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Abstract: We present a search for the dark photon A′ in the B0 → A′A′ decays, where

A′ subsequently decays to e+e−, µ+µ−, and π+π−. The search is performed by ana-

lyzing 772 × 106 BB events collected by the Belle detector at the KEKB e+e− energy-

asymmetric collider at the Υ(4S) resonance. No signal is found in the dark photon mass

range 0.01 GeV/c2 ≤ mA′ ≤ 2.62 GeV/c2, and we set upper limits of the branching frac-

tion of B0 → A′A′ at the 90% confidence level. The products of branching fractions,

B(B0 → A′A′) × B(A′ → e+e−)2 and B(B0 → A′A′) × B(A′ → µ+µ−)2, have limits of the

order of 10−8 depending on the A′ mass. Furthermore, considering A′ decay rate to each

pair of charged particles, the upper limits of B(B0 → A′A′) are of the order of 10−8–10−5.

From the upper limits of B(B0 → A′A′), we obtain the Higgs portal coupling for each

assumed dark photon and dark Higgs mass. The Higgs portal couplings are of the order of

10−2–10−1 at mh′ ≃ mB0 ± 40 MeV/c2 and 10−1–1 at mh′ ≃ mB0 ± 3 GeV/c2.

Keywords: B physics, Beyond Standard Model, e+-e- Experiments, Rare decay
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1 Introduction

The validity of the Standard Model (SM) has been confirmed by various experimental

measurements [1], but it is also known that the SM is incomplete and cannot explain

several phenomena occurring in nature, e.g. neutrino oscillations [2, 3] and the baryon

asymmetry [4]. A possible way to explain the above problems while keeping the internal

structure of the SM unaffected is to introduce a dark sector [5] that interacts with the SM

particles only very weakly. For example, a vector mediator of hypothetical U ′(1) gauge

interaction in the dark sector, the so-called dark photon, may interact with matter through

various portals with a small coupling strength [6–8]. Such a model of the dark sector with

portal interaction to the SM could explain the muon g−2 anomaly [9–12], baryogenesis [13],

and high energy positron fraction anomaly in cosmic rays [14–18].

In this paper, we report a search for the dark photon A′, in the decays of B0 mesons

by analyzing the e+e− collision data from the Belle experiment. In particular, we study

B0 decays into a pair of dark photons, B0 → A′A′, which are mediated by an off-shell

dark Higgs h′ [5] (figure 1), wherein we scan the A′ mass range between 0.01 GeV/c2

and 2.62 GeV/c2 in 10 MeV/c2 (mA′ < 1.1 GeV/c2) and 20 MeV/c2 (mA′ > 1.1 GeV/c2)

intervals. Throughout the paper, the charge-conjugate modes are always implied. In this

paper, we restrict ourselves to the hypothesis that all dark-sector particles coupling to

A′ are heavier than A′, therefore the latter can only decay to SM particles. Moreover, we

assume that the A′ decays promptly. In the kinematic range of this analysis, the allowed A′

decay are to e+e−, µ+µ−, or hadronic final states. Lepton-flavor-violating decays [19, 20]

A′ → e±µ∓ are not considered in this analysis.

– 1 –
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Figure 1. A possible diagram of B0 → A′A′ decay through off-shell Higgs-dark Higgs mixing

indicated by the shaded circle.

1.1 Branching fraction of dark photon decay

In order to obtain B(B0 → A′A′) from the analysis of the decays into the final states

considered, we need to know the branching fractions of A′ to a particular final state.

Below the τ+τ− threshold, the branching fraction of the dark photon that is consistent

with our hypothesis is obtained as

B(A′ → ℓ+ℓ−/π+π−) =
ΓA′→ℓ+ℓ−/π+π−

ΓA′→e+e− + ΓA′→µ+µ− + ΓA′→hadrons
, (1.1)

where ℓ = e or µ. Following ref. [21], we write down the partial widths to ℓ+ℓ− and hadrons

as

ΓA′→ℓ+ℓ− =
1

3
αε2

mixmA′

√

1 − 4m2
ℓ/m

2
A′(1 + 2m2

ℓ/m
2
A′),

ΓA′→hadrons = ΓA′→µ+µ− ×R(s = m2
A′),

(1.2)

with the square of the total center-of-mass (CM) frame energy s, the kinetic mixing pa-

rameter εmix, and R(s) =
∑

e+e−→hadrons /
∑

e+e−→µ+µ− which is determined by various

experiments [1]. The branching fraction of A′ → π+π− is then obtained as [22]:

