2018) examined the application of
deep learning techniques to predict outcomes in LGG and
glioblastoma multiforme (GBM) patients. Their approach
combines tissue image analysis results with genomics data to
achieve high accuracy. The deep learning network consists of
convolutional layers, which are trained to predict image patterns
associated with survival. This network is connected to fully
connected layers that transform the image features for survival
analysis. Survival data are modeled via a Cox proportional
hazard layer. Wang et al. (Qian et al., 2019) implemented an
analysis pipeline to classify glioma cases into grades II, III,
and IV gliomas using whole slide tissue images (WSIs) from
H&E and Ki-67 stained tissue samples. The pipeline consists of
multiple steps, including region-of-interest (ROI) identification,
image feature extraction, feature selection, automated grading
of slides, and interpretation of the grading results. Multiple
image features, such as the shapes and sizes of nuclei and
image intensity distribution, are computed and pruned using
a random forest method. The grading step employs machine
learning models with automatic tuning of model parameters for
the best classification performance. Saltz et al. (2018) employed
a deep learning workflow to create maps of tumor-infiltrating
lymphocytes (TILs) in more than 5,000 WSIs from 13 different
cancer types in The Cancer Genome Atlas (TCGA) repository.
The image analysis approach partitions each WSI into small
(50 µm by 50 µm) patches and classifies each patch as either
TIL-positive or TIL-negative. The workflow implements an
iterative learning phase in which predictions by the deep learning
models are reviewed and corrected by pathologists, to refine and
improve classification accuracy. The analysis method also uses
a convolutional neural network (CNN) to identify and segment
regions of necrosis in order to reduce false positives.

Nucleus segmentation is one of the core analysis tasks in
histopathology imaging projects which study tissue morphology
(Gurcan et al., 2009; Madabhushi and Lee, 2016; Xing and
Yang, 2016). The nucleus segmentation task is challenging
because of the relatively large variation in the intensity of
captured signal and the ambiguity of boundary information
when separating neighboring nuclei. Several projects proposed
machine learning algorithms that use engineered image features
and algorithms that perform statistical analyses of intensity and
texture properties to detect and delineate nucleus boundaries
(Kong et al., 2011; Gao et al., 2016; Peikari and Martel, 2016;
Peikari et al., 2018). In recent years, there has been a significant
shift toward the application of deep learning techniques. Yang
et al. (2018) proposed a method that uses a U-Net model
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to segment lesions in cervical cancer cases. The segmentation
results are fed into a cascade network, which integrates the
foreground and the edges of the segmented nuclei to generate
instance segmentations. Wollmann et al. (2019) developed a
hyperparameter optimization method that searches for the best
parameters of a nucleus segmentation pipeline to improve
segmentation accuracy. The authors evaluated their technique
with two analysis pipelines, a clustering-based pipeline and a
deep learning pipeline, using prostate cancer tissue images. Their
results show that the deep learning pipeline performs better
than the clustering-based pipeline. Alom et al. (2018) proposed
a residual recurrent CNN built on the U-Net architecture
(Ronneberger et al., 2015). While this type of network has
been used for segmentation of macro-level objects such as
retinal blood vessels and the lungs, the authors adopted it to
segmentation of the nuclei. Xie and Li (2018) implemented
a neural network method that learns object-level and pixel-
level information in tissue image patches. The goal is to have
the analysis pipeline carry out nucleus detection and nucleus
segmentation simultaneously. Hou et al. (2019b) proposed a
sparse convolutional autoencoder for the detection of nuclei
and feature extraction in WSIs. The approach integrates nucleus
detection and feature learning in a single network. The network
encodes the nuclei into sparse feature maps, which represent
the nuclei’s locations and appearances and can be fine tuned for
end-to-end supervised learning.

