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Complex thermoacoustic oscillations are observed experimentally in a simple laboratory

combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between

the acoustic field and the combustion processes. The application of nonlinear time series analysis,

particularly techniques based on phase space reconstruction from acquired pressure data, reveals

rich dynamical behavior and the existence of several complex states. A route to chaos for

thermoacoustic instability is established experimentally for the first time. We show that, as the

location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations

undergo transition to chaos via the Ruelle-Takens scenario. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4718725]

Combustion-driven thermoacoustic oscillations that can
emerge spontaneously in combustion systems, in the form
of self-sustained pressure and heat release rate oscilla-
tions, are detrimental to the system and are a hindrance
to the development of clean combustion technology, due
to the problem of inherent instability associate with pre-
mixed flame. To understand the phenomenon, it is partic-
ularly important to know the nonlinear aspects of the
self-excited oscillations. In this paper, we investigate the
nonlinear characteristics of thermoacoustic oscillations in
a model thermoacoustic system, through experimental
bifurcation analysis. By changing a control parameter,
the location of the source of combustion, we observe that
oscillations are spontaneously excited and subsequently
undergo qualitative changes in their dynamical behavior
as the location is further varied. The transition to self-
excited, limit cycle oscillations is shown to occur via the
subcritical Hopf bifurcation. Following this transition, we
observed that the system enters a chaotic state via a
quasi-periodic route (the Ruelle-Takens scenario), which
has also been observed in several other physically
observed nonlinear systems. We incorporate techniques
from advanced nonlinear time series analysis for investi-
gating the dynamics of these oscillations and to identify
the route to chaos. The results indicate the importance of
studying thermoacoustic instability from the point of
view of dynamical systems theory.

I. INTRODUCTION

Complex nonlinear behaviors such as quasi-periodicity

and chaotic oscillations have been reported for forced

response of acoustic1 and combustion systems2,3 and Taconis

oscillations in a gas column driven by temperature gradient.4

Observations of such complex behaviors of self-excited

oscillations in combustion-driven thermoacoustic systems

such as those found in industrial gas turbines, furnaces, and

other practical combustion applications, although reported

by a few researchers, have not been investigated in detail.

Hence, there is a need to further investigate the nonlinear

aspects of combustion oscillations for the development of

combustion systems.

Self-excited combustion instabilities that arise due to

combustion-acoustic interactions are a serious engineering

problem. These are known to cause dangerous pressure and

heat release rate oscillations in practical combustion systems

such as rocket motors, jet engines, and gas-turbine engines.

These oscillations cause increased mechanical and thermal

loading on structures along with increased pollutant gas

emissions in practical combustion systems. Thus, combus-

tion instability has adverse effects on the efficiency, safe

operating range, and life-span of the system and hence its

investigation is of great interest to the propulsion and power

industry.

Combustion instability is an interplay of several

phenomena—combustion, acoustics, and hydrodynamics

being the major processes. Hence, it is quite complex to

predict and model for even simple configurations. Stating

briefly, the unsteady heat release rate gives rise to pressure

and velocity fluctuations. These acoustic fluctuations again

interact with the flame and this flame-acoustic interaction

then leads to amplification in the perturbation amplitudes of

acoustic fluctuations and heat release rate. Under certain

conditions determined by the time scales associated with

combustion, acoustics, and hydrodynamics within the duct,

this could result in the development of a positive feedback

loop where pressure and heat release rate oscillations grow

exponentially. When these oscillations attain a large

enough amplitude, nonlinear mechanisms, for instance, the

saturation of heat release rate, come into picture.6 The

asymptotic state of the instability is governed by nonlinear

processes and therefore may require special techniques for

investigation.
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Complex thermoacoustic oscillations have been reported

previously, in literature, by a few authors. Jahnke and

Culick8 have reported the possibility of quasi-periodic ther-

moacoustic oscillations through their numerical continuation

analysis of a solid rocket motor. Sterling12 and later Lei and

Turan13 have reported chaotic oscillations through numerical

bifurcation analysis of premixed combustors with different

models for combustion processes. In experiments, Fichera

et al.14 have reported chaotic dynamics of heat release rate

fluctuations in a lean gas turbine combustor. Recently,

Gotoda et al.2 have presented an experimental investigation

for transition of thermoacoustic oscillations from stochastic

fluctuations to periodic oscillations through low dimensional

chaotic oscillations, with respect to equivalence ratio

changes.

Through experimental bifurcations analysis, we study

the transition of periodic self-excited states to aperiodic

oscillations in a ducted laminar premixed flame configura-

tion. We perform this investigation in a relatively thermoa-

coustic system that consists of a simple multiple-flame

burner enclosed in a duct. The configuration has the advant-

age that the properties of combustion instability can be stud-

ied without significant interference from hydrodynamic

instability. In addition, the dynamics of laminar flames

exposed to acoustic perturbations has been extensively stud-

ied through experiments15 and numerical investigations.16

This makes the configuration ideal for fundamental studies

on self-excited combustion instability.

In this paper, we investigate the phenomena of combus-

tion instability in the light of nonlinear dynamics. The imple-

mentation of advanced nonlinear time series analysis

techniques,18 yields new insight into the dynamics of ther-

moacoustic oscillations. The experimentally acquired data in

terms of pressure and heat release rate oscillations were char-

acterized by the application of nonlinear time series analysis

techniques.18

Presently, combustion instability, also known as ther-

moacoustic instability, is associated synonymously with

limit cycle oscillations.5 The results obtained in this investi-

gation indicate that thermoacoustic systems can display rich

dynamical behavior. We show the presence of chaotic and

several other complex self-excited oscillation states in a

combustion driven thermoacoustic system. The route to

chaos followed by our system is identified to be a quasi-

periodic transition, which has also been observed in

Rayleigh-Bénard convection experiments.19 Although chaos

has been observed in self excited combustion driven oscilla-

tions, the route to chaos has not been identified experimen-

tally to date.