B(A′ → π+π−) = B(A′ → hadrons) ×
∑

(e+e− → π+π−)/
∑

(e+e− → hadrons). (1.3)

1.2 The SM expectation of B0 decays to four charged leptons

The B0-decay final states that we analyze are e+e−e+e−, e+e−µ+µ−, µ+µ−µ+µ−,

e+e−π+π−, and µ+µ−π+π−. In the SM, branching fractions of B0-meson decays to four-

charged-lepton final states are expected to be O(10−12) [23]. Due to the low SM signal

and background yields expected, these multileptonic B-meson decay channels can be a

sensitive probe for dark sector bosons. The LHCb experiment has set an upper limit

B(B0 → µ+µ−µ+µ−) < 6.9 × 10−10 at 95% confidence level (C.L.) [24] and measured

B(B0 → µ+µ−π+π−) = (2.1 ± 0.5) × 10−8 [25].

– 2 –
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2 The Belle detector

Our analysis is based on the full 711 fb−1 integrated luminosity of the Υ(4S) data set

from the Belle detector [26, 27] at KEKB e+e− energy-asymmetric collider [28, 29]. The

Belle detector consists of seven subdetectors with 1.5 T magnetic field along the beam

axis. Inside the coil, there are the silicon vertex detector, the central drift chamber (CDC),

the aerogel threshold Cherenkov counters (ACC), the time-of-flight scintillation counters

(TOF), and the electromagnetic calorimeter (ECL). In the return yoke outside the coil, a

K0
L meson and muon detector (KLM) is instrumented.

We perform a blind search in this analysis, for which we generate Monte Carlo (MC)

simulation samples using EvtGen [30] for event generation and GEANT3 [31] for detector

simulation. Signal efficiencies are determined from the signal MC set, where one million

events are generated for each signal mode and dark photon mass. The event shape and

amount of the background events are studied by using generic MC samples simulating

e+e− → Υ(4S) → BB and e+e− → qq̄ (q = u, d, s, c) (‘continuum’) processes. The size of

MC samples for Υ(4S) and continuum simulation corresponds to 10 and 6 times that of

real data, respectively.

3 Signal event selection

To select signal events, we retain tracks satisfying the following track reconstruction quality

requirements. Because we assume prompt dark photon decays, all tracks are required to

originate from near the interaction point (IP). In particular, each track should satisfy the

following conditions on the impact parameters in the transverse and longitudinal directions,

dr < 0.2 cm and |dz| < 3.0 cm, respectively. The impact parameters are calculated using

the beam IP and track helix, and the z-axis is aligned opposite the direction of positron

beam. We also require a good track fit based upon χ2 per degree of freedom (Nd.o.f.) by

accepting only the tracks with χ2/Nd.o.f. < 5.

The species of the charged particles are identified by considering the likelihood ratios.

Muons are identified by requiring Lµ/(Lµ + LK + Lπ) > 0.9, where the likelihood Lj (j =

µ,K, π) [32] is constructed by the hit position and penetration in the KLM. Electrons

are required to meet Le/(Le + Lnot-e) > 0.9 where the likelihood Lj (j = e,not-e) [33]

is determined by dE/dx from the CDC, ratio of the ECL cluster energy to the matched

track momentum, shower shape of the ECL cluster, and the ACC photoelectron response.

Charged pions and kaons are identified by the likelihood [34] using the dE/dx from the

CDC, the ACC photoelectron response, and the time-of-flight information from the TOF.

The tracks with Lπ/(LK + Lπ) > 0.4 are identified as pions.

To recover energy losses by e± candidates due to bremsstrahlung, radiative photons

are added to the electron momentum if they fall within a 0.05 radian cone around the e±

direction. We require these photons to exceed an energy threshold that depends on the

ECL region: Eγ > 50 (barrel), 100 (forward endcap), and 150 (backward endcap) MeV.

