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Detailed theory on a method of analysis of kinetic data based on sample size autocorrelation

function was developed to identify the presence of reaction path heterogeneity based on the master

equation approach. The behavior of such functions under ideal conditions as well as under

heterogeneity conditions was discussed and some of the potential applications of this method have

been summarized. Application of this theory to renaturation kinetics of DNA not only revealed the

presence of path heterogeneity in the second zipping phase and quantified it but also proved that it

was due to nonreactive modes of dynamics on conformational energy landscape, which agreed well

with earlier studies. © 2002 American Institute of Physics. @DOI: 10.1063/1.1503335#

INTRODUCTION

Analysis and interpretation of kinetic data is crucial from

ordinary chemical reactions involving simple molecules to

biological reactions involving complex macromolecules. In

the reactions involving simple molecules the so-called reac-

tion path heterogeneity will be negligible since most of the

molecules follow a single path between initial and final states

~generally it can be described by two-dimensional energy

diagrams where we keep free energy as ordinate and the

reaction coordinate as abscissa!. But is not easy to describe

the kinetics of macromolecules by such kind of simple two-

dimensional diagrams. Here we use generally the energy

landscape-funnels. The theory of such landscapes has already

been well developed and applied in problems such as protein

folding, etc.1–5 In such cases, normal analysis of kinetic data

will give only the estimate of average rate constants and thus

we cannot get any information regarding the path heteroge-

neity. The rate constants obtained from aforementioned sys-

tems have meaning only when the landscape funnel is sym-

metric and consists of only two levels without any significant

kinetic traps as they lead to bifurcation of paths with differ-

ent time scales. The usual kinetic analysis cannot resolve the

bifurcation phenomenon. A lot of work has already been

done to identify and follow the reaction paths.6,7 But there

was no general and experimentally applicable method to

identify and quantify the reaction path heterogeneity itself

just from simple kinetic data. Since this kind of analysis has

potential applications, especially in the studies involving

conformational transitions of biopolymers like protein and

DNA in the presence as well as the absence of molecular

chaperones, there is a need to develop a sensitive method of

analysis to interpret the kinetic data. In this article I present a

simple tool called as ‘‘sample autocorrelation analysis’’ to

analyze kinetic data for the presence of reaction path hetero-

geneity and also to quantify it. First, the formal theory will

be developed and subsequently some of its applications in

biological systems will be presented.

AUTOCORRELATION FUNCTION

Autocorrelation function that was first described by

Taylor8 can be defined as

G~t !5 lim
T→`

1

T
E

0

T

g~ t !g~ t1t !dt . ~1!

Equation ~1! will hold only for the continuous data points.

Since usually the experimental data points are discrete, the

following equation can be used to calculate the normalized

autocorrelation function:

G~t !5
^g i ,g i1t&

@^g i ,g i&^g i1t ,g i1t&#0.5

5

( i50
N2tg ig i1t2

S (
i50

N2t

g i (
i50

N2t

g i1t

N2t
D

sg i
sg i1t

, ~2!

where

sg i1t

2
5 (

i5t

N2t

g i5t
2

2

S (
i50

N2t

g i1tD
N2t

,

sg i

2
5 (

i50

N2t

g i
2
2

S (
i50

N2t

g iD 2

N2t
.

Here N is the total number of data points available, t is the

autocorrelation delay, NÞt , t,N , G(t)5G(2t), and

21<G(t)<1. The bracket notation in Eq. ~2! denotes av-

eraging with time. The commercial autocorrelators will gen-

erally keep N as a constant ~to its maximum! and construct

G~t! by slowly increasing the t value.

SAMPLE SIZE AUTOCORRELATION

From the last paragraph it is clear that autocorrelation is

a function of ‘‘autocorrelation delay’’ t. Suppose let us takea!Electronic mail: muruga@tifr.res.in; Fax: 191 22 215 2110/215 2181
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only first n data points out of N to calculate autocorrelation

as given by Eq. ~2! and call it ‘‘sample size autocorrelation

G(t ,n)’’ due to the fact that it is also a function of sample

size n. We can deduce the mathematical properties of such

function as follows: Any kinetic data ~e.g., time evolution of

a spectroscopic variable! contain two major components.