Radiology and pathology capture morphologic data at
different biological scales. The non-invasive and non-ionizing
property of MRI made it quite popular for oncology imaging
studies such as brain tumors (Bakas et al., 2016). On the other
hand, the de facto standard for tumor assessment and grading
is whole slide tissue biopsy examined under a microscope.
Combined use of image modalities from both domains can
lead to improvements in image-based analyses. Lundstrom et al.
(2017) argue for a tighter collaboration between radiology,
pathology, and genomics teams toward enhanced integrated
diagnosis of disease. The authors point to the increasing
use of digital slide technologies in pathology as well as to
the fact that computational approaches for radiology and
pathology imaging modalities are not fundamentally different.
They note that combining complementary views of the disease
from multiple scales can maximize the benefits of biomedical
imaging. Madabhushi and Lee (2016) note that researchers are
increasingly looking at opportunities for combining radiomic
data with features extracted from high-resolution pathology
image for better predictive capabilities in disease prognosis.
On the methodology and software front, Arnold et al. (2016)
developed a web-based platform that integrates radiology and
pathology data for cancer diagnosis. Saltz et al. (2017) devised
methods and tools for combined computation, management,
and exploration of image features from radiology and pathology
image datasets. Kelahan et al. (2017) implemented a dashboard
for radiologists to view pathology reports to aid with diagnosis
and image-guided decision making. McGarry et al. (2018)
proposed a method for combining multi-parametric MRI data
with digital pathology slides to train predictive models for
prostate cancer localization.

Despite a growing body of research and development on
methods and tools, computerized image analysis continues
to be a challenging task. Both image resolutions and data
complexity continue to increase, requiring the enhancement of
existing methods and the development of new techniques. For
example, contemporary digital microscopy scanners are capable
of imaging whole slide tissue specimens at very high resolutions
(e.g., over 80,000 × 80,000 pixels). These images may contain
millions of cells and nuclei, and multiple types of regions (e.g.,
tumor, stromal, and normal tissues). There can be significant
morphological heterogeneity within a specimen, as well as across
specimens in both radiographic and histologic imaging, requiring
novel methods that can handle heterogeneity and increasing the
density of morphologic information.

Datasets and Performance Evaluation
The approaches, which will be described in Sections “Instance
Segmentation of Nuclei in Brain Tissue Images” and “Methods
for Classification of Brain Cancer Cases,” were experimentally
evaluated with radiographic and histologic image datasets from
the MICCAI 2018 CPM challenge event. Here we provide a
brief description of the challenge datasets and the methods for
scoring algorithm performance. The datasets for the 2018 CPM
challenge were obtained from TCGA1 (Tomczak et al., 2015) and
The Cancer Imaging Archive (TCIA2) (Clark et al., 2013; Prior
et al., 2013) repositories, and the images had been scanned at
the highest resolution. Images from these sources are publicly
available and have been used in many publications (e.g., Aerts
et al., 2014; Yu et al., 2016; Bakas et al., 2017c; Mobadersany et al.,
2018; Saltz et al., 2018; Agarwal et al., 2019).

Datasets for Segmentation of Nuclei in Pathology

Images

A WSI may contain hundreds of thousands of nuclei; some
images with large tissue coverage will have more than one million
nuclei. Manually segmenting all nuclei in the entire WSIs would
be infeasible. Thus, we extracted image tiles fromWSIs and used
the tiles in the training and test datasets in order to reduce the
cost of generating high-quality ground truth data as well as the
computational requirements of the training and test steps of
analysis algorithms. The image tiles were selected by a pathologist
and extracted from a set of GBM and LGG WSIs at the highest
resolution. The training and test datasets consisted of 15 and
18 image tiles, respectively. The sizes of the tiles ranged from
459 × 392 pixels to 1032 × 808 pixels in the training set and
from 378 × 322 pixels to 500 × 500 pixels in the test set. The
nuclei in each image tile were segmented by two students. The
segmentation results were reviewed, refined, and consolidated by
the pathologist to generate the final set of segmentation data. This
process generated 2905 and 2235 nuclei in the training and test
sets, respectively.

In the challenge event, the performance of a segmentation
algorithm was measured as the average of the standard Dice
similarity coefficient and a modified version of the Dice metric.