The dark photon candidate is reconstructed in the following modes: A′ → e+e−, µ+µ−,

and π+π−. For B0 → e+e−e+e− and µ+µ−µ+µ− modes, we have an ambiguity between

– 3 –
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(ℓ+1 ℓ
−
1 )(ℓ+2 ℓ

−
2 ) and (ℓ+1 ℓ

−
2 )(ℓ+2 ℓ

−
1 ), where the lepton pair from a single A′ decay is indicated

in parentheses. To find a single dark photon combination per event, we choose that corre-

sponding to the smallest invariant mass difference of dark photon candidates, ∆MA′ .

Finally, B0 candidates are reconstructed from two dark photon candidates. To extract

signal events from data, we use the following five variables, defined in the CM frame: Mbc,

∆E, Emiss, ∆MA′ , and
∑

δMA′ . Mbc ≡
√

(
√
s/2)2 − ~p2

B is the beam-energy-constrained

mass, where ~pB is the momentum of the reconstructed B0. ∆E ≡ EB0 − (
√
s/2) is the

difference between the B0-candidate energy and the beam energy (=
√
s/2), and Emiss is

the missing energy, Emiss ≡ √
s − ∑

j Ej where the index j is for all charged and neutral

particles in the event. The missing energy is useful to reduce combinatorial background

due to multiple semileptonic decays from b → cℓ−ν̄ℓ and c → (s, d)ℓ+νℓ for both B and

B. For the two dark photon candidates in an event, we calculate ∆MA′ ≡ |MA′
1

− MA′
2
|

and
∑

δMA′ ≡ |(MA′
1

− mbin
A′ ) + (MA′

2
− mbin

A′ )|, where MA′
j

is the reconstructed mass of

A′
j (j = 1, 2) and mbin

A′ is the nominal A′ mass for a particular bin of mA′ .

For the signal event selection, we require Mbc > 5.27 GeV/c2 and Emiss < 3.5 GeV for

all modes. Considering the energy loss from e±, ∆E requirements are chosen separately

for different modes: −0.2 GeV < ∆E < 0.05 GeV for B0 → e+e−e+e−, −0.1 GeV < ∆E <

0.04 GeV for B0 → e+e−µ+µ− and e+e−π+π−, and −0.03 GeV < ∆E < 0.03 GeV for

B0 → µ+µ−µ+µ− and µ+µ−π+π−. We use ∆MA′ and
∑

δMA′ to set the search window

for each mbin
A′ and the final-state mode. The requirements on these variables depend on both

mbin
A′ and the number of electrons in the final state. For mbin

A′ > 0.1 GeV/c2, we require

∆MA′(
∑

δMA′) < 0.06 × mbin
A′ + 0.03 GeV/c2 for B0 → e+e−e+e−, ∆MA′(

∑

δMA′) <

0.03 × mbin
A′ + 0.01 GeV/c2 for B0 → e+e−µ+µ− and e+e−π+π−, and ∆MA′(

∑

δMA′) <

0.01 × mbin
A′ + 0.01 GeV/c2 for B0 → µ+µ−µ+µ− and µ+µ−π+π−. The above conditions

are determined so that if we consider the distribution of ∆MA′ the upper edge of the

accepted region has a value of nearly 3–5% of the peak value. In addition, we make use

of the approximately linear increase of the ∆MA′ width as a function of mbin
A′ . We choose

the same selection for
∑

δMA′ since the distribution is almost the same as ∆MA′ . For

mbin
A′ ≤ 0.1 GeV/c2, we apply slightly different selection conditions for ∆MA′ and

∑

δMA′ ,

while requirements on Mbc and ∆E remain the same as for mbin
A′ > 0.1 GeV/c2. We do not

use Emiss for mbin
A′ ≤ 0.1 GeV/c2, because for such low-mass dark photons, little background

is expected from generic B decays. For mbin
A′ ≤ 0.1 GeV/c2, the resolutions of both ∆MA′

and
∑

δMA′ are nearly independent of mbin
A′ . Therefore, we require ∆MA′ < 0.02 GeV/c2

and
∑

δMA′ < 0.02 GeV/c2 for all mA′ ≤ 0.1 GeV/c2. From the MC study, our ∆MA′

selections in A′ → µ+µ− and π+π− cover roughly ±2.5 times the mass resolution. In case

of A′ → e+e−, the mass resolution is worse, and our selections correspond to ±(1.7 − 2.5)

times the mass resolution, depending on mA′ . For instance, the MA′ resolution of the