The paper is divided into following sections: We start

the discussion by first introducing the experimental setup

and the instrumentation employed for this study (Sec. II).

In Sec. III, we discuss the results obtained from the bifurca-

tion analysis of the system in the light of dynamical sys-

tems theory. Discussion on the nonlinear time series

analysis techniques utilised for data analysis is presented in

Sec. III A. Finally, we discuss on the implication of our

findings in Sec. IV and state our concluding remarks in

Sec. V.

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is given in Fig. 1.

A steel tube of inner diameter 16mm, thickness 1.5mm, and

length 800mm is used as the burner tube. The tube is con-

nected to a large cylindrical decoupling chamber. This cham-

ber decouples the downstream acoustics and fluctuations in

the fuel and air supply system. The fuel, liquefied petroleum

gas (LPG), and air are mixed further upstream in a premixing

chamber stuffed with steel wool for enhanced mixing of the

gases. On the burner tube, a perforated copper block, 18mm

in height, with seven holes of diameter 2mm is mounted.

Seven small conical flames stabilise on this copper block. A

fine wire mesh is installed on top of the perforated copper

block to prevent flame blow-off during the instability. This

configuration is similar to the multiple injection configura-

tion used by Matsui20 and more recently by Noiray et al.,16

for flame transfer function measurements. The burner is

enclosed within a transparent borosilicate glass duct of inner

diameter 56.7mm. The glass duct is closed at the bottom,

providing an acoustically rigid boundary condition. The top

end is open to the atmosphere. The glass duct is connected to

a traverse system which is used to translate the duct on the

burner tube in the vertical direction, thereby changing the

location of the multiple flames with respect to the duct. The

relative flame location can be measured with an uncertainty

of61mm.

Experiments were conducted at an equivalence ratio of

/ ¼ 0:48, by keeping the volumetric fuel flow rate at 60 ccm

and the volumetric air flow rate at 4 lpm, measured using

rotameters with a maximum error corresponding to 2% of

the rotameter full scale readings. The corresponding uncer-

tainty in the equivalence ratio is estimated to be 2.8%. In

FIG. 1. Schematic of the thermoacoustic setup, A—premixed flames, B—

open-closed, transparent borosilicate glass duct, C—burner tube, D—decou-

pler, E—LPG-air premixer, F—traverse, P1 and P2—pressure sensors. A

top view of the burner is given at the top right corner of the figure; all

dimensions are in mm.
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practical applications, lean-premixed combustion is pre-

ferred over combustion of rich fuel-air mixtures due to lower

pollutant emission. Unfortunately, systems running on lean-

premixed combustion are more susceptible to combustion

instability. Hence, this configuration is of particular impor-

tance to aerospace applications. Therefore, for this investiga-

tion, we also choose a lean equivalence ratio.

Data acquisition consists of measurement of pressure

fluctuations within the duct and flame intensity fluctuations.

Two pressure microphones (model number 103B02, PCB

piezotronics make), P1 and P2, mounted on the walls of the

glass duct were used to measure pressure oscillations at posi-

tions shown by P1 and P2 in Fig. 1. The pressure time series

(p) used for the analysis in this paper were obtained from the

microphone mounted near the close end of the glass duct P1,

at a distance of 50mm from the bottom of the glass duct.

Pressure fluctuations due to standing waves in the duct are

always maximum near the acoustically rigid end and, hence,

the signal-to-noise ratio will be higher for pressure signals

acquired by microphone P1. As mentioned already, thermoa-

coustic oscillations occur due to a positive feedback between

pressure fluctuations and unsteady heat release rate. There-

fore, along with pressure oscillations, it is also important to

capture heat release rate oscillations. Since CH radical emis-

sion (chemiluminescence measurements I(t)) is known to be

proportional to heat release rate from premixed flames,21

time series of CH radical emission has been acquired using a

photomultiplier tube (model number H5784, Hamamatsu)

equipped with a narrowband CH radical filter (bandwidth

10 nm, centered at 431.4 nm), simultaneously with pressure

oscillations. A 16-bit analog to digital conversion card (NI-

6143) was used for data acquisition which has a resolution of

0.15mV, considering the input voltage range to be 65 V.

The uncertainty in pressure microphone measurement is

60:14 Pa.

The exponential decay rate of the system, determined

at cold flow conditions prior to the experiments, was

obtained to be 16/s, using an acoustic pulse introduced in

the system. Experiments are performed only if the decay

rate is within 610% of the stated value. Thus, acoustic

damping is maintained within bounds to ensure repeatabil-

ity of the experiments.

III. RESULTS

As we gradually change the flame location, the system

goes from a steady state to a self-excited oscillatory state.

From the point of the onset of thermoacoustic instability, if

the flame location is varied further, properties of the self-

excited state change dramatically. In order to track the

changes in oscillations with respect to the flame location,

we plot an orbit/bifurcation diagram (Fig. 2). Correspond-

ing to every flame location (xf ), we plot the amplitudes of

the local maxima22 in the acquired pressure time series for

that particular xf . The number of local maxima, at a given

parameter, gives the period of oscillations: a single local

maxima indicates a limit cycle oscillation, two local max-

ima values suggest period two oscillations and so on. The

Roman numerals (I-VIII) are used to indicate different

regions in the bifurcation plot. Time series and frequency

spectra for oscillations in these regions are presented in

Fig. 3. A longer time window is used for more complicated

oscillations so that the essential features of the oscillations

are clearly depicted.