1https://portal.gdc.cancer.gov
2https://www.cancerimagingarchive.net
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The standard Dice score (Dice, 1945) measures the overlap
between two sets of segmentation results without taking into
account the individual nuclei. That is, it computes the amount
overlap between the ground truth mask and the mask generated
by the segmentation algorithm without considering splitting and
merging of the nuclei by the algorithm. The modified Dice metric
aims to incorporate split andmerge errors into the score.We refer
the reader to an earlier publication (Vu et al., 2019) for a more
detailed description of the modified Dice metric.

Datasets for Combined Radiology and Pathology

Classification

The datasets were matched MRI and digital pathology images
obtained from the same patients and the same time point. Each
case corresponded to a single patient. There was one set of MRI
data (T1, T1C, FLAIR, and T2 images) and one corresponding
WSI for each case. The training set contained a total of 32
cases: 16 cases that were classified as oligodendroglioma and
16 cases classified as astrocytoma. The test dataset consisted of
20 cases with 10 cases of oligodendroglioma and 10 cases of
astrocytoma. We retrieved the WSI and MRI images from the
TCGA and TCIA archives, respectively. These images had been
obtained and classified following the protocols implemented in
the TCGA project3. We obtained the ground truth classification
labels of the cases from the associated clinical andmetadata in the
TCGA repository. These classifications were further reviewed by
a pathologist and a radiologist. In the challenge event, we used
the accuracy of a classification method to score its performance
and rank it. We counted the number of correctly classified cases
and divided that number by the total number of cases to compute
the accuracy score.

In the following sections, we will present a nucleus
segmentation algorithm (section “Instance Segmentation
of Nuclei in Brain Tissue Images”), which achieved the
second highest score in the segmentation challenge, and three
classification algorithms (section “Methods for Classification of
Brain Cancer Cases”), which achieved the top three scores in the
classification challenge.

Instance Segmentation of Nuclei in Brain
Tissue Images
In this section, we present the nucleus segmentation algorithm
developed by XR, QW, LZ, and DS. This method achieved the
second highest score in the CPM challenge and its developers
agreed to contribute to this manuscript.

The method implements an application of the Mask-RCNN
network (He et al., 2017) with a novel MASK non-maximum
suppression (MASK-NMS) module, which can increase the
robustness of the model. Mask-RCNN is a deep learning network
extended from the Faster-RCNN model (Ren et al., 2015) and
is used to carry out semantic and object instance segmentation
(see Figure 1). In our implementation, we used ResNet-101
to build a Mask-RCNN pyramid network backbone for the
segmentation of nuclei in WSIs. This adaptation is based on

3https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga/using-tcga/types

an existing implementation by Matterport4. We have extended
this implementation in several ways to improve segmentation
performance. First, we have reduced the region proposal network
(RPN) anchor sizes and increased the number of anchors to
be used because the nuclei are small objects and can be found
anywhere in a tissue image. Second, we have increased the
maximum number of predicted objects, since even a small image
tile from a tissue slide can contain 1000 ormore nuclei. Moreover,
rather than training the network end-to-end from the start, we
initialized the model using weights from the pre-training on
the MSCOCO dataset (Lin et al., 2014). We train the layers
in multiple stages. We first train the network heads after they
are randomly initialized. We later train the upper layers of the
network. After this, we reduce the learning rate by a factor of 10
and train the entire network end to end. In our experiments, the
training took 300 epochs using stochastic gradient descent with
momentum set to 0.9. During training and testing, input tissue
images were cropped to 600 × 600.

In addition to the above extensions, we implemented a
set of pre-processing steps to further improve the algorithm
performance. Holes in the masks are filled by an image
morphology operation. Fused nucleic masks are split by applying
morphological erosion and dilation. To help avoid overfitting,
data augmentation, which could increase the amount of training
data, is applied in the form of random crops, random rotations,
Gaussian blurring, and random horizontal and vertical flips.