1.5 GeV dark photon is about 5 MeV for A′ → µ+µ− or π+π−, while for A′ → e+e− it is

about 20 MeV. The union of the search windows determined using ∆MA′ and
∑

δMA′ for

all mbin
A′ covers the entire dark photon mass range of our study without any gap.

The dominant SM background sources for ℓ+ℓ− pairs are photon conversion and char-

monium meson decays, mostly J/ψ and ψ(2S). To reduce the background events from pho-

– 4 –
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ton conversion, e+e− pairs with Me+e− < 0.1 GeV/c2 are rejected when we search for mA′ >

0.1 GeV/c2. On the other hand, this veto is not applied for the searches in the region mA′ ≤
0.1 GeV/c2. To suppress the lepton pairs from charmonium decays such as J/ψ or ψ(2S) →
ℓ+ℓ−, we reject two regions: 3.00(3.05) GeV/c2 < Me+e−(µ+µ−) < 3.15(3.13) GeV/c2 for

J/ψ and 3.60(3.65) GeV/c2 < Me+e−(µ+µ−) < 3.75(3.73) GeV/c2 for ψ(2S).

For the charged pion pairs, there is strong background from light mesons, such as K0
S ,

ρ0, and f0(980). Because of possible K–π misidentification, K∗0, φ and so on are also

a source of possible background. Since production of such mesons is copious, especially

that of ρ0 mesons, we reject the 0.45 GeV/c2 < Mπ+π− < 1.1 GeV/c2. Another source

of pion pairs is D0 meson. Two decay channels, D0 → π+π− and D0 → π+K− are

considered. A direct D0 veto is applied by removing π+π− combinations which satisfy

1.85 GeV/c2 < Mπ+π− < 1.88 GeV/c2. The other decay channel, D0 → π+K−, can

mimic the signal via K–π misidentification. We reject these events by discarding the

1.85 GeV/c2 < Mπ+K− < 1.88 GeV/c2 mass range.

After signal selection, most of the combinatorial background is in the B0 → ℓ+ℓ−π+π−

mode, coming from the continuum processes e+e− → qq̄ (q = u, d, s or c). In the four-lepton

mode, on the other hand, there is almost no background left. The continuum background

is suppressed via multivariate analysis (MVA) using the Fisher discriminant [35] method

in the TMVA [36] package. We make use of 16 event shape variables: the cosine of

angle between the beam axis and B0 momentum (cos θB), the cosine of angle between the

thrust axis of the B0 daughters and that of the rest of the event (cos θT), and the Fisher

discriminant components of modified Fox-Wolfram moments [37]. The MVA training is

performed for the ℓ+ℓ−π+π− final state for each mbin
A′ , using the signal and continuum

MC. We apply MVA selection creteria to retain from 75% to 90% of signal and from 10%

to 30% of continuum background, depending on mA′ and final state.

4 Systematic uncertainties

We determine the branching fraction of B0 → A′A′ as

B(B0 → A′A′) =
Nobs −Nbkg

ǫ× 2 ×NBB × B0
, (4.1)

where B0 is the branching fraction of Υ(4S) → B0B
0
, of which the current world-average

value is 0.486 ± 0.006 [1], Nobs is the yield, Nbkg is the number of expected background

events determined from MC, ǫ is the signal reconstruction efficiency considering branching

fraction of A′ subdecays, and NBB = (772 ± 11) × 106 is the number of BB pairs which

are collected by the Belle detector.

The most important source of systematic uncertainties is the signal reconstruction

efficiency, which is obtained by MC. The sources of uncertainty include the statistical error

in the signal MC, track reconstruction efficiency, particle identification (PID) efficiency,

and uncertainties in the MVA method used to suppress continuum background for

ℓ+ℓ−π+π− final states. The uncertainties for NBB and B0 also contribute to systematics.
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Figure 2. Relative uncertainty of signal reconstruction efficiency for each A′ mass and final state.