The onset of instability occurs at xf ¼ 13:8 cm, one-

eighth of the total duct length from the open end. At this

point, there is a qualitative change in the system from steady

state to finite amplitude oscillations. This is an indication of

a subcritical Hopf bifurcation.22 It is quite common to en-

counter subcritical Hopf bifurcation in practical combustion-

driven thermoacoustic systems such as gas-turbine combus-

tors and rocket combustors.5 The point at which the bifurca-

tion occurs is referred to as the Hopf point. The bifurcation

results in a single frequency, “limit cycle” oscillation with a

frequency f � 570 Hz. This is close to the second harmonic

of the duct acoustic mode. The time series and frequency

spectrum of this state are shown in Figs. 3(IIa) and 3(IIb),

respectively.

The limit cycle oscillation state persists for a small

range of xf values beyond which it is followed by a bifurca-

tion of the limit cycle to another type of oscillation with

more than one dominating frequency (f1 � 570 Hz;
f2 � 364:1 Hz), as shown in Fig. 3(IIIa). As we change the

flame location, the frequencies compete with each other and

eventually towards the end of this state, the time series

(Fig. 3(IIIa)) and the frequency spectrum (Fig. 3(IIIb))

changes to the one depicted in Figs. 3(IIIc) and 3(IIId),

respectively. The dominant frequency also changes from f1
to f2, which is close to the first harmonic duct acoustic mode.

The next bifurcation occurs at xf ¼ 19:2 cm, the ampli-

tude of local maxima increases to about 1.5 times (150 Pa).

The irregularity in the oscillations can be clearly seen in

Fig. 3(IVa). The corresponding frequency spectrum, Fig.

3(IVb), shows the presence of a broad band of frequencies

(along with the appearance of a new independent frequency,

f3 � 524Hz) suggesting the presence of low dimensional

chaos. On changing the flame location, we observe that the

signature of the time series has changes at xf ¼ 21 cm,

within region IV. We observe regularity in the time series

and distinct peaks in the frequency spectrum plots (Figs.

FIG. 2. Bifurcation plot summarising the experiment: Hopf point

at xf ¼ 13:8 cm. The Roman numerals (I-VIII) are used to indicate

different regions in the bifurcation plot. Region I—steady state and region

VIII—steady state.
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3(IVc) and 3(IVd)). The frequencies in the spectrum are

rationally related as opposed to the broadband frequencies.

Following this state, the oscillations become regular again in

region V.

Figures 3(Va) and 3(Vb) show the time series and fre-

quency spectrum plots of a representative state in region V

(Fig. 2). The peaks in the frequency spectrum correspond to

f2, f2=2, and f2=4. This is an indication of the oscillations

being period four in nature, but since the contribution from

the sub-harmonics is very less compared to the dominant fre-

quency, it is not clearly visible in the time series or in the

bifurcation plot (Fig. 2). The system exists in this state for a

large range of xf values (xf ¼ 25:8 cm to xf ¼ 33:9 cm) and

is followed by another state similar to the state corresponding

to Fig. 3(IVa), as depicted in Figs. 3(VIa) and 3(VIb). The fre-

quency spectrum shows three broadband regions centered

around 553Hz, 370.2Hz, and 185.1Hz, where 185.1Hz is the

sub-harmonic of 370.2Hz. We increase the flame location

further and this state changes to a period two oscillation in

region VII (Fig. 2) via an intermittent state. The time series

and frequency spectrum of the intermittent and the period

two oscillatory state are given in Figs. 3(VIc), 3(VId) and

(a)

(b)

(c)

(d)

(e)

FIG. 3. Time series and power spectrum for various oscillating states observed in the system, labelled according to the bifurcation plot, Fig. 2.
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3(VIIa), 3(VIIb), respectively. The intermittent state has

intervals of period two and the irregular state coexisting

together. A transition from period two to irregular oscillations

can be observed in Fig. 3(VIc). Beyond this region, changing

the flame location brings the system back to a steady state

at xf ¼ 43:9 cm, which is close to half the duct length.

For further analysis, techniques that specifically deal

with nonlinear systems are called for. It is crucial to imple-

ment nonlinear time series analysis techniques for under-

standing the dynamics of the thermoacoustic system.

Nonlinear time series analysis techniques provide tools for

systematic analysis and identification of characteristics and

structures in time series data generated by nonlinear

processes with emphasis on the determination of properties

of a special class of nonlinear oscillations, the chaotic

oscillations. Chaotic oscillations are quite commonly

observed in nonlinear systems and in the absence of appro-

priate analysis could be misinterpreted as noise. Therefore,

implementation of phase-space based nonlinear time series

analysis techniques is essential to extract detailed informa-

tion about the complex nonlinear processes.