Our implementation combines predictions from fivefold cross
training models in a post-processing step (see Figure 1). We have
implemented this step in a novel module called MASK-NMS,
which is one of our contributions in the segmentation method.
MASK-NMS takes unions of masks with maximum overlap and
removes false-positive masks with a small overlap. It starts with
a set of segmentation results. This set is called I. Each result in
set I is assigned a score S, which is the value of the classification
probability from the Mask-RCNN module and corresponds to
the confidence level of the segmentation result. After selecting
the segmentation with the maximum score M (the maximum
score among scores S), MASK-NMS removes it from the set I
and appends it to the final segmentation set D. D is initialized to
an empty set. It also removes any segmentations with an overlap
greater than a thresholdN in the set I, where the intersection over
union (IOU) is used as the overlap metric. IOU is also known as
the Jaccard similarity index (Jaccard, 1901), which measures the
similarity between finite sample sets. It is defined as the size of the
intersection between two sets divided by the size of the union of
the sets. The selection process repeats until set I becomes empty.
Finally, we obtain the segmentation results in set D. The MASK-
NMS module assembles multiple results together and reduces
false positives and false negatives.

Methods for Classification of Brain
Cancer Cases
In this section, we present three classification algorithms, which
achieved the top three scores in the classification challenge and
the developers of which agreed to contribute to this manuscript.

4https://github.com/matterport/Mask_RCNN
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FIGURE 1 | Tissue image segmentation model. The first part of the model consists of the Mask-RCNN module. Output from this module is input to the MASK-NMS

module for final segmentation prediction output.

An Approach for Classification of Low-Grade Gliomas

Using Combined Radiology and Pathology Image

Data

The top-performing method (developed by AB, AsK, AvK, MK,
and GK) (Bagari et al., 2018) in the classification challenge uses
an MRI classification model and a WSI classification model
and combines the predictions from the two models to assign a
class to a given case. The overall analysis pipeline is depicted in
Figures 2–4 and described below.

Radiology image analysis pipeline

Different pulse sequences in MRI, including native T1- and T2-
weighted, T2-Flair, and T1-weighted post-contrast imaging, can
be used to enhance different parts of a tumor. In this part
of the pipeline (Figure 2), we execute a segmentation pipeline
consisting of the following steps on these images before features
are computed from the images and used in the classification
model: (1) Skull stripping: It is necessary to remove the skull
from MRI as its presence can be wrongly interpreted as a tumor,
and most segmentation networks are trained using skull-stripped
images. (2) Co-registration and re-sampling to isotropic voxel
spacing: Following skull stripping is the step of co-registering the
MRI sequences to a reference sequence. Generally, there can be
movement between scans if the patient does not remain still or if
the scan is acquired on a different day or using a different scanner.
Registered images are spatially correlated across channels and
can be used for tumor segmentation. We register sequences T1,
FLAIR, and T2 with respect to T1c scan. The MRI volumes are
re-sampled to an isotropic voxel resolution of 1 mm3 after the
co-registration step. (3) Segmentation of tumor regions using
a CNN: Tumor regions are segmented by a fully CNN trained
on the BraTS-2018 dataset (Menze et al., 2014; Bakas et al.,
2017b,c, 2018; Crimi et al., 2018). After the segmentation step, a
set of 105 radiomic features are computed on segmented regions
using the pyradiomic library (Lu et al., 2019). These features
include shape features, first-order statistics, features from gray
level co-occurrence matrix, features from gray level run length
matrix and gray level size zero matrix, and neighboring gray
tone difference matrix. The 105-dimensional radiomic feature

vectors are reduced to a 16-dimensional feature vector using the
principal component analysis. A classification model is trained
with 16-dimensional feature vectors as input. If the training
dataset has N cases, the model is trained with an (N,16) input
using logistic regression with the liblinear optimization algorithm
(Fan et al., 2008) and a fivefold cross-validation process. This
process fits a logistic regression model on the entire training
data. Classification predictions from the MRI data are obtained
using this model.