The uncertainties due to background estimation are very small compared to other

systematic uncertainties.

Track reconstruction efficiency is studied using the decay chain D∗+ → D0π+, D0 →
K0

Sπ
+π−, and K0

S → π+π− where we tag all the charged tracks in the chain but one from

K0
S decays (‘test track’) then try to find the test track. We compare the tracking efficiency

difference of the test track for both data and MC. The error is 1.4%, independent of the

dark photon mass and final state.

The PID correction is applied to each daughter electron, muon, and pion. The lepton

(pion) identification correction is studied using the difference between MC and data for the
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process γγ → e+e−/µ+µ− (D∗+ → D0π+
slow → K−π+π+

slow), and the errors are approxi-

mately 2% (1%) per lepton (pion), with the resulting correction factor being about 90%.

The exact correction factor and uncertainty depend on mA′ through different kinematics.

The MVA correction factor and uncertainty are studied using the control mode,

B0 → J/ψK∗0 → e(µ)+e(µ)−π−K+. We apply MVA training results for the contin-

uum suppression of ℓ+ℓ−π+π− modes for each assumed value of mA′ to B0 → J/ψK∗0 MC

and data. We then calculate the double ratio (Ndata,A/Ndata,B)/(NMC,A/NMC,B), where

Ndata(MC),B and Ndata(MC),A are the number of signal candidates in data(MC) before and

after MVA training application, respectively. The systematic uncertainty due to MVA

training is taken from the uncertainties in the double ratio, and these uncertainties are

approximately 2% at all values of mA′ .

After multiplying all correction factors, signal efficiencies are mostly 5 − 20%. The

efficiencies increase as the A′ mass approaches 0 or mB0/2, in which case both e± (µ±)

from the A′ decays are more likely to exceed the energy threshold for ECL (KLM) detection.

The summary of signal-efficiency-related systematic uncertainties is shown in figure 2, and

the total systematic uncertainties are 7.5–10% for e+e−e+e− and µ+µ−µ+µ− final states

and 5–7.5% for e+e−µ+µ−, e+e−π+π−, and µ+µ−π+π− final states.

5 Results

Figure 3 shows the number of B0 → A′A′ candidate events. There are no events observed

in any bin in the e+e−µ+µ− and µ+µ−µ+µ− mode, while we find Nobs ≤ 2 events for

e+e−e+e−, e+e−π+π−, and µ+µ−π+π− modes. The yields are consistent with the expected

number of background events and we set the upper limits at 90% C.L.

For the limits of B(B0 → A′A′), we combine the number of expected background

events, signal candidates in data, and signal reconstruction efficiencies of the five final

states. The combined numbers of expected background events and signal candidates in

data are calculated by simply adding the results for the individual final states. For the

signal efficiencies, we first obtain the ratio Ff ≡ B(B0 → A′A′ → f)/B(B0 → A′A′),

where f is each final state, using eq. (1.1). In case of e+e−µ+µ−, for example, Fe+e−µ+µ−

is 2 × B(A′ → e+e−) × B(A′ → µ+µ−). The graph of Ff is presented in figure 4.

With this ratio Ff , the combined efficiency is determined as
∑

f ǫfFf where ǫf is the

signal efficiency of the final state f . The upper limits are calculated using the POLE

program [38], which is based on the Feldman-Cousins unified approach [39]. We report

the limits on the products of branching fractions B(B0 → A′A′) × B(A′ → e+e−)2

and B(B0 → A′A′) × B(A′ → µ+µ−)2, as well as the limits on B(B0 → A′A′). For

B(B0 → A′A′), we use eq. (1.1) to combine the five final states. The upper limits of

B(B0 → A′A′) are obtained in the mass range 0.01 GeV/c2 ≤ mA′ ≤ 1.10 GeV/c2 with

10 MeV/c2 bin and 1.10 GeV/c2 ≤ mA′ ≤ 2.62 GeV/c2 with 20 MeV/c2 bin.

The obtained limits are shown in figure 5 as functions of mA′ . The limits on the

products of branching fractions are O(10−8) for both modes and in all mA′ bins. For