A. Nonlinear time series analysis

The most important step in the time series analysis tech-

nique used here is the representation of the asymptotic state

of nonlinear oscillations in an appropriate phase space and

investigation of the structure of the resulting attractor of sys-

tem dynamics. This attractor is a mapping of the actual pro-

cess in a finite dimensional space created from scalar

observations. Topological measures of the so formed attrac-

tor, such as the correlation dimension and the Lyapunov

exponents of the attractor can then be calculated. These

quantities are direct measures of the complexity in the

system. Developments in the theory of nonlinear time series

analysis enable one to extract information on system

dynamics based on scalar measurements obtained in

experiments. Several nonlinear systems have been

(f )

(g)

(h)

(i)

FIG. 3. Continued

023129-5 Kabiraj et al. Chaos 22, 023129 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.216.129.208 On: Fri, 12 Dec 2014 07:14:29



successfully investigated in the light of these techniques and

from this study, it can be seen that the nonlinear nature of

thermoacoustic oscillations can also be studied through the

application of these methods. The fundamental idea behind

the time series analysis techniques employed in this work is

given below.

1. Phase space reconstruction

Using the experimentally obtained time series data, we

need to create a multi-dimensional space to reconstruct the

time evolution of the dynamical system. A dynamical system

is identified if all the state variables of the system including

the required number of derivatives are known at all times.

Several states of the system are generally related to each other

through their derivatives and hence the state of the system can

be represented in a state space created out of the derivatives

of a single state of the system which has been measured. Since

obtaining a proper representation of derivatives from discrete

time series data is practically not possible, Takens23 has dem-

onstrated that a multivariate phase space constructed out of

time-delayed coordinates extracted from the measured time

series data can be used as an alternative. In the resulting coor-

dinate system, the salient features of the orbits of the dynami-

cal system are conserved. It is then possible to unfold the

attractor of system dynamics in this space and to arrive at top-

ological invariants of the system dynamics such as the attrac-

tor dimension and Lyapunov exponents.

The time-delayed coordinates from a time series

data,24,34 sðnÞ ¼ sðt0 þ nssÞ, where ss is the sampling time

interval would be

yðnÞ ¼ ½sðnÞ; sðnþ TÞ; sðnþ 2TÞ; sðnþ 3TÞ;…�;

where T is the time-delay used for the reconstruction. d time-

delayed vectors would be required to construct a d-dimensional

space. For an unambiguous unfolding of the attractor, it is

important to derive the embedding dimension d and the time

delay T. This can be obtained using the false nearest neighbor

and average mutual information calculations, respectively.

2. Average mutual information

In the absence of infinitely long data, it becomes impor-

tant to calculate the optimum time delay. The prescriptions

for choosing time delay are based on statistical information

that is obtained from the time series. The autocorrelation

function and average mutual information are two most com-

monly used criteria for choosing time delay.24,34 The first

zero crossing of the autocorrelation function of the time se-

ries can be used as the optimum time delay; however, since

autocorrelation is essentially a linear concept, it is not rec-

ommended for time series generated by a nonlinear process.

A better criterion for the analysis of nonlinear time series

comes from information theory. The idea is to evaluate the

nonlinear dependence of time lagged variables based on mu-

tual information shared between the variables. A comparison

between autocorrelation function and average mutual infor-

mation methods has been discussed by Fraser and Swin-

ney.25 The comparison illustrates why mutual information is

preferred for multi-dimensional phase portrait from single

measurement. From the average mutual information function

between time-lagged variables, the first minima of the func-

tion is chosen as the optimum time delay.

For obtaining average mutual information, individual

probabilities PðsðnÞÞ;Pðsðnþ TÞÞ and joint probabilities

PðsðnÞ; sðnþ TÞÞ were estimated from the time-delayed vec-

tors by considering each time-delayed vector as an experi-

ment. The values of pressure/intensity acquired at every

sampling time interval would then be an event to be consid-

ered for calculating probabilities. Using these probabilities,

one can then arrive at

IðTÞ ¼
XN

i¼1

PðsðnÞ; sðnþ TÞÞlog2
PðsðnÞ; sðnþ TÞÞ

PðsðnÞÞPðsðnþ TÞÞ
:

The quantity (I(T)), which is the average mutual information

between the original time series and a delayed time series

with a time delay of T, should be greater than equal to zero.

The variation of I(T) with time delay for all the time series

discussed above is shown in Fig. 4. The top three curves in

Fig. 4 are for periodic oscillations with rationally related fre-

quencies, regions II, V, and VII (Fig. 2). The other curves

belong to oscillations with either irrationally related frequen-

cies or broadband frequencies, regions III, IV, and VI (Fig. 2).

The optimal time delay for phase space reconstruction varies

from 0.4 to 0.9ms, in the various regions, as seen in Fig. 4.

3. False nearest neighbors

Phase space reconstruction is essentially a mapping of the

original multivariate phase space, of dimensionality dA to a

subspace created from the time-delayed vector obtained from

experiments, in a manner such that the invariants of the sys-

tem remain constant. The dimension of the subspace, referred

to as the embedding dimension, dE, is one of the two impor-

tant entities to be derived for a proper mapping or embedding,

the second being the time-delay. A dimension equal to or

larger than the embedding dimension can be used for phase

space reconstruction but choosing a dimension lower than the

embedding dimension will lead to false embedding. Appropri-

ate embedding dimension can be calculated from the

FIG. 4. Results for the calculation of optimum time-delay for phase space

reconstruction using the average mutual information between time-delayed

vectors from acquired time series.
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measured times series using one of the several techniques

available. A review of commonly used techniques such as

singular-value decomposition of the sample covariance ma-

trix, saturation with dimension of some system invariant, the

method of false nearest neighbors, and the method of true vec-

tor fields is given by Abarbanel et al.24

In the present study, the false nearest neighbor method,

given by Kennel et al.,26 is adopted, which determines the

false crossings of the trajectory with itself, which may arise

due to the projection of the system by a low dimensional

space. The algorithm finds the percentage of false neighbors

created due to false crossing of trajectories while increasing

the embedding dimension. At an appropriate embedding

dimension, the percentage of false nearest neighbors will go

to zero. The subspace thus obtained has the correct dimension

of the phase space, in order to unfold the phase space attractor

without any ambiguity. A typical plot obtained for each of the

cases discussed in the paper has been reported in Fig. 5. The

trend of the variation of the percentage of false nearest neigh-

bor estimates for different oscillations with respect to the

embedding dimension, dE, suggests dE ¼ 5 as an optimum

embedding dimension since the percentage of false nearest

neighbors for all the states vanishes at dE ¼ 5. Henceforth,

quantitative information from phase space reconstruction of

strange attractors has been derived using dE ¼ 5.