One is from the deterministic functional dependency ~for an

ideal situation it is just the solution of deterministic differen-

tial equation! and the other one is noise,

S~ t !5 f ~ t !1j~ t !. ~3!

Here, S(t) is the observed value, f (t) is the functional de-

pendence ~due to only reactive modes and d t f Þ0), and j(t)

is noise at time t. Here the so-called noise may enter in two

ways, namely from the instrument @e(t)# and from the reac-

tive system itself @h(t)# . Therefore we can encounter the

following two cases.

Case I: j(t)5e(t): j(t)5e(t) occurs when the system

under study is a simple @i.e., reactions that can be described

by two-dimensional energy diagrams or with unconnected

~probabilistic! conformational domains of reactant# one. We

assume that e(t) is an additive Gaussian noise with9 ^e&
50 and se

2'1/n for n>30 ~here n is sample size!,

^e i ,e i1t&50,^e , f &50. The normalized sample size autocor-

relation function corresponding to S(t)5 f (t)1e(t) can be

written as

G~t ,n !5
^S i ,S i1t&

@^S i ,S i&^S i1t ,S i1t&#0.5

5
^ f i1e i , f i1t1e i1t&

@^ f i1e i , f i1e i&^ f i1t1e i1t , f i1t1e i1t&#0.5 . ~4!

Expanding the terms present in the brackets in Eq. ~4!,

G~t ,n !5
^ f i , f i1t&1^e i ,e i1t&1^ f ie i1t&1^e i , f i1t&

@~^ f i , f i&1^e i ,e i&12^ f i ,e i& !3~^ f i1t , f i1t&1^e i1t ,e it&12^ f i1t ,e i1t& !#0.5 , ~5!

and since e and f are uncorrelated functions, Eq. ~5! simpli-

fies to

G~t ,n !

5
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lim
t→0

G~t ,n !5G~t0 ,n !5
^ f , f &t→0

^ f , f &t→01

1

n

. ~7!

And, it is easy to verify that

lim
n→`

G~t0 ,n !5G~t0 ,n !`
51. ~8!

Thus from Eqs. ~7! and ~8! we can conclude that if there is

only additive instrumental noise apart from reactive modes

or if conformational domains of reactants are not connected,

then the sample size autocorrelation of the kinetic data will

asymptotically attain unity with n.

Case II: j(t)5e(t)1h(t): Equation ~7! holds only for

an ideal situation where the degrees of freedom of the non-

reactive mode of dynamics is zero, which is certainly not

true in the case of macromolecules where the ~probabilistic!

conformational domains of reactants are strongly coupled by

nonreactive modes. This can be proved as follows: Since the

nonreactive mode of dynamics can be well described as a

two-dimensional random walk under zero potential, the cor-

responding Fokker–Planck equation for the probability dis-

tribution can be given as

] tP~x ,y ,t !5D~]x
2P~x ,y ,t !1]y

2P~x ,y ,t !!, ~9!

where D is the internal diffusion coefficient and this can be

written in polar coordinates ~taking only the radial terms! as,

] tP~r ,t !5DS ]r
2P~r ,t !1

1

r
]rP~r ,t ! D . ~10!

The formal solution to Eq. ~10! with initial condition as P

~0,0!51 ~by the method of separation of variables! can be

given as

P~r ,t !5J0~r !e2Dt. ~11!

Since 0<P(r ,t)<1, Eq. ~11! is valid only up to first zero of

the Bessel’s function J0(r). Therefore the range of r can be

given as, 0<r<r0
1, where J0(r0

1)5(0)1 . Suppose if the ini-

tial position of the ith conformation is r i , then Eq. ~11! can

be rewritten as @here r i<r<(r0
1
1r i)],

P i~r ,t !5J0~r i2r !e2Dt. ~12!

When r is sufficiently large Eq. ~10! can be approximated as

follows:

] tP~r ,t !5D~]r
2P~r ,t !!. ~13!