Analysis pipeline for whole slide tissue images

Tissue slides may contain large areas of glass background that
are irrelevant to image analysis and should be removed. In
this part of the pipeline (Figure 3), in order to detect and
segment tissue regions and remove regions corresponding to
glass background, a tissue image is first converted from the
RGB color space to the HSV color space. Then, lower and
upper thresholds are applied on color intensities to get a binary
mask. The binary mask is processed to fill in small holes and
remove clustered clumps from foreground pixels. After this step,
bounding boxes around all the discrete contours are obtained.
The bounding boxes serve as blueprints for the patch extraction
process. The patch extraction process partitions the segmented
tissue region into 224 × 224-pixel patches. The 224 × 224-
pixel patches are color-normalized (Reinhard et al., 2001) and
assigned the same label as the label of the WSI. A subset of
distinct patches is filtered out using an outlier detection technique
called the Isolation Forest (Liu et al., 2008). The filtering step is
executed as follows. We train an autoencoder with a pixel-wise
reconstruction loss to generate feature vector representations of
patches from the input image. The isolation forest method is
then executed with these feature vectors to find outlier patches.
The remaining patches after the outlier detection step are used
to refine a DenseNet-161 network, which has been pre-trained
on ImageNet. Binary cross entropy is used as the loss function.
During the prediction phase, test patches extracted from a WSI
are classified using the trained model, and a probability score is
assigned to the image based on a voting of classes predicted for
individual patches.
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FIGURE 2 | Radiology image analysis. Images are pre-processed (i.e., skull stripping and co-registration) before they are analyzed through the remaining steps of the

analysis pipeline. After the pre-processing step, tumor regions in the images are segmented via a CNN model. This step is followed by computation of a set of 105

radiomic features in segmented regions. The high-dimensional feature vector is reduced to a 16-dimensional feature vector using the principle component analysis

method. A classification network is trained with these feature vectors.

FIGURE 3 | Pathology image analysis. A region-of-interest (ROI) step detects and segments tissue regions. The tissue regions are partitioned into patches. Distinct

patches are filtered using the isolation forest technique. The prediction represents the probability values of the case being astrocytoma or oligodendroglioma.

FIGURE 4 | Combining predictions from the pathology and radiology models. A test case is analyzed by the radiology classification model and the pathology

classification model. The results from the two models are processed in a confidence-based voting step, which chooses the class with the highest prediction

probability value.

Combining predictions

As is shown in Figure 4, finally, predictions from both the
radiology and pathology models are compared, and the class
label of a case is determined based on the model, which gives a
prediction with a higher probability score.

Dropout-Enabled Ensemble Learning for Multi-Scale

Biomedical Image Classification

This method is the second best performing (developed by AM,
MT, and OG) (Momeni et al., 2018) and proposes two distinct
classification models for radiographic and histopathologic
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images and their integration through dropout-enabled
ensemble learning.

Radiology classification model

As is shown in Figure 5, radiology images are pre-processed
through a pipeline of bias field correction, skull-stripping, and
co-registration steps before they are input to a 3D CNN network.
The 3D CNN consists of eight layers to extract deep features
from MRI and three 3D max pooling to reduce the sample size.
The input of the 3D CNN is a 3D voxel image in the form
of three spatial dimensions and two modalities per voxel. In
this work, the 3D CNN is trained with the T1c and T2-FLAIR
modalities only because these are the most informative for LGG
segmentation. After the last convolutional layer, the extracted
features are averaged over all of the 3D space to yield a unique
100-dimensional feature vector per case. This vector is connected
to a 1D output for classification with cross-entropy loss. The
whole network is then trained. To avoid overfitting, we use
classical data augmentation techniques (rotation, cropping, etc.)

as well as dropout. Eight dropout layers are placed throughout the
network to avoid overfitting and for the ensemble learning step.

Histopathology classification model

A multiple instance learning approach, as shown in Figure 6, is
implemented for the histopathology images. The learning step
is carried out after a pre-processing phase. The pre-processing
steps here consist of tissue detection, color normalization,
and tiling. Tissue detection is done with Otsu thresholding
to detect and segment tissue regions only, eliminating regions
that are glass background. A simple histogram equalization
algorithm is used for color normalization prior to tiling. The
tiling step extracts 20 448 × 448-pixel patches from a WSI
by uniform random sampling. Once the image patches have
been extracted, a DenseNet network pretrained on ImageNet
is fine tuned, after removing its last fully connected layer. The
remainder of the network is used as a fixed feature extractor
for tissue images, and two fully connected layers with dropout
are used for classification. As with the radiology model, we used

FIGURE 5 | Radiology image analysis pipeline. Radiology images are pre-processed for bias field correction, skull stripping, and co-registration before they are input

to a 3D CNN. The 3D CNN is trained to output a prediction (probability) value for each case as to whether the case is oligodendroglioma (O) or astrocytoma (A).