4. Reconstructed attractors

The three-dimensional phase portrait representations of

the various states obtained in our system are arranged in the

order of their occurrence in the bifurcation plot (Fig. 2) in

Fig. 6, starting with the limit cycle. We find that the charac-

teristics of simultaneously measured flame intensity time se-

ries data are similar to the pressure time series data (see

Kabiraj et al.32). For brevity, we have reported results based

only on pressure time series data in this paper.

Limit cycle (Fig. 6(IIa)), as expected, is represented by

a single loop in the phase space. But, the introduction of new

frequencies due to the next bifurcation results in aperiodic

oscillations and the loop turns into a dense toroidal structure,

as can be seen in pressure oscillations (Figs. 6(IIIa) and

6(IIIb)). A toroidal structure in the phase space is an indica-

tion of quasi-periodic oscillations. Quasi-periodicity is also

reflected in the power spectrum (Figs. 3(IIIb) and 3(IIId)) in

the form of incommensurate frequency components

(365:3 and 571:3 Hz). Due to the presence of incommensu-

rate frequencies, the phase space trajectory evolves on the

surface of a torus, never closing on itself. As we change the

control parameter, within the quasi-periodic region (region

III) in Fig. 2, there is a competition between the two major

frequencies eventually leading to the introduction of a third

incommensurate frequency (f3 in Fig. 3(IVb)) causes the to-

roidal structure to become unstable and break down resulting

in a strange attractor as seen in Fig. 6(IVa). This structure

corresponds to the time series and the frequency spectrum

that shows the presence of broadband frequency content in

Fig. 3(IVb). Broadband frequency content and strange attrac-

tor hints towards the presence of chaotic oscillations.

To identify whether the obtained attractor (Fig. 6(IVa))

is a strange attractor (possesses an inherent dimension which

is not an integer but rather a fraction), we evaluate the

correlation dimension of the attractor using the Grassberger-

Procaccia algorithm.28 Subsequently, to find out if the

oscillations are chaotic in nature, we calculate the maximal

Lyapunov exponent using the algorithm suggested by

Kantz.29 These are discussed in the following paragraphs.

According to the Grassberger-Procaccia algorithm, the

correlation dimension is obtained from the calculation of the

correlation sum of all the points in the phase space. This cor-

relation sum is given by

CðrÞ ¼ lim
N!1

1

N2

number of pairs of points

xi; xj with distances sij < r

� �

;

where N is the total number of points, sij is a distance mea-

sure (here, taken as the Euclidean distance, in the phase

space, between points xi and xj). As r ! 0, this function is

found to have a power law dependence,

lim
r!0

CðrÞ / rdc ;

where dc is an estimate of the correlation dimension of the

attractor. In Figs. 7 and 8 the plot for C(r) vs. r for the attrac-

tors, corresponding to regions IV and VI is given. It is seen

that a scaling region where the power law dependence can be

seen is found for r in the range � 20� 100. Corresponding

to these plots, the value of local slope with respect to r, for

dimensions 6, 8, 10, and 12 have been given in Figs. 9 and

10. In the scaling region, the value of slopes gives an esti-

mate of the correlation dimension of the particular attractor.

For region IV, the value of slope in the scaling region fluctu-

ates significantly. However, at high dimensions, it seems to

have saturated. For region VI, slopes in the scaling region,

calculated for different dimensions follow a more robust

trend. For the two attractors in region IV and region VI, the

correlation dimension, calculated from curves at dimension

12, is found to be 5.5 and 4.6, respectively. However, the

scaling region used to estimate the correlation dimension for

region IV (Fig. 9) is narrow compared to that obtained for

region VI (Fig. 10).

Chaotic dynamics in a dynamical system is indicated by

the presence of positive Lyapunov exponents. Lyapunov
FIG. 5. Results for the calculation of the embedding dimension for phase

space reconstruction using the false nearest neighbor method.
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(a)

(b)

(c)

(d)

(e)

FIG. 6. Reconstructed phase portraits from measured pressure time series for different oscillation states, sequentially arranged in the order of their occurrence

in the bifurcation diagram, Fig. 2. The labels are in accordance with the bifurcation plot.
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exponents, by definition are a measure of the exponential

divergence in time, of two neighboring phase space trajecto-

ries. A positive exponent implies that any uncertainty in esti-

mation of the dynamical state of the system will grow

exponentially in time. To identify the presence of chaotic

dynamics in our system, we calculate the maximal Lyapunov

exponent using the method given by Kantz.29 According to

the algorithm, one finds the average separation between

neighboring trajectories in the reconstructed phase space as

time evolves and the evolution in the average separation is

searched for an exponential trend. More specifically, the

average separation SðDnÞ is calculated as a function of

temporal separation Dn

SðDnÞ ¼
1

T

XT

t¼1

ln
1

jU tj

X

i2Ut

distðxt; xi;DnÞ

 !