This is a well-known radial-diffusion equation, which has

solution in terms of Gaussian functions ~with mean 5r08 and

variance 52Dt) as

P i~r ,t !5S 1

2ApD~ t2t0!
D e @~r2r

08!2/4D~ t2t0!#. ~14!

According to the theory of normal distribution,

*
r

0
i

r512Dt
P i(r ,t)dr'0.99 and thus we can say that two con-

figurational domains j and i at time t5t0 are practically not

connected if ur0
i
2r0

j u>12Dt0. But even though the afore-

mentioned condition is true and the domains are not con-

nected at t5t0, since the variance 52Dt is a function of
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time, after certain time tr of evolution, the inequality will be

reversed (ur0
i
2r0

j u<12Dtr) and thus domains j and i will be

connected. Thus nearly all the subdomains of configurational

space are not only connected but also overlapping. The over-

lapping area gives the transition probability between these

two configurations,

l i j5E
re

`

~P i~r ,t !1P j~r ,t !!dr , ~15!

where re(r0
i
1r0

j )/2 and 0<l i j<1.

It is very easy to verify that l i j5l j i , which satisfies the

condition of detailed balance! Generally reaction path het-

erogeneity arises due to lateral diffusion on the potential en-

ergy landscape. If this lateral diffusivity is very high ~i.e., if

conformations are in rapid equilibration!, the heterogeneity

in the reaction path will disappear ~therefore path heteroge-

neity and lateral diffusivity are negatively correlated!!. This

is due to the fact that strongly connected conformational do-

mains evolve almost coherently with time, which is depicted

schematically in Fig. 1~b!. Therefore the presence of the re-

action path heterogeneity can be indirectly checked by the

estimation of fluctuations due to nonreactive models. If these

fluctuations are high, then we can conclude that path hetero-

geneity is low and vice versa. In this case, Eq. ~3! becomes

as follows:

S~ t !5 f ~ t !1h~ t !1e~ t !, ~16!

where h(t) is an additive fluctuation component due to non-

reactive modes of conformational transitions. In this article

we consider only simple cases, where the conformational

transition probabilities are constants. The mean and variance

of h(t) of such systems can be calculated as follows: Let

there be M number of molecular conformations initially at a

given energy level and the transition probabilities from (x

21)th conformation to xth conformation in an infinitesimal

time Dt , assuming equal initial probability, can be given as

follows:

Prob~x21 !→x ,t)5lDT ,

~17!
Prob~x→ ,x ,t !512lDT .

The birth–death master equation corresponding to system

~17! becomes as,

] tP~x ,t !5lP~x21,t !2lP~x ,t !. ~18!

Equation ~18! can be simply solved by the method of gener-

ating functions10 as follows:

Let, G~s ,t !5 (
x50

M

sxP~x ,t !. ~19!

Putting Eq. ~19! in Eq. ~18!, and using G(s ,0)

5(1/M )(x50
M sx as due to the fact that

P~x ,0!5

1

M
, for 0<x<M ,

] tG~s ,t !5l~s21 !G~s ,t !, ~20!

G~s ,t !5el~s21 !t S 1

M (
x50

M

sxD . ~21!

Then the conformational probability distribution becomes as

P~x ,t !5

e2lt

M
S (

i50

x
[lt] i

i!
D . ~22!

Equation ~22! clearly shows that the probability of finding a

conformation sufficiently away from the initial position is

not effected ~independent of time!!, i.e., limx→` P(x ,t)

51/M and this also indicates a lateral diffusion on the con-

figurational energy landscape. Here the magnitude of diffu-

sivity is solely depending on the parameter l, which can be

interpreted as the connectedness of configurational domains.

Since l and reaction path heterogeneity are negatively cor-

related ~i.e., path2heterogeneity }1/l!, if 1!l, due to rapid

diffusion ~or equilibrium!, reaction path heterogeneity will

disappear ~i.e., all the conformations evolve almost identi-

cally with time! and for 1@l, the path becomes fully hetero-

geneous and tend to even bifurcate ~i.e., conformational do-

FIG. 1. ~a! Here X1•••X5 are the conformations evolving independently

towards N ~therefore the path is heterogeneous!, which is the end product ~in

the renaturation problem it is the duplex DNA! due to the fact that their

domains are not connected. This also indirectly indicates that conforma-

tional fluctuation or lateral diffusion is absent ~ideal cases where l50!. Here

the circles schematically indicate the probabilistic domains. ~b! Here

X1•••X5 are the conformations evolving jointly towards N ~therefore the

path is homogeneous! due to the fact that their domains are connected. This

also indirectly indicates the presence of conformational fluctuations or

lateral diffusion. Here the circles schematically indicate the probabilistic

domains.
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mains are weakly coupled and thus evolve independently!.