FIGURE 6 | Histopathology image analysis pipeline. The whole slide tissue images are pre-processed to detect tissue, do color normalization, and extract tiles. The

tiles are input to a DenseNet model for classification. The model outputs the probability of a case being oligodendroglioma or astrocytoma.
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FIGURE 7 | Ensemble model that combines classifications from the radiology and histopathology image analysis pipelines.

classical data augmentation techniques along with dropout to
eliminate overfitting.

Ensemble learning model

The main contribution of our approach is a meta-algorithm that
combines the histopathology and radiology classification models,
as is shown in Figure 7. In this ensemble learning methodology,
each model is trained separately. Their predictions are combined
into a single, more robust output. The basic idea is to extract
the one-to-last feature layer from each individual classification
model and form a single feature vector for each case/patient
by concatenating the two feature vectors. An SVM model is
then trained with the combined feature vectors to classify the
cases. However, if the training dataset is small (which is the case
with the CPM challenge dataset; we have 50-dimensional feature
vectors from both the classification models and only 32 cases
in the training dataset), the classification problem can become
under-determined and result in overfitting of the models. To
address this problem, we use regularization through dropout in
the ensemble learning step. The idea is to enable the dropout
values of the models in the test phase, so that individual models
produce multiple (typically thousands) feature vectors for each
subject. These many feature vectors can then be concatenated to
form the combined feature vectors, creating a training dataset big
enough for the SVM model (Momeni et al., 2018). Dropout at
test time results in sampled feature vectors that are both distinct
and informative and provides sufficient variance in the training
dataset. Hence, the ensemble learning method can learn a more
accurate and robust model from the newly produced dataset.

A Weighted Average-Based Classification Method

The third best performing method (developed by QQ, YZ, YH,
and XD) is illustrated in Figure 8. It analyzes each imaging
modality (radiology images and pathology images) separately and

combines the prediction results via a weighted average operation.
We describe the individual classification models and weighted
average operation below.

Classification of pathology images is carried out by identifying
tissue characteristics that differentiate oligodendroglioma from
astrocytoma. Astrocytoma is noted to have more grades, as
well as necrosis, increased cell density, calcification, and nuclear
atypia. On the other hand, fried egg-like cells, and the tissue
characteristics of chicken-cage-like blood vessels are unique to
oligodendroglioma. In the proposed method, each histologic
image is partitioned into 512 × 512 patches. A sample set
is created to identify typical samples of both subtypes of
brain diffuse gliomas to assess imbalance in the data. In order
to prevent the classification error caused by data imbalance,
our method expands the sample set by rotating the original
image in symmetrical and asymmetrical directions. The balanced
samples are then sent to a CNN classifier network, which is
trained to fully recognize the tissue and cell characteristics of
oligodendroglioma and astrocytoma (see Figure 8). The method
uses the VGG16 CNN network (Simonyan and Zisserman, 2014).
We use data augmentation and add dropout layers or batch
normalization layers to the classification model to reduce the risk
of overfitting the model.

The classification model for radiology images is shown in
Figure 9. Radiology images are pre-processed using methods
from the SPM12 software (Penny et al., 2011). The methods
include Realign, Estimate, and Re-slice to register data of the same
modality in different cases; Co-register and Estimate and Re-slice
to register different modal data of the same case; and Segment
and ImCalc to extract the intracranial cavity. The pre-processed
images are then segmented using the U-Net (Ronneberger et al.,
2015) segmentation network. Patches with tumor, which are
predicted by the segmentation network, are used as training data
for a 2D Densenet (Huang et al., 2017) network. We classify each
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FIGURE 8 | The flow of the entire method. Among them, we slice the entire pathological data and extract the effective diseased area as much as possible. The

active learning strategy follows our work in Qi et al. (2018). The goal of that work is to maximize learning accuracy from very limited labeling data. The classification

model is updated iteratively with an increasing training set. The sliced pathological data are sent to a convolutional neural network to obtain the discrimination results

of the pathological data. The radiological data are sent to the Unet and CNN to obtain classification results after preprocessing. Finally, the results are combined via a

weighted average operation to obtain the final result.