;

where U t is the neighborhood of any point xt in the phase

space and distðxt; xi;DnÞ is defined as

distðxt; xi;DnÞ ¼ jxtþDn � xiþDnj:

The quantity SðDnÞ scales linearly with Dn in an intermedi-

ate range with a slope corresponding to the maximal Lyapu-

nov exponent. Further details about the algorithm and its

implementation on experimentally acquired time series data

can be found in Kantz,29 Kantz and Schreiber.18

According to the bifurcation analysis of our system,

regions IV and VI in the bifurcation plot are the possible

chaotic states. In accordance with the Kantz algorithm, varia-

tion in SðDnÞ with Dn with an embedding dimension of 4, 6,

8, 10, and 12 for regions IV and VI is given in Figs. 11 and

12, respectively. The slope of a linear fit to the curves for

embedding dimension 12, shown by the dashed line gives

values 0.00041 and 0.00051 per time step. As data have been

acquired with a sampling rate of 10 kHz, the maximal Lya-

punov exponent corresponding to these slopes comes out to

be 4.16 1.4 and 5.16 0.6 for region IV and region VI,

respectively. The range of Dn to be searched for, to obtain

the scaling region is quite large in both cases owing to the

high sampling rate. In both cases, exponential divergence

between neighboring trajectories occurs amidst a highly

cyclic trend of the time series (number of cycles correspond-

ing to a Dn of 1000 Oð10Þ). The maximal Lyapunov expo-

nent for both the regions is a positive value, indicating the

chaotic nature of the system. Now that all the states have

been characterized individually, we will discuss the entire

bifurcation scenario.

FIG. 7. Plot for the correlation sum for the attractor in region IV, Fig.

6(IVa). The variation with respect to r is plotted for dimensions 6, 8, 10, and

12. A data set with 16 000 points was considered for obtaining the plot.

FIG. 8. Plot for the correlation sum for the attractor in region IV, Fig.

6(VIa). The variation with respect to r is plotted for dimensions 6, 8, 10, and

12. A data set with 16 000 points was considered for obtaining the plot.

FIG. 9. Local slopes of the correlation sum in Fig. 7. The correlation dimen-

sion is evaluated from the curve corresponding to a dimension 12 (in black).

FIG. 10. Local slopes of the correlation sum in Fig. 9. The correlation

dimension is evaluated from the curve corresponding to a dimension 12 (in

black).
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In our experiments, the quasi-periodic state is followed

by chaotic oscillations. The system follows a torus breaking

route to chaos starting from a limit cycle evolving into a

two-frequency quasi-periodic state and eventually the two

torus structure of the quasi-periodic attractor breaks down as

a result of a third incommensurate frequency, thus leading to

the emergence of a chaotic state. This torus breaking route to

chaos is also called the Ruelle-Takens scenario.30,31,35 The

strange attractor is then followed by periodic mode-locked

oscillations featuring several rationally related frequencies

(Fig. 3(IVd)). The phase space representation is given by

Fig. 6(IVb). The structure is a closed loop which indicates a

periodic nature of the oscillation, while following several

turns before closing on itself which is because of the pres-

ence of a number of frequencies.

Following this state, the system once again enters a state

with periodic oscillations given in Fig. 3(Va). The frequency

spectrum (Fig. 3(Vb)) contains frequencies f2; f2=2; f2=4
indicating this could be a period-4 state. The contribution

from f2=2 and f2=4 being of very low order when compared

to f2 result in an attractor which consists of two very closely

spaced loops in Fig. 6(Vb). This periodic state exists for a

long range of control parameter before the next bifurcation

which results in another aperiodic state.

Region (VI) exhibits chaotic oscillations resulting from a

bifurcation of the periodic state. From the frequency spectrum,

Fig. 3(VIb), and the reconstructed attractor, Fig. 6(VIa), it is

observed that this could be another strange chaotic attractor.

Figure 6(VIa) is a strange attractor, corresponding to the time

series data obtained for xf ¼ 33:9 cm, and clearly shows the

characteristics of the chaotic behavior observed in region

(VI). The correlation dimension for this strange attractor is

calculated to be 4.6 and the positive maximal Lyapunov expo-

nent is 5.16 0.6. As discussed earlier, this state goes through

an intermittent transition to period-2 oscillations.

In the reconstructed phase space for pressure (Fig.

6(VIb)), we have shown phase space representation of the

intermittent oscillations that alternate between period-two

and a two-period quasi-periodic attractor. The dark loop is

the period-two attractor which is embedded within a quasi-

periodic attractor represented using light dotted markers in

the reconstructed phase portrait. Once the flame location is

changed, the system evolves to a period-two attractor via a

very narrow window of stable quasi-periodic attractor. The

window of this stable quasi-periodic oscillation is too insig-

nificant to be labelled separately as another region. The

phase space representation of the period-2 oscillations for

region VII (Fig. 2) is shown in Fig. 6(VII). The system seems

to follow a reverse quasi-periodic transition from chaotic to

periodic oscillations. Region VIII (Fig. 2) is again the steady

state (fixed point) to which the system eventually returns.