B(B0 → A′A′), the upper limits are O(10−8)–O(10−5). Due to the light meson veto in

the ℓ+ℓ−π+π− final states and the large fraction of A′ → hadrons in the veto region from
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Figure 3. The number of B0 → A′A′ candidate events for each final state.
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Figure 4. B(B0 → A′A′ → f)/B(B0 → A′A′) distributions for each final state and dark pho-

ton mass. e+e−π+π− and µ+µ−π+π− distributions are almost the same for the whole region.

e+e−e+e− and µ+µ−µ+µ− distributions are the same and e+e−µ+µ− distribution is twice that of

four-electron or four-muon final states in the region mA′ > 0.5 GeV/c2.
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Figure 5. Upper limits of B0 → A′A′ branching fraction at 90% C.L.

eq. (1.1), the upper limits near the masses of ρ0 and φ mesons are less restrictive than

others. Table 1 lists the signal efficiency, the expected number of backgrounds and number

of observed events (Nobs) for some of mA′ .
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Figure 6. 90% upper limits of the Higgs portal coupling (λ) versus the dark photon mass for a

2.00, 4.00, 5.24, 8.00 GeV/c2 dark Higgs.

The B0 → A′A′ branching fraction with off-shell H–h′ mixing, for all but the mh′ ∼
mB0 region, is calculated as [5],1

B(B0 → A′A′) ≃ 7 × 10−7 × λ2 × V
1/2

A′A′ × VA′A′ + 12m4
A′/m4

B0

(1 −m2
h′/m2

B0)2
(5.1)

where λ is the Higgs portal coupling with a new scalar field H ′ from LHiggs =

−λ(H†H)(H ′†H ′) and VA′A′ = 1 − 4m2
A′/m2

B0 . From eq. (5.1) and the limits on

B(B0 → A′A′), we determine the 90% C.L. upper limits on λ versus mA′ (figure 6) and mh′

(figure 7). In the region where mh′ ≃ mB0 , the upper limit on λ gets as low as O(10−2).

Otherwise, the upper limits are O(10−1)–O(1).

6 Conclusions

In summary, we have searched for B0 → A′A′ decays for the first time using the full data

set of 772 × 106 BB events of Belle. We restrict our study to the case where A′ decays

promptly to e+e−, µ+µ−, or hadronic final states, and consider five final states of B0 which

are e+e−e+e−, e+e−µ+µ−, µ+µ−µ+µ−, e+e−π+π−, and µ+µ−π+π−. From the branching

fraction of A′, the five B0 final states are merged to determine the branching fraction of

B0 → A′A′. We find no significant signal in any assumed A′ mass and decay mode, so

we determine upper limits on B(B0 → A′A′) × B(A′ → e+e−)2, B(B0 → A′A′) × B(A′ →
µ+µ−)2 and B(B0 → A′A′), each at 90% C.L. The limits on the products of branching

1B. Batell, private communication on the numerical factor of eq. (5.1) of ref. [5], when we apply B
0-

meson-related variables instead of Bs-meson and the measured Higgs mass.

– 11 –
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Figure 7. 90% upper limits of the Higgs portal coupling (λ) versus the dark Higgs mass for the

0.02, 0.24, 1.00, 2.00 GeV/c2 dark photon.

fractions are of the order of O(10−8), while the limits on B(B0 → A′A′) are O(10−8)–

O(10−5). We also set 90% C.L. upper limits on the Higgs portal coupling λ for each

assumed value of mA′ and mh′ . The upper limits on λ are of the order of 10−2–10−1 at

mh′ ≃ mB0 ± 40 MeV/c2 and 10−1–1 at mh′ ≃ mB0 ± 3 GeV/c2. With minor modifications

our analysis can be used to set limits on the other new physics models which include

prompt B0 → XX and X → ℓ+ℓ−/π+π− decays. We expect to have much more stringent

results from the Belle II experiment [40, 41], with nearly two orders of magnitude increase

in statistics, in the future.
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