Realign and 

Coregister
Skull stripping

U
-N

e
t

    CNN     VoteOutput

FIGURE 9 | The classification process of radiology images. The process aligns the images of different modalities through realignment and co-register, extracts brain

tissue through skull stripping, extracts lesion area by the U-Net, and classifies cases by CNN.

patch, set the threshold value of 0.99, and select effective patches.
The ensemble of multiple patches can effectively improve the
robustness of the classifier.

Classification results from the radiology image dataset and the
pathology image dataset are combined via a weighted average
operation (see Figure 8):

ŷ = α
∗f (Xp) + (1 − α)∗g(Xr)

where the classifiers for pathology data and radiology data, Xp

and Xr are VGG16 and DenseNet, respectively. f (•) and g(•)

represent the probabilities acquired from softmax function in Xp

and Xr. The weight α is empirically estimated in predicting the
final classification label ŷ.

EXPERIMENTAL RESULTS

Segmentation of Nuclei
The Mask-RCNN model with ResNet-101 backbone obtained
the 45.02% mean IOU (mIOU) on fivefold validation dataset.
mIOU is the average precision score for each IOU with different
thresholds (from 0.05 to 0.95 in the challenge). Tissue images with
nuclei detections and segmentations are illustrated in Figure 10.
A Dice score of 0.868 was achieved with the test dataset.

Classification of Cancer Cases
On testing the algorithms on a dataset containing 20 radiology
and pathology images, the three methods in Section “Methods
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FIGURE 10 | Segmentation result in validation dataset. The left column

shows tissue images. The middle column is ground truth masks. The right

column shows results from the segmentation method.

for Classification of Brain Cancer Cases” achieved the accuracy
scores (i.e., the number of correctly classified cases divided by the
total number of cases) as shown in Table 1.

DISCUSSION AND CONCLUSION

Biomedical imaging has made great strides in image resolution
and image capture speeds over the past decade. Radiology has
enjoyed a widespread adoption for many years in both research
and clinical settings. New imaging technologies are now allowing
researchers to capture larger volumes of more detailed radiology
data. Digital microscopy scanners were emerging technologies
about 20 years ago. They required constant attention to capture
sharp images of tissue and took many hours to scan a tissue
specimen at moderate magnification levels. Nowadays, hundreds
of slide tissues can be automatically imaged in several minutes.
New scanning technologies and tissue staining methods are
enabling researchers to capture richermorphological information
at unprecedented resolutions. We anticipate that the FDA’s
approval in 2017 of WSIs as a primary diagnostic tool will
fuel a rapid increase in adoption of virtual slide technologies
by researchers and clinicians. Combined with cheaper storage
space, more powerful computing capabilities (via multi-core
CPUs and accelerators such as graphics processing units), and
Cloud computing infrastructures, biomedical imaging is rapidly
becoming an essential tool in cancer research.

On the image analysis front, deep learning methods have
seen a tremendous intake from the imaging community. These
methods have demonstrated excellent results in the analysis

TABLE 1 | Accuracy scores of the classification methods presented in Section

“Methods for Classification of Brain Cancer Cases.”