IV. DISCUSSIONS

We have presented an experimental bifurcation analysis

conducted on a prototypical combustion driven thermoacous-

tic system. Changing the position of the combustion zone

with respect to the duct causes the appearance of oscillations

in the flames and in the acoustic pressure. This first bifurca-

tion in the system is a subcritical Hopf bifurcation leading to

limit cycle oscillations. However, the dynamics of thermoa-

coustic oscillations in combustion systems is not limited to

limit cycle oscillations and although the system we study is a

highly simplified version of a practical combustion system,

variation of the flame location induces additional bifurca-

tions. Bifurcation of limit cycle oscillations gives rise to

quasi-periodic oscillations and changing the flame location

further gives rise to chaotic oscillations. The sequence of

bifurcations we observed in our experiments is summarised

below

Steady ������������!
Subcritical Hopf bifurcation

Periodic ������������!
Neimark�Sacker Bifurcation

Quasi� periodic ������������!
Ruelle�Takens Scenario

Chaotic ! Mode�locked ! Period� 4 ! Chaotic ! Two�period quasi�periodic ! Period�2 ! Steady

FIG. 11. Estimation of the maximal Lyapunov exponent (4.16 1.4) (region

IV) for dimensions 4, 6, 8, 10, and 12. A data set of 16 000 points was con-

sidered for calculations. The dashed line indicates a linear fit.

FIG. 12. Estimation of the maximal Lyapunov exponent (5.16 0.6) (region

VI) for dimensions 4, 6, 8, 10, and 12. A data set of 16 000 points was con-

sidered for calculations. The dashed line indicates a linear fit.
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The sequence of bifurcations to chaotic oscillations, exhib-

ited by the system is similar to the route to chaos in other

physical systems, such as the Rayleigh-Bénard convection,

popularly known as the quasi-periodic route to chaos or the

Ruelle-Takens scenario. Transitions to complex oscillation

states and the specific route to chaos observed in the present

investigation arise from complex interactions between sev-

eral processes; flame dynamics, acoustics, hydrodynamics,

and heat transfer being the most significant processes. A

strong coupling between these processes exists during the

occurrence of combustion instability. However, it is still pos-

sible to shed light on the most likely cause of the presence of

interesting system dynamics seen here, based on previous

investigations that hint towards the importance of flame-

acoustic interaction in combustion driven thermoacoustic

systems.

The presence of combustion in an acoustic field, in partic-

ular the flame response to acoustic fluctuations, is known to

be responsible for nonlinear aspects of thermoacoustic insta-

bility. A simplified analytical treatment of combustion insta-

bility (for instance, refer to the analysis by Dowling7)

indicates that a nonlinear response of the flame to the incident

acoustic fluctuations can explain nonlinear features such as

the presence of limit cycles, subcritical bifurcation and trig-

gering. This is further supported by the more recent describing

function analysis16 of combustion instability, for a combustor

similar to the present investigation. Complex nonlinear states

in addition to limit cycle oscillations have also been reported,

for instance by Jahnke and Culick,8 where quasi-periodic ther-

moacoustic oscillations were obtained in a dynamical system

analysis using numerical continuation approach of thermoa-

coustic instability and by Sterling12 in a numerical bifurcation

analysis where a period doubling scenario was observed.

Incorporation of nonlinear flame-acoustic interaction to

explain the observed results in the analytical/numerical/exper-

imental treatment of thermoacoustic instability is the common

feature of the above mentioned studies.

Further, there is now a consensus in the combustion

instability community that nonlinear gas dynamical proc-

esses are not significant in many premixed gas turbine com-

bustors, where reported pressure amplitudes are typically on

the order6,9,10 of P0= �P � 1� 5% suggest that acoustic (i.e.,

gas dynamic) processes essentially remain in the linear re-

gime, even under limit-cycle operation, and that it is the rela-

tionship between flow and heat release oscillations that

provides the dominant nonlinear dynamics in premixed com-

bustors. Therefore, in our combustor where P0= �P � 0:1%,

we can confidentially rule out nonlinear gas dynamics as a

cause of nonlinearity.

Based on the results summarized above and other previ-

ous investigations, we can surmise that a nonlinear flame

response largely governs the behavior of thermoacoustic

oscillations, including the bifurcations leading to chaos that

have been observed in this report. Specifically in our experi-

ments, changes in the flame location directly change the

location of the combustion zone with respect to the acoustic

field of the duct (standing wave). This in turn leads to

changes in flame response and hence the overall dynamics of

the self-excited heat release and pressure oscillations.

Flame surface area oscillation is the dominant mecha-

nism generating unsteady heat release rate (cf., Schuller

et al.17) in our experiments. The unsteady heat release rate

gets coupled to pressure fluctuations during combustion

instability. Changes in this flame-acoustic interaction at dif-

ferent oscillation states is reflected in pressure oscillations as

well as in flame surface oscillations, as can be seen in high

speed flame images (see Kabiraj et al.,32 Figs. 6–9).

In addition, it should also be noted that along with flame-

acoustic interactions, other important processes, also contrib-

ute to the dynamics of oscillations. In practical combustion

systems, complex fluid flow interactions11 in the periphery of

the confined combustion zone play a non-trivial role in deter-

mining the resulting thermoacoustic oscillations. Also impor-

tant is the role of oscillatory heat transfer at the burner.27

These processes are significant and need to be considered in

detailed modeling approaches. However, concerning our

experiments, these processes might not undergo changes at

different flame locations and, therefore, do not participate in

the bifurcation behavior. Hence, we speculate that, nonlinear

flame-acoustic response turns out to be the most plausible

mechanism responsible for the observed dynamics.