One also should note that limt→` P(x ,t)50 as in the case of

Langevin free particle and the time evolution of ^x(t)& and

its variance can be given as

^x~ t !&5 lim
s→1

]sG~s ,t !5

~M11 !

2
1lt , ~23!

Var$x$t !%5^x~ t !,x~ t !&

5 lim
s→1

]s
2G~s ,t !1^x~ t !&2^x~ t !&2

5S 1

M (
j50

M

j2
2

~M11 !2

4
D 1lt5d1lt , ~24!

d5S 1

M (
j50

M

j2
2

~~M11 !2

4
D 5

M 2
21

12
.

Since
1

M (
j50

M

j2
5

~M11 !~2M11 !

6
,

the relation lims→1 ]s
2G(s ,t)5^x(t)@x(t)21#& was used.

Thus function h(t) that is a measure of the extent of nonre-

active dynamics ~fluctuations! has the following properties:

^ f ,h&5^e ,h&50, ^h i ,h i&5e~d1lt !5d81l8t , ~25!

where e is the corresponding spectroscopic conversion factor

~e.g., molecular extinction coefficient!. Using the same as-

sumptions about the function e(t), the corresponding sample

size autocorrelation function for Eq. ~16! can be given as

G~t ,n !5
^ f i , f i1t&

F S ^ f i , f i&1^h i ,h i&1

1

n
D3S ^ f i1t , f i1t&1^h i1t ,h i1t&1

1

n
D G0.5 . ~26!

Putting the value of ^h ,h& from Eq. ~25! and taking the limit

as in Eq. ~7!, we obtain the sample size autocorrelation func-

tion in the presence nonreactive modes of dynamics as fol-

lows:

G~t0 ,n !5
^ f , f &t→0

^ f , f &t→01d81~l8Dt !n1

1

n

5
^ f , f &t→0

^ f , f &t→01d81zn1

1

n

, ~27!

where the relation t5(Dt)n was used. Here Dt is the time

difference between two consecutive data points, which is

constant and z5l8Dt . But one should also note that

G(t0 ,n)`
50 and not equal to unity as in Eq. ~8!, which

clearly shows the turn over behavior of the function given by

Eq. ~27!. The same theory can be extended to dynamics un-

der any kind of arbitrary potential too. When f is a constant

function ~here it can be the blank trial in an experiment!,

then by definition ^ f , f &constant5^ f f &2^ f &^ f &50 and there-

fore G(t0 ,n)50 holds for all values of n for a constant

function.