Method Score

Section “An Approach for Classification Of Low-Grade

Gliomas Using Combined Radiology and Pathology Image

Data”

0.90

Section “Dropout-Enabled Ensemble Learning for

Multi-Scale Biomedical Image Classification”

0.80

Section “A Weighted Average-Based Classification Method” 0.75

of natural images. A rapidly growing collection of efforts are
adapting these methods and extending them in innovative ways
for application in biomedical image analysis. The segmentation
method presented in this work shows the use of Mask-RCNN
along with a non-maximum suppression (NMS) module for
robust segmentation of nuclei in WSIs. The image classification
methods employ a variety of deep learning methods and combine
information from both radiology and pathology images to
improve classification accuracy. All the methods described in this
paper were evaluated with image ground truth data generated
in the MICCAI CPM 2018 challenge (organized by a subset of
the co-authors as denoted in the author list). The experimental
results for nucleus segmentation show that high performance
(i.e., high Dice scores) can be achieved by integrated use of
Mask-RCNN and NMS for nucleus segmentation. The results
for the classification methods show that a carefully assembled
set of pipelines for each imaging modality and combination
of prediction results from individual models can produce high
classification accuracy.

While our work and works by other research teams have
shown significant progress with more accurate, efficient, and
robust image analysis algorithms, there remain challenges. One of
the major challenges in machine learning analysis of biomedical
imaging data is the lack of large curated and annotated training
datasets, primarily because of time effort and domain expertise
required for manual segmentations and classifications of tissue
regions and micro-anatomic structures, such as nuclei and
cells, as well as because of privacy and ownership concerns of
source datasets. Some initial studies in the field of distributed
learning in medicine attempted to address the data privacy
and ownership challenge (Chang et al., 2018b; Sheller et al.,
2018). These approaches need more investigation and adoption
to facilitate collaboration across multiple medical institutions.
Some projects have looked at the use of synthetic training
datasets. Mahmood et al. (2018), for example, devised a method
based on a conditional generative adversarial network (GAN)
to improve deep learning-based segmentation of nuclei. Their
method trains segmentationmodels using synthetic and real data.
The authors employed a cycle GAN method to generate pairs of
synthetic image patches and segmentation masks with varying
amounts of touching and clumped nuclei. Such nuclei are difficult
to segment by automated algorithms. In another work, Hou
et al. (2019a) proposed a GAN architecture for the generation
of synthetic tissue images and segmentation masks. The GAN
architecture consists of multiple CNNs; a set of CNNs generates
and refines synthetic images and masks to reference styles, and
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another CNN is trained online with these images and
masks to generate a segmentation model. Another GAN
approach was proposed by Senaras et al. (2018b) for tumor
grading. The GAN network generates synthetic image
datasets with known amounts of positive and negative
nuclei in immunohistochemistry-stained tissue specimens
(Senaras et al., 2018b).

Another major challenge in automated biomedical image
analysis is the quality assessment of input datasets and analysis
results. This also is a time-consuming and labor-intensive
task, as automated algorithms can process large numbers of
images and generate large volumes of analysis output to be
reviewed and validated, thanks to advances in computing
systems. There is a need to automate the quality assessment
and validation processes. Some projects are looking at this
problem. A recent work by Senaras et al. (2018a) used deep
learning methods to detect out-of-focus regions in WSIs so that
image analysis pipelines can avoid such regions. An approach
proposed by Wen et al. utilized multiple machine learning
methods, namely, SVM, random forest, and CNN, to assess the
quality of nuclear segmentation results. The proposed approach
made use of texture and intensity features extracted from
image patches in a WSI to train the quality control models
(Wen et al., 2017, 2018).

As our capability to capture complex radiology and pathology
image data more rapidly and at higher resolutions evolves,
manual training data generation and quality evaluation will
become increasingly infeasible. We expect that (semi-)automated
approaches, for training data generation, for assessing the
quality of data and analysis results, and for iterative refinement
of deep learning models, will become important tools in a
researcher’s and clinician’s imaging toolset. We also believe
image analysis challenges, such as the MICCAI 2018 CPM
challenge, are important in efforts to develop more robust
methods for image analysis and method assessment and
validation. One of the issues that face machine/deep learning
algorithm developers is the limited amount of ground truth
datasets in biomedical imaging—the small dataset size is
a limitation in our work as well. Thus, in addition to
providing a platform for researchers to evaluate their methods
in a controlled environment, image analysis challenge events
contribute to a growing set of curated datasets that are

valuable resources for development and refinement of future
segmentation and classification algorithms. As part of our work,
we make the datasets used in this challenge available to other
researchers upon request.
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