V. CONCLUSIONS

In this paper, we have seen that due to the nonlinear

interactions between combustion and acoustics, a simple

thermoacoustic system can exhibit a rich variety of dynam-

ics. The nonlinear nature of thermoacoustic oscillations has

been investigated from the point of view of dynamical sys-

tems theory. This approach enabled us to characterize and

classify the behavior of the system in the linearly unstable

regime. A variety of attractors—periodic, quasi-periodic,

and chaotic states were observed in the system, as a control

parameter was changed. A route to chaos for thermoacoustic

oscillations is established experimentally for the first time.

We show that, as the location of the heat source is gradually

varied, self-excited periodic thermoacoustic oscillations

undergo transition to chaos via the Ruelle-Takens scenario.

Similar behavioral patterns in the oscillations have been

observed to occur in several other nonlinear processes occur-

ring in nature.

The phenomena observed in this study are related to the

inherent nonlinear processes in combustion instability and,

therefore, such dynamics is also expected to exist in practical

systems. Accordingly, this information is quite critical and

should be considered while constructing accurate models for

thermoacoustic instability and designing effective control

techniques. Practical combustion systems are highly suscep-

tible to frequencies corresponding to the natural modes of

structural components, which can cause resonance and can

lead to catastrophic failure.33,36 For the case of quasi-

periodic and mode-locked states, a number of frequencies

will be present in the spectrum. During a chaotic state, the

oscillations will be broadband in nature. As a consequence,

resonant structural excitation is more likely to happen during

the occurrence of states such as quasi-periodic, mode-locked,

and chaotic oscillating than during the occurrence of limit

cycle oscillations. Additionally, aperiodic behavior results in
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variable amplitude pressure oscillations which can cause a

higher fatigue loading, augmented crack formation, and

propagation and therefore a higher wear and tear of the

structural components constituting the combustor.36 Conse-

quently, the presence of nonlinear thermoacoustic oscilla-

tions can potentially reduce the performance and the life

span of a combustor.

ACKNOWLEDGMENTS

This work was funded by the Department of Science

and Technology, India. The authors gratefully acknowledge

Mr. Joseph George for his critical suggestions.

1M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett. 50, 713–716
(1983).

2H. Gotoda, H. Nikimoto, T. Miyano, and S. Tachibana, Chaos 21, 013124
(2011).

3H. Gotoda, T. Miyano, and I. G. Shepherd, Phys. Rev. E 81, 026211
(2010).

4T. Yazaki, S. Takashima, and F. Mizutani, Phys. Rev. Lett. 58, 1108–1111
(1987).

5T. C. Lieuwen and V. Yang, Combustion Instabilities in Gas Turbine

Engines: Operational Experience, Fundamental Mechanisms, and Model-

ing (Progress in Astronautics and Aeronautics, AIAA, Inc., 2005).
6A. P. Dowling, J. Fluid Mech. 346, 271–290 (1997).
7A. P. Dowling, J. Fluid Mech. 394, 51–72 (1999).
8C. C. Jahnke and F. E. C. Culick, J. Propul. Power 10, 508–517 (1994).
9A. A. Peracchio and W. M. Proscia, J. Eng. Gas Turbines Power 121,
415–421 (1999).

10T. Lieuwen, J. Propul. Power 18, 61–67 (1992).
11K. C. Schadow and E. Gutmark, Prog. Energy Combust. Sci. 18, 117–132
(1992).

12J. D. Sterling, Combust. Sci. Technol. 89, 167–179 (1993).
13S. Lei and A. Turan, Combust. Theory Modell. 13, 541–557 (2009).
14A. Fichera, C. Losenno, and A. Pagano, Appl. Energy 70, 179–191

(2001).
15S. Candel, Proc. Combust. Inst. 29, 1–12 (2002).
16N. Noiray, D. Durox, T. Schuller, and S. Candel, J. Fluid Mech. 615,
139–167 (2008).

17T. Schuller, D. Durox, and S. Candel, Combust. Flame 134, 21–34 (2003).
18H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge

University Press, 2003).
19J. P. Gollub and S. V. Benson, J. Fluid Mech. 100, 449–470 (1980).
20Y. Matsui, Combust. Flame 43, 199–209 (1981).
21P. J. Langhorne, J. Fluid Mech. 193, 417–443 (1988).
22S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to

Physics, Biology, Chemistry, and Engineering (Levant Books, 2007).
23F. Takens, Lect. Notes Math. 898, 366 (1981).
24H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, Rev.

Mod. Phys. 65, 1331–1392 (1993).
25A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134–1140 (1986).
26M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Phys. Rev. A. 45,
3403–341 (1992).

27H. J. Merk, Appl. Sci. Res. 8, 1–27 (1958).
28P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346–349 (1954).
29H. Kantz, Phys. Lett. A 185, 77–87 (1994).
30D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167–192 (1971).
31A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analyti-

cal, Computational, and Experimental Methods (Wiley VCH, Weinheim,

2004).
32L. Kabiraj, R. I. Sujith, and P. Wahi, J. Eng. Gas Turbines Power 134,
031502 (2011).

33R. Kurz and K. Brun, in Proceeding of the Thirty Sixth Turbomachinery

Symposium (Texas A&M University, College Station, TX, 2007).
34T. Schreiber, Phys. Rev E. 47, 2401–2404 (1993).
35R. C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scien-

tists and Engineers (Oxford University Press, 2000).
36S. Suresh, Fatigue of Materials (Cambridge University Press, 2000).

023129-12 Kabiraj et al. Chaos 22, 023129 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.216.129.208 On: Fri, 12 Dec 2014 07:14:29