EXPERIMENTAL METHODOLOGY

In order to check the validity of Eqs. ~7! and ~27!,

conformational transition involved in DNA renaturation

was chosen ~another possible reaction system could be the

unfolding of proteins!. Earlier studies11 clearly showed that

it comprised of two phases, namely ~1! correct contact form-

ing ~following a second order kinetic! and ~2! zipping

~behaves like a fist order or cooperative process depend on

the type of DNA!. Even though the first phase behaves ide-

ally ~because, here the initial condition is same for all mol-

ecules!, it leads to randomness of second zipping phase

~since the correct contact can occur at any place the entire

stretch of DNA, the initial condition is different for different

molecules and thus the trajectories of second phase are het-

erogeneous!. Since our interest was to show the heteroge-

neous nature of second-zipping phase, which occurred in a

rate slower ~occurs in seconds time scale! than the first one

~occurs in subsecond time scale!, it was enough to collect

data in seconds time scale. The aim would be fulfilled when

we showed that fluctuations due to nonreactive modes were

negligible ~i.e., 1@l!. For this purpose pBR322 plasmid

DNA ~circular! was purchased from Pharmacia. The size of

the plasmid was 4.632 Kbp.12 Measuring the ratio of absor-

bance at 260 nm to 280 nm, which was nearly 2, checked the

purity. Treating the circular plasmid with HindIII ~purchased

from Roche chemicals! did the linearization. 1 nM ~52 nM

of @ssDNA#! of linearized DNA was used in all the experi-

ments. Raising the temperature to 95 °C in 13Tris-EDTA

buffer pH 8.0 did the melting of DNA. Possibility of aggre-

gation was ruled out by preliminary gel filtration studies

~data not shown!. The time evolution of absorbance at 260

nm was measured by using the Shimadzu-UV2100 spectro-

photometer with suitable blank. The data fitting ~by nonlin-

ear least square method! was done using the SigmaPlot-

5software. The sample size autocorrelation function of the

observed absorbance data was calculated using the following

relation with fixed t0 as:
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G~t0 ,n !5
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i50
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i50
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2
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i50
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g i
2
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i50

n

g iD 2
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.

Here t0,n,(N2t0).

The method is as follows: For example, let us assume

following data points:

t(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

g 0.4 0.38 0.35 0.37 0.34 0.32 0.33 0.31 0.29 0.30 0.27 0.25 0.23 0.22

Here N513, Dt51 s, g5A260 ~absorbance at 260 nm! and t

is the time in seconds. To calculate G~2,5! the required data

points can be rewritten as ~here delay t is 2 and n55!:

g i 0.40 0.38 0.35 0.37 0.34

g i12 0.35 0.37 0.34 0.32 0.33

i 0 1 2 3 4

Now using Eq. ~28! it is easy to verify that G~2,5!50.501.

Subsequently in the same way, for n56,7,8,...~N22!511,

G(2,n) has to be calculated and thus the whole autocorrela-

tion function can be constructed and plotted as G(2,n) ver-

sus n. The analysis indicated that the sample size autocorre-

lation @constructed by the aforementioned method with t0

54 ~50.8 s!, Dt50.2 s# of the absorbance data fitted to Eq.

~27! with a chi-square value of 0.78 did not fit into Eq. ~7!.

The obtained parameters corresponding to Eq. ~27! were z

51.162731025, ^ f , f &t50.850.220 and d853.18531023.

From this z value, the approximate l8 was calculated ~using

the relation l85z/Dt) to be 5.8131025. So 1@l indirectly

indicated that conformational domains of ssDNA were

weakly coupled and thus the path of the subsequent zipping

phase was highly heterogeneous which agreed well with ear-

lier studies.11 Fitted data have been shown in Fig. 2 @G(4,n)

versus n# and here the ideal one ~Case I! was calculated

using Eq. ~7! with ^ f , f &t050.850.22. These results suggested

that once a correct contact formed, intermolecular interac-

tions between renaturing duplex strands were negligible. In

order to confirm this theory one has to check the validity of

^ f , f &t50.8 . But the complete probabilistic description of

DNA renaturation kinetics has not yet been done. The main

drawback of this method is: we can get only the overall

heterogeneity and not at a single molecule level. Since the

input for this analysis is the usual kinetic data, the obtained

information is much more economic with respect to that

and the obtained parameters can be used to compare the ef-

ficiency of two kinetic processes leading to the same

product.

CONCLUSIONS

A simple method of analysis using sample size autocor-

relation functions to identify and quantify the path heteroge-

neity in reactions involving macromolecules like biopoly-

mers was developed and applied to DNA renaturation

kinetics problem. The results clearly indicate that the path of

the so-called ~second! zipping phase was heterogeneous ~i.e.,

the trajectory of each renaturing molecule is significantly

different from each other!, which agreed well with earlier

works.
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FIG. 2. G(4,n) of renaturation kinetic data of linearized pBR322 DNA.

Here small-filled circular dots represent the calculated G(4,n) values from

the renaturation data using Eq. ~28 and the solid line is the predicted one by

Eq. ~27!. The dotted line is the ideal one ~Case I! predicted by Eq. ~7! using

^ f , f &t050.850.22 and the blank is without DNA.